[Top][All Lists]
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
RE: [Axiom-math] special functions
From: |
yigal |
Subject: |
RE: [Axiom-math] special functions |
Date: |
Thu, 26 Jan 2006 15:19:02 -0800 |
Yes, I didn't realize the power of Axiom, I simply made the function,
gamma(n,x) == factorial(n-1)*exp(-x)*reduce(+,[x^i/factorial(i) for i in
0..(n-1)])
which was adapted from the example function in the book,
f(n) == reduce(*,[i for i in 2..n])
sorry for the lame question I am just beginning to use Axiom and best,
Yigal
On Thu, 2006-01-26 at 23:09 +0100, Vanuxem Grégory wrote:
> Hi,
> > -----Message d'origine-----
> > De : address@hidden
> > [mailto:address@hidden la part de
> > yigal
> > Envoyé : jeudi 26 janvier 2006 21:32
> > À : address@hidden
> > Objet : [Axiom-math] special functions
> >
> >
> > Is there a way in Axiom >= 3.9 to get a numerical approximation for
> > Gamma(x,y)- without the use of NAG? I know there is for Gamma(x) but
> > for incomplete gamma there seems no straightforward way.
>
> No :-(
>
> Cheers,
>
> Greg
>
> > ----------------------------------------------------------------------
> > For instance,
> >
> > (3) -> Gamma(1,2)
> > Loading /usr/lib/axiom-20050901/algebra/IDPOAMS.o for domain
> > IndexedDirectProductOrderedAbelianMonoidSup
> > Loading /usr/lib/axiom-20050901/algebra/IDPOAM.o for domain
> > IndexedDirectProductOrderedAbelianMonoid
> >
> > _
> > (3) | (1,2)
> > Type: Expression
> > Integer
> > -----------------------------------------------------------------------
> >
> > Yigal Weinstein
> >
> >
> >
> >
> > _______________________________________________
> > Axiom-math mailing list
> > address@hidden
> > http://lists.nongnu.org/mailman/listinfo/axiom-math
> >
>
>