[Top][All Lists]

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

RE: [Axiom-math] special functions

From: Bill Page
Subject: RE: [Axiom-math] special functions
Date: Thu, 26 Jan 2006 18:09:14 -0500

> On January 26, 2006 3:32 PM Yigal Weinstein wrote:
> >
> > Is there a way in Axiom >= 3.9 to get a numerical approximation
> > for Gamma(x,y)- without the use of NAG?  I know there is for 
> > Gamma(x) but for incomplete gamma there seems no straightforward
> > way.
On January 26, 2006 5:09 PM Vanuxem Grégory wrote:
> No :-(

I suggest that someone tackle this problem based on the following

Computing the incomplete Gamma function to arbitrary precision

Serge Winitzki1
Department of Physics, Ludwig-Maximilians University, Theresienstr. 37,
Munich, Germany (address@hidden)

Abstract. I consider an arbitrary-precision computation of the
incomplete Gamma function from the Legendre continued fraction.
Using the method of generating functions, I compute the convergence
rate of the continued fraction and find a direct estimate of the
necessary number of terms. This allows to compare the performance
of the continued fraction and of the power series methods. As an
application, I show that the incomplete Gamma function Gamma(a, z)
can be computed to P digits in at most O (P) long multiplications
uniformly in z for Re z > 0. The error function of the real argument,
erf x, requires at most O(P2/3) long multiplications.


I would be glad to help someone with the SPAD coding.

Bill Page.

reply via email to

[Prev in Thread] Current Thread [Next in Thread]