octave-maintainers
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

porting arapck code to octave


From: David Bateman
Subject: porting arapck code to octave
Date: Sat, 20 Dec 2008 00:27:26 +0100
User-agent: Mozilla-Thunderbird 2.0.0.17 (X11/20081018)

I've been looking at porting the eigs function to octave and basically have it finished.. However I have a bizarre issue in that

eigs (diag(1:100),4,'LM')

doesn't work due to an internal error in an ARPACK function.. I'd remember something like this and that I'd patch arpack to avoid it on my machine in the past. However, I thought I'd investigate the issue further and modified an ARPACK example function "dssimp" to treat the exact same case as above and no bug manifested..

I then tried reimplementing dssimp as an oct-file, trying to keep it close to the same functionality as the fortran code (ie arrays initialized to zero, etc), and the result was I saw the same bug in the DSAUPD function as previously. I've been staring at this code for hours and don't see what the issue is. I attach my modified dssimp.f and the code that duplicates it in octave with "dssimp(diag(1:100))"... Anyone want to confirm that

gfortran -o dssimp dssimp.f -larpack -lblas -llapack
./dssimp

works and gives the 4 largest eigenvalues [100, 99, 98, 97] as expected. whereas

mkoctfile dssimp.cc -larpack
octave --eval "dssimp(diag(1:100))"

doesn't... Anyone want to look at the code and see if they can see an issue that I missed?

Regards
David




--
David Bateman                                address@hidden
35 rue Gambetta                              +33 1 46 04 02 18 (Home)
92100 Boulogne-Billancourt FRANCE            +33 6 72 01 06 33 (Mob)

#include <octave/oct.h>
#include "f77-fcn.h"

extern "C"
{

  F77_RET_T
  F77_FUNC (dsaupd, DSAUPD) (octave_idx_type&, F77_CONST_CHAR_ARG_DECL,
                             const octave_idx_type&, F77_CONST_CHAR_ARG_DECL, 
                             const octave_idx_type&, const double&,
                             double*, const octave_idx_type&, double*,
                             const octave_idx_type&, octave_idx_type*,
                             octave_idx_type*, double*, double*, 
                             const octave_idx_type&, octave_idx_type&
                             F77_CHAR_ARG_LEN_DECL F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (dseupd, DSEUPD) (const int&, F77_CONST_CHAR_ARG_DECL,
                             int*, double*, double*,
                             const octave_idx_type&, const double&,
                             F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, 
                             F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, 
                             const double&, double*, const octave_idx_type&, 
                             double*, const octave_idx_type&, octave_idx_type*,
                             octave_idx_type*, double*, double*, 
                             const octave_idx_type&, octave_idx_type&
                             F77_CHAR_ARG_LEN_DECL F77_CHAR_ARG_LEN_DECL
                             F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (dgemv, DGEMV) (F77_CONST_CHAR_ARG_DECL,
                           const octave_idx_type&, const octave_idx_type&, 
const double&,
                           const double*, const octave_idx_type&, const double*,
                           const octave_idx_type&, const double&, double*,
                           const octave_idx_type&
                           F77_CHAR_ARG_LEN_DECL);

}

#define maxn 256
#define maxnev 10
#define maxncv 25
#define ldv maxn

static bool
vector_product (const Matrix& m, const double *x, double *y)
{
  octave_idx_type nr = m.rows ();
  octave_idx_type nc = m.cols ();

  F77_XFCN (dgemv, DGEMV, (F77_CONST_CHAR_ARG2 ("N", 1),
                           nr, nc, 1.0,  m.data (), nr,
                           x, 1, 0.0, y, 1
                           F77_CHAR_ARG_LEN (1)));

  if (f77_exception_encountered)
    {
      (*current_liboctave_error_handler) 
        ("dssimp: unrecoverable error in dgemv");
      return false;
    }
  else
    return true;
}

DEFUN_DLD (dssimp, args, nargout, "no help")
{
  int nargin = args.length ();
  octave_value_list retval;

  if (nargin != 1)
    print_usage ();
  else
    {
      Matrix m = args(0).matrix_value ();

      if (!error_state)
        {

#define MY_LOCAL_BUFFER(T, V, N) \
          OCTAVE_LOCAL_BUFFER (T, V, N); \
          for (octave_idx_type iii = 0; iii < N; iii++) \
            V[iii] = 0.;

          MY_LOCAL_BUFFER (double, v, ldv*maxncv);        

          MY_LOCAL_BUFFER (double, workl, maxncv * (maxncv+8));
          MY_LOCAL_BUFFER (double, workd, 3 * maxn);
          MY_LOCAL_BUFFER (double, d, maxncv*2);
          MY_LOCAL_BUFFER (double, resid, maxn);
          MY_LOCAL_BUFFER (double, ax, maxn);

          MY_LOCAL_BUFFER (int, select, maxncv);

          MY_LOCAL_BUFFER (octave_idx_type, iparam, 11);
          MY_LOCAL_BUFFER (octave_idx_type, ipntr, 11);

          for (int i = 0; i < 11; i++)
            {
              iparam[i] = 0;
              ipntr[i] = 0;
            }
          iparam[0] = 1;
          iparam[2] = 300;
          iparam[6] = 1;

          octave_idx_type nev = 4;
          octave_idx_type ncv = 20;
          octave_idx_type ido = 0;
          octave_idx_type lworkl = ncv * ( ncv + 8);
          char bmat = 'I';
          std::string which = "LM";
          double tol = 0.;
          octave_idx_type info = 0;
          
          octave_idx_type n = m.rows();
          octave_idx_type lldv = ldv;

          while (true)
            {
              F77_FUNC (dsaupd, DSAUPD) 
                (ido, F77_CONST_CHAR_ARG2 (&bmat, 1), n,
                 F77_CONST_CHAR_ARG2 ((which.c_str ()), 2),
                 nev, tol, resid, ncv, v, lldv, iparam,
                 ipntr, workd, workl, lworkl, info
                 F77_CHAR_ARG_LEN(1) F77_CHAR_ARG_LEN(2));

              if (f77_exception_encountered)
                {
                  (*current_liboctave_error_handler) 
                    ("dssimp: unrecoverable exception encountered in dsaupd");
                  return retval;
                }

              if (ido == -1 || ido == 1)
                {
#if 0
                  if (!vector_product (m, workd + ipntr[0] - 1, 
                                       workd + ipntr[1] - 1))
                    break;
#else
                  // v = diag(1:100) * w
                  for (octave_idx_type i = 0; i < n; i++)
                    workd[i+ipntr[1]-1] = static_cast<double>(i) * 
workd[i+ipntr[0]-1];
#endif
                }
              else
                break;
            }

          if (info < 0)
            error ("dssimp: error %d in dsaupd", info);
          else
            {
              int rvec = 1;

              Matrix eig_vec (n, nev);
              double *z = eig_vec.fortran_vec ();

              ColumnVector eig_val (nev);
              double *d = eig_val.fortran_vec ();

              Array<int> s (ncv);
              int *sel = s.fortran_vec ();
              double sigma;

              F77_FUNC (dseupd, DSEUPD) 
                (rvec, F77_CONST_CHAR_ARG2 ("A", 1), sel, d, z, n, sigma, 
                 F77_CONST_CHAR_ARG2 (&bmat, 1), n,
                 F77_CONST_CHAR_ARG2 ((which.c_str()), 2),
                 nev, tol, resid, ncv, v, n, iparam, ipntr, workd, workl, 
                 lworkl, info
                 F77_CHAR_ARG_LEN(1) F77_CHAR_ARG_LEN(1) F77_CHAR_ARG_LEN(2));

              if (f77_exception_encountered)
                {
                  (*current_liboctave_error_handler)
                    ("dssimp: unrecoverable exception encountered in dseupd");
                  return retval;
                }

              retval(1) = eig_val;
              retval(2) = eig_vec;
            }
        }
    }   

  return retval;
}
      program dssimp
c
c     This example program is intended to illustrate the 
c     simplest case of using ARPACK in considerable detail.  
c     This code may be used to understand basic usage of ARPACK
c     and as a template for creating an interface to ARPACK.  
c   
c     This code shows how to use ARPACK to find a few eigenvalues 
c     (lambda) and corresponding eigenvectors (x) for the standard 
c     eigenvalue problem:
c          
c                        A*x = lambda*x
c 
c     where A is an n by n real symmetric matrix.
c
c     The main points illustrated here are 
c
c        1) How to declare sufficient memory to find NEV 
c           eigenvalues of largest magnitude.  Other options
c           are available.
c
c        2) Illustration of the reverse communication interface 
c           needed to utilize the top level ARPACK routine DSAUPD 
c           that computes the quantities needed to construct
c           the desired eigenvalues and eigenvectors(if requested).
c
c        3) How to extract the desired eigenvalues and eigenvectors
c           using the ARPACK routine DSEUPD.
c
c     The only thing that must be supplied in order to use this
c     routine on your problem is to change the array dimensions 
c     appropriately, to specify WHICH eigenvalues you want to compute 
c     and to supply a matrix-vector product
c
c                         w <-  Av
c
c     in place of the call to AV( ) below.
c
c     Once usage of this routine is understood, you may wish to explore
c     the other available options to improve convergence, to solve generalized
c     problems, etc.  Look at the file ex-sym.doc in DOCUMENTS directory.
c     This codes implements  
c
c\Example-1
c     ... Suppose we want to solve A*x = lambda*x in regular mode,
c         where A is derived from the central difference discretization
c         of the 2-dimensional Laplacian on the unit square with
c         zero Dirichlet boundary condition.
c     ... OP = A  and  B = I.
c     ... Assume "call av (n,x,y)" computes y = A*x
c     ... Use mode 1 of DSAUPD.
c
c\BeginLib
c
c\Routines called:
c     dsaupd  ARPACK reverse communication interface routine.
c     dseupd  ARPACK routine that returns Ritz values and (optionally)
c             Ritz vectors.
c     dnrm2   Level 1 BLAS that computes the norm of a vector.
c     daxpy   Level 1 BLAS that computes y <- alpha*x+y.
c
c\Author
c     Richard Lehoucq
c     Danny Sorensen
c     Chao Yang
c     Dept. of Computational &
c     Applied Mathematics
c     Rice University
c     Houston, Texas
c
c\SCCS Information: @(#)
c FILE: ssimp.F   SID: 2.6   DATE OF SID: 10/17/00   RELEASE: 2
c
c\Remarks
c     1. None
c
c\EndLib
c
c-----------------------------------------------------------------------
c
c     %------------------------------------------------------%
c     | Storage Declarations:                                |
c     |                                                      |
c     | The maximum dimensions for all arrays are            |
c     | set here to accommodate a problem size of            |
c     | N .le. MAXN                                          |
c     |                                                      |
c     | NEV is the number of eigenvalues requested.          |
c     |     See specifications for ARPACK usage below.       |
c     |                                                      |
c     | NCV is the largest number of basis vectors that will |
c     |     be used in the Implicitly Restarted Arnoldi      |
c     |     Process.  Work per major iteration is            |
c     |     proportional to N*NCV*NCV.                       |
c     |                                                      |
c     | You must set:                                        |
c     |                                                      |
c     | MAXN:   Maximum dimension of the A allowed.          |
c     | MAXNEV: Maximum NEV allowed.                         |
c     | MAXNCV: Maximum NCV allowed.                         |
c     %------------------------------------------------------%
c
      integer          maxn, maxnev, maxncv, ldv
      parameter       (maxn=256, maxnev=10, maxncv=25, 
     $                 ldv=maxn )
c
c     %--------------%
c     | Local Arrays |
c     %--------------%
c
      Double precision
     &                 v(ldv,maxncv), workl(maxncv*(maxncv+8)),
     &                 workd(3*maxn), d(maxncv,2), resid(maxn),
     &                 ax(maxn)
      logical          select(maxncv)
      integer          iparam(11), ipntr(11)
c
c     %---------------%
c     | Local Scalars |
c     %---------------%
c
      character        bmat*1, which*2
      integer          ido, n, nev, ncv, lworkl, info, ierr,
     &                 j, nx, ishfts, maxitr, mode1, nconv
      logical          rvec
      Double precision      
     &                 tol, sigma
c
c     %------------%
c     | Parameters |
c     %------------%
c
      Double precision
     &                 zero
      parameter        (zero = 0.0D+0)
c  
c     %-----------------------------%
c     | BLAS & LAPACK routines used |
c     %-----------------------------%
c
      Double precision           
     &                 dnrm2
      external         dnrm2, daxpy
c
c     %--------------------%
c     | Intrinsic function |
c     %--------------------%
c
      intrinsic        abs
c
c     %-----------------------%
c     | Executable Statements |
c     %-----------------------%
c
c     %-------------------------------------------------%
c     | The following include statement and assignments |
c     | initiate trace output from the internal         |
c     | actions of ARPACK.  See debug.doc in the        |
c     | DOCUMENTS directory for usage.  Initially, the  |
c     | most useful information will be a breakdown of  |
c     | time spent in the various stages of computation |
c     | given by setting msaupd = 1.                    |
c     %-------------------------------------------------%
c
      include 'debug.h'
      ndigit = -3
      logfil = 6
      msgets = 0
      msaitr = 0 
      msapps = 0
      msaupd = 1
      msaup2 = 0
      mseigt = 0
      mseupd = 0
c     
c     %-------------------------------------------------%
c     | The following sets dimensions for this problem. |
c     %-------------------------------------------------%
c
      nx = 10
      n = nx*nx
c
c     %-----------------------------------------------%
c     |                                               | 
c     | Specifications for ARPACK usage are set       | 
c     | below:                                        |
c     |                                               |
c     |    1) NEV = 4  asks for 4 eigenvalues to be   |  
c     |       computed.                               | 
c     |                                               |
c     |    2) NCV = 20 sets the length of the Arnoldi |
c     |       factorization                           |
c     |                                               |
c     |    3) This is a standard problem              |
c     |         (indicated by bmat  = 'I')            |
c     |                                               |
c     |    4) Ask for the NEV eigenvalues of          |
c     |       largest magnitude                       |
c     |         (indicated by which = 'LM')           |
c     |       See documentation in DSAUPD for the     |
c     |       other options SM, LA, SA, LI, SI.       | 
c     |                                               |
c     | Note: NEV and NCV must satisfy the following  |
c     | conditions:                                   |
c     |              NEV <= MAXNEV                    |
c     |          NEV + 1 <= NCV <= MAXNCV             |
c     %-----------------------------------------------%
c
      nev   = 4
      ncv   = 20 
      bmat  = 'I'
      which = 'LM'
c
      if ( n .gt. maxn ) then
         print *, ' ERROR with _SSIMP: N is greater than MAXN '
         go to 9000
      else if ( nev .gt. maxnev ) then
         print *, ' ERROR with _SSIMP: NEV is greater than MAXNEV '
         go to 9000
      else if ( ncv .gt. maxncv ) then
         print *, ' ERROR with _SSIMP: NCV is greater than MAXNCV '
         go to 9000
      end if
c
c     %-----------------------------------------------------%
c     |                                                     |
c     | Specification of stopping rules and initial         |
c     | conditions before calling DSAUPD                    |
c     |                                                     |
c     | TOL  determines the stopping criterion.             |
c     |                                                     |
c     |      Expect                                         |
c     |           abs(lambdaC - lambdaT) < TOL*abs(lambdaC) |
c     |               computed   true                       |
c     |                                                     |
c     |      If TOL .le. 0,  then TOL <- macheps            |
c     |           (machine precision) is used.              |
c     |                                                     |
c     | IDO  is the REVERSE COMMUNICATION parameter         |
c     |      used to specify actions to be taken on return  |
c     |      from DSAUPD. (See usage below.)                |
c     |                                                     |
c     |      It MUST initially be set to 0 before the first |
c     |      call to DSAUPD.                                | 
c     |                                                     |
c     | INFO on entry specifies starting vector information |
c     |      and on return indicates error codes            |
c     |                                                     |
c     |      Initially, setting INFO=0 indicates that a     | 
c     |      random starting vector is requested to         |
c     |      start the ARNOLDI iteration.  Setting INFO to  |
c     |      a nonzero value on the initial call is used    |
c     |      if you want to specify your own starting       |
c     |      vector (This vector must be placed in RESID.)  | 
c     |                                                     |
c     | The work array WORKL is used in DSAUPD as           | 
c     | workspace.  Its dimension LWORKL is set as          |
c     | illustrated below.                                  |
c     |                                                     |
c     %-----------------------------------------------------%
c
      lworkl = ncv*(ncv+8)
      tol = zero 
      info = 0
      ido = 0
c
c     %---------------------------------------------------%
c     | Specification of Algorithm Mode:                  |
c     |                                                   |
c     | This program uses the exact shift strategy        |
c     | (indicated by setting PARAM(1) = 1).              |
c     | IPARAM(3) specifies the maximum number of Arnoldi |
c     | iterations allowed.  Mode 1 of DSAUPD is used     |
c     | (IPARAM(7) = 1). All these options can be changed |
c     | by the user. For details see the documentation in |
c     | DSAUPD.                                           |
c     %---------------------------------------------------%
c
      ishfts = 1
      maxitr = 300 
      mode1 = 1
c
      iparam(1) = ishfts
c                
      iparam(3) = maxitr
c                  
      iparam(7) = mode1
c
c     %------------------------------------------------%
c     | M A I N   L O O P (Reverse communication loop) |
c     %------------------------------------------------%
c
 10   continue
c
c        %---------------------------------------------%
c        | Repeatedly call the routine DSAUPD and take | 
c        | actions indicated by parameter IDO until    |
c        | either convergence is indicated or maxitr   |
c        | has been exceeded.                          |
c        %---------------------------------------------%
c
         call dsaupd ( ido, bmat, n, which, nev, tol, resid, 
     &                 ncv, v, ldv, iparam, ipntr, workd, workl,
     &                 lworkl, info )
c
         if (ido .eq. -1 .or. ido .eq. 1) then
c
c           %--------------------------------------%
c           | Perform matrix vector multiplication |
c           |              y <--- OP*x             |
c           | The user should supply his/her own   |
c           | matrix vector multiplication routine |
c           | here that takes workd(ipntr(1)) as   |
c           | the input, and return the result to  |
c           | workd(ipntr(2)).                     |
c           %--------------------------------------%
c
            call av2 (nx, workd(ipntr(1)), workd(ipntr(2)))
c
c           %-----------------------------------------%
c           | L O O P   B A C K to call DSAUPD again. |
c           %-----------------------------------------%
c
            go to 10
c
         end if 
c
c     %----------------------------------------%
c     | Either we have convergence or there is |
c     | an error.                              |
c     %----------------------------------------%
c
      if ( info .lt. 0 ) then
c
c        %--------------------------%
c        | Error message. Check the |
c        | documentation in DSAUPD. |
c        %--------------------------%
c
         print *, ' '
         print *, ' Error with _saupd, info = ', info
         print *, ' Check documentation in _saupd '
         print *, ' '
c
      else 
c
c        %-------------------------------------------%
c        | No fatal errors occurred.                 |
c        | Post-Process using DSEUPD.                |
c        |                                           |
c        | Computed eigenvalues may be extracted.    |  
c        |                                           |
c        | Eigenvectors may be also computed now if  |
c        | desired.  (indicated by rvec = .true.)    | 
c        |                                           |
c        | The routine DSEUPD now called to do this  |
c        | post processing (Other modes may require  |
c        | more complicated post processing than     |
c        | mode1.)                                   |
c        |                                           |
c        %-------------------------------------------%
c           
          rvec = .true.
c
          call dseupd ( rvec, 'All', select, d, v, ldv, sigma, 
     &         bmat, n, which, nev, tol, resid, ncv, v, ldv, 
     &         iparam, ipntr, workd, workl, lworkl, ierr )
c
c         %----------------------------------------------%
c         | Eigenvalues are returned in the first column |
c         | of the two dimensional array D and the       |
c         | corresponding eigenvectors are returned in   |
c         | the first NCONV (=IPARAM(5)) columns of the  |
c         | two dimensional array V if requested.        |
c         | Otherwise, an orthogonal basis for the       |
c         | invariant subspace corresponding to the      |
c         | eigenvalues in D is returned in V.           |
c         %----------------------------------------------%
c
          if ( ierr .ne. 0) then
c
c            %------------------------------------%
c            | Error condition:                   |
c            | Check the documentation of DSEUPD. |
c            %------------------------------------%
c
             print *, ' '
             print *, ' Error with _seupd, info = ', ierr
             print *, ' Check the documentation of _seupd. '
             print *, ' '
c
          else
c
             nconv =  iparam(5)
             do 20 j=1, nconv
c
c               %---------------------------%
c               | Compute the residual norm |
c               |                           |
c               |   ||  A*x - lambda*x ||   |
c               |                           |
c               | for the NCONV accurately  |
c               | computed eigenvalues and  |
c               | eigenvectors.  (iparam(5) |
c               | indicates how many are    |
c               | accurate to the requested |
c               | tolerance)                |
c               %---------------------------%
c
                call av2(nx, v(1,j), ax)
                call daxpy(n, -d(j,1), v(1,j), 1, ax, 1)
                d(j,2) = dnrm2(n, ax, 1)
                d(j,2) = d(j,2) / abs(d(j,1))
c
 20          continue
c
c            %-----------------------------%
c            | Display computed residuals. |
c            %-----------------------------%
c
             call dmout(6, nconv, 2, d, maxncv, -6,
     &            'Ritz values and relative residuals')
          end if
c
c         %-------------------------------------------%
c         | Print additional convergence information. |
c         %-------------------------------------------%
c
          if ( info .eq. 1) then
             print *, ' '
             print *, ' Maximum number of iterations reached.'
             print *, ' '
          else if ( info .eq. 3) then
             print *, ' ' 
             print *, ' No shifts could be applied during implicit',
     &                ' Arnoldi update, try increasing NCV.'
             print *, ' '
          end if      
c
          print *, ' '
          print *, ' _SSIMP '
          print *, ' ====== '
          print *, ' '
          print *, ' Size of the matrix is ', n
          print *, ' The number of Ritz values requested is ', nev
          print *, ' The number of Arnoldi vectors generated',
     &             ' (NCV) is ', ncv
          print *, ' What portion of the spectrum: ', which
          print *, ' The number of converged Ritz values is ', 
     &               nconv 
          print *, ' The number of Implicit Arnoldi update',
     &             ' iterations taken is ', iparam(3)
          print *, ' The number of OP*x is ', iparam(9)
          print *, ' The convergence criterion is ', tol
          print *, ' '
c
      end if
c
c     %---------------------------%
c     | Done with program dssimp. |
c     %---------------------------%
c
 9000 continue
c
      end
c
      subroutine av2 (nx, v, w)
      integer nx, j
      double precision  v(nx*nx), w(nx*nx)
      do 10 j = 1, nx * nx
         w(j) = dble(j) * v(j)
 10   continue

      end

c 
c ------------------------------------------------------------------
c     matrix vector subroutine
c
c     The matrix used is the 2 dimensional discrete Laplacian on unit
c     square with zero Dirichlet boundary condition.
c
c     Computes w <--- OP*v, where OP is the nx*nx by nx*nx block 
c     tridiagonal matrix
c
c                  | T -I          | 
c                  |-I  T -I       |
c             OP = |   -I  T       |
c                  |        ...  -I|
c                  |           -I T|
c
c     The subroutine TV is called to computed y<---T*x.
c
      subroutine av (nx, v, w)
      integer           nx, j, lo, n2
      Double precision
     &                  v(nx*nx), w(nx*nx), one, h2
      parameter         ( one = 1.0D+0 ) 
c
      call tv(nx,v(1),w(1))
      call daxpy(nx, -one, v(nx+1), 1, w(1), 1)
c
      do 10 j = 2, nx-1
         lo = (j-1)*nx
         call tv(nx, v(lo+1), w(lo+1))
         call daxpy(nx, -one, v(lo-nx+1), 1, w(lo+1), 1)
         call daxpy(nx, -one, v(lo+nx+1), 1, w(lo+1), 1)
  10  continue 
c
      lo = (nx-1)*nx
      call tv(nx, v(lo+1), w(lo+1))
      call daxpy(nx, -one, v(lo-nx+1), 1, w(lo+1), 1)
c
c     Scale the vector w by (1/h^2), where h is the mesh size
c
      n2 = nx*nx
      h2 = one / dble((nx+1)*(nx+1))
      call dscal(n2, one/h2, w, 1)
      return
      end
c
c-------------------------------------------------------------------
      subroutine tv (nx, x, y)
c
      integer           nx, j 
      Double precision
     &                  x(nx), y(nx), dd, dl, du
c
      Double precision
     &                  one, four
      parameter         (one = 1.0D+0, four = 4.0D+0)
c
c     Compute the matrix vector multiplication y<---T*x
c     where T is a nx by nx tridiagonal matrix with DD on the 
c     diagonal, DL on the subdiagonal, and DU on the superdiagonal.
c     
c
      dd  = four 
      dl  = -one 
      du  = -one
c 
      y(1) =  dd*x(1) + du*x(2)
      do 10 j = 2,nx-1
         y(j) = dl*x(j-1) + dd*x(j) + du*x(j+1) 
 10   continue 
      y(nx) =  dl*x(nx-1) + dd*x(nx) 
      return
      end


reply via email to

[Prev in Thread] Current Thread [Next in Thread]