texi2html-cvs
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[Texi2html-cvs] texi2html ChangeLog TODO texi2html.init texi2ht...


From: Patrice Dumas
Subject: [Texi2html-cvs] texi2html ChangeLog TODO texi2html.init texi2ht...
Date: Fri, 09 Jan 2009 21:21:03 +0000

CVSROOT:        /cvsroot/texi2html
Module name:    texi2html
Changes by:     Patrice Dumas <pertusus>        09/01/09 21:21:00

Modified files:
        .              : ChangeLog TODO texi2html.init texi2html.pl 
        examples       : docbook.init html32.init roff.init xml.init 
        test/coverage/res/formatting: formatting.html 
        test/coverage/res/texi_formatting: formatting.passfirst 
                                           formatting.passtexi 
                                           formatting.texi 
        test/coverage/res/texi_imbrications: imbrications.passfirst 
                                             imbrications.passtexi 
                                             imbrications.texi 
        test/encodings/res/formatting_converted_to_utf8: formatting.html 
        test/encodings/res/formatting_fr: formatting.html 
        test/encodings/res/formatting_fr_icons: formatting.html 
        test/formatting/res/formatting_weird_quotes: formatting.html 
        test/formatting/res/texi_block_EOL: block_EOL.passfirst 
                                            block_EOL.passtexi 
                                            block_EOL.texi 
        test/formatting/res/texi_formatting: formatting.passfirst 
                                             formatting.passtexi 
                                             formatting.texi 
        test/layout/res/formatting_chm: formatting.html 
                                        formatting_1.html 
                                        formatting_2.html 
                                        formatting_3.html 
                                        formatting_4.html 
                                        formatting_5.html 
                                        formatting_abt.html 
                                        formatting_ovr.html 
                                        formatting_toc.html 
        test/layout/res/formatting_exotic: formatting.html 
                                           formatting_1.html 
                                           formatting_2.html 
                                           formatting_3.html 
                                           formatting_4.html 
                                           formatting_abt.html 
                                           formatting_ovr.html 
                                           formatting_toc.html 
        test/layout/res/formatting_makeinfo: chapter.html chapter2.html 
                                             formatting_abt.html 
                                             index.html 
                                             s_002d_002dect_002cion.html 
                                             subsection.html 
                                             
subsubsection-_0060_0060simple_002ddouble_002d_002dthree_002d_002d_002dfour_002d_002d_002d_002d_0027_0027.html
 
        test/layout/res/formatting_regions: formatting_regions.html 
        test/layout/res/texi_formatting_regions: 
                                                 formatting_regions.passfirst 
                                                 formatting_regions.passtexi 
                                                 formatting_regions.texi 
        test/macros    : tests.txt 
        test/macros/res/texi_cond: cond.passfirst cond.passtexi 
                                   cond.texi 
        test/manuals/res/texi_mini_ker: mini_ker.passfirst 
                                        mini_ker.passtexi mini_ker.texi 
        test/manuals/res/texi_texinfo: texinfo.passfirst 
                                       texinfo.passtexi texinfo.texi 
        test/misc/res/formatting_html32: formatting.html 
        test/nested_formats/res/texi_nested_formats: 
                                                     nested_formats.passfirst 
                                                     nested_formats.passtexi 
                                                     nested_formats.texi 
        test/singular_manual/res/texi_singular: singular.passfirst 
                                                singular.passtexi 
                                                singular.texi 

Log message:
                * texi2html.pl, texi2html.init, examples/*: Handle the raw 
                formats during output formatting, not in the first pass.

CVSWeb URLs:
http://cvs.savannah.gnu.org/viewcvs/texi2html/ChangeLog?cvsroot=texi2html&r1=1.361&r2=1.362
http://cvs.savannah.gnu.org/viewcvs/texi2html/TODO?cvsroot=texi2html&r1=1.79&r2=1.80
http://cvs.savannah.gnu.org/viewcvs/texi2html/texi2html.init?cvsroot=texi2html&r1=1.175&r2=1.176
http://cvs.savannah.gnu.org/viewcvs/texi2html/texi2html.pl?cvsroot=texi2html&r1=1.258&r2=1.259
http://cvs.savannah.gnu.org/viewcvs/texi2html/examples/docbook.init?cvsroot=texi2html&r1=1.16&r2=1.17
http://cvs.savannah.gnu.org/viewcvs/texi2html/examples/html32.init?cvsroot=texi2html&r1=1.22&r2=1.23
http://cvs.savannah.gnu.org/viewcvs/texi2html/examples/roff.init?cvsroot=texi2html&r1=1.26&r2=1.27
http://cvs.savannah.gnu.org/viewcvs/texi2html/examples/xml.init?cvsroot=texi2html&r1=1.12&r2=1.13
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/coverage/res/formatting/formatting.html?cvsroot=texi2html&r1=1.17&r2=1.18
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/coverage/res/texi_formatting/formatting.passfirst?cvsroot=texi2html&r1=1.7&r2=1.8
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/coverage/res/texi_formatting/formatting.passtexi?cvsroot=texi2html&r1=1.7&r2=1.8
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/coverage/res/texi_formatting/formatting.texi?cvsroot=texi2html&r1=1.7&r2=1.8
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/coverage/res/texi_imbrications/imbrications.passfirst?cvsroot=texi2html&r1=1.1&r2=1.2
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/coverage/res/texi_imbrications/imbrications.passtexi?cvsroot=texi2html&r1=1.1&r2=1.2
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/coverage/res/texi_imbrications/imbrications.texi?cvsroot=texi2html&r1=1.1&r2=1.2
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/encodings/res/formatting_converted_to_utf8/formatting.html?cvsroot=texi2html&r1=1.17&r2=1.18
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/encodings/res/formatting_fr/formatting.html?cvsroot=texi2html&r1=1.17&r2=1.18
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/encodings/res/formatting_fr_icons/formatting.html?cvsroot=texi2html&r1=1.17&r2=1.18
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/formatting/res/formatting_weird_quotes/formatting.html?cvsroot=texi2html&r1=1.18&r2=1.19
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/formatting/res/texi_block_EOL/block_EOL.passfirst?cvsroot=texi2html&r1=1.1&r2=1.2
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/formatting/res/texi_block_EOL/block_EOL.passtexi?cvsroot=texi2html&r1=1.1&r2=1.2
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/formatting/res/texi_block_EOL/block_EOL.texi?cvsroot=texi2html&r1=1.1&r2=1.2
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/formatting/res/texi_formatting/formatting.passfirst?cvsroot=texi2html&r1=1.4&r2=1.5
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/formatting/res/texi_formatting/formatting.passtexi?cvsroot=texi2html&r1=1.4&r2=1.5
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/formatting/res/texi_formatting/formatting.texi?cvsroot=texi2html&r1=1.4&r2=1.5
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/layout/res/formatting_chm/formatting.html?cvsroot=texi2html&r1=1.10&r2=1.11
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/layout/res/formatting_chm/formatting_1.html?cvsroot=texi2html&r1=1.5&r2=1.6
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/layout/res/formatting_chm/formatting_2.html?cvsroot=texi2html&r1=1.5&r2=1.6
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/layout/res/formatting_chm/formatting_3.html?cvsroot=texi2html&r1=1.5&r2=1.6
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/layout/res/formatting_chm/formatting_4.html?cvsroot=texi2html&r1=1.5&r2=1.6
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/layout/res/formatting_chm/formatting_5.html?cvsroot=texi2html&r1=1.7&r2=1.8
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/layout/res/formatting_chm/formatting_abt.html?cvsroot=texi2html&r1=1.5&r2=1.6
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/layout/res/formatting_chm/formatting_ovr.html?cvsroot=texi2html&r1=1.7&r2=1.8
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/layout/res/formatting_chm/formatting_toc.html?cvsroot=texi2html&r1=1.7&r2=1.8
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/layout/res/formatting_exotic/formatting.html?cvsroot=texi2html&r1=1.15&r2=1.16
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/layout/res/formatting_exotic/formatting_1.html?cvsroot=texi2html&r1=1.5&r2=1.6
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/layout/res/formatting_exotic/formatting_2.html?cvsroot=texi2html&r1=1.11&r2=1.12
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/layout/res/formatting_exotic/formatting_3.html?cvsroot=texi2html&r1=1.11&r2=1.12
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/layout/res/formatting_exotic/formatting_4.html?cvsroot=texi2html&r1=1.10&r2=1.11
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/layout/res/formatting_exotic/formatting_abt.html?cvsroot=texi2html&r1=1.7&r2=1.8
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/layout/res/formatting_exotic/formatting_ovr.html?cvsroot=texi2html&r1=1.9&r2=1.10
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/layout/res/formatting_exotic/formatting_toc.html?cvsroot=texi2html&r1=1.9&r2=1.10
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/layout/res/formatting_makeinfo/chapter.html?cvsroot=texi2html&r1=1.10&r2=1.11
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/layout/res/formatting_makeinfo/chapter2.html?cvsroot=texi2html&r1=1.12&r2=1.13
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/layout/res/formatting_makeinfo/formatting_abt.html?cvsroot=texi2html&r1=1.6&r2=1.7
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/layout/res/formatting_makeinfo/index.html?cvsroot=texi2html&r1=1.13&r2=1.14
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/layout/res/formatting_makeinfo/s_002d_002dect_002cion.html?cvsroot=texi2html&r1=1.9&r2=1.10
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/layout/res/formatting_makeinfo/subsection.html?cvsroot=texi2html&r1=1.9&r2=1.10
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/layout/res/formatting_makeinfo/subsubsection-_0060_0060simple_002ddouble_002d_002dthree_002d_002d_002dfour_002d_002d_002d_002d_0027_0027.html?cvsroot=texi2html&r1=1.9&r2=1.10
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/layout/res/formatting_regions/formatting_regions.html?cvsroot=texi2html&r1=1.17&r2=1.18
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/layout/res/texi_formatting_regions/formatting_regions.passfirst?cvsroot=texi2html&r1=1.6&r2=1.7
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/layout/res/texi_formatting_regions/formatting_regions.passtexi?cvsroot=texi2html&r1=1.6&r2=1.7
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/layout/res/texi_formatting_regions/formatting_regions.texi?cvsroot=texi2html&r1=1.6&r2=1.7
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/macros/tests.txt?cvsroot=texi2html&r1=1.6&r2=1.7
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/macros/res/texi_cond/cond.passfirst?cvsroot=texi2html&r1=1.1&r2=1.2
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/macros/res/texi_cond/cond.passtexi?cvsroot=texi2html&r1=1.1&r2=1.2
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/macros/res/texi_cond/cond.texi?cvsroot=texi2html&r1=1.1&r2=1.2
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/manuals/res/texi_mini_ker/mini_ker.passfirst?cvsroot=texi2html&r1=1.2&r2=1.3
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/manuals/res/texi_mini_ker/mini_ker.passtexi?cvsroot=texi2html&r1=1.3&r2=1.4
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/manuals/res/texi_mini_ker/mini_ker.texi?cvsroot=texi2html&r1=1.2&r2=1.3
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/manuals/res/texi_texinfo/texinfo.passfirst?cvsroot=texi2html&r1=1.1&r2=1.2
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/manuals/res/texi_texinfo/texinfo.passtexi?cvsroot=texi2html&r1=1.1&r2=1.2
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/manuals/res/texi_texinfo/texinfo.texi?cvsroot=texi2html&r1=1.1&r2=1.2
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/misc/res/formatting_html32/formatting.html?cvsroot=texi2html&r1=1.17&r2=1.18
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/nested_formats/res/texi_nested_formats/nested_formats.passfirst?cvsroot=texi2html&r1=1.1&r2=1.2
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/nested_formats/res/texi_nested_formats/nested_formats.passtexi?cvsroot=texi2html&r1=1.1&r2=1.2
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/nested_formats/res/texi_nested_formats/nested_formats.texi?cvsroot=texi2html&r1=1.1&r2=1.2
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/singular_manual/res/texi_singular/singular.passfirst?cvsroot=texi2html&r1=1.2&r2=1.3
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/singular_manual/res/texi_singular/singular.passtexi?cvsroot=texi2html&r1=1.3&r2=1.4
http://cvs.savannah.gnu.org/viewcvs/texi2html/test/singular_manual/res/texi_singular/singular.texi?cvsroot=texi2html&r1=1.2&r2=1.3

Patches:
Index: ChangeLog
===================================================================
RCS file: /cvsroot/texi2html/texi2html/ChangeLog,v
retrieving revision 1.361
retrieving revision 1.362
diff -u -b -r1.361 -r1.362
--- ChangeLog   9 Jan 2009 16:55:19 -0000       1.361
+++ ChangeLog   9 Jan 2009 21:20:00 -0000       1.362
@@ -2,6 +2,8 @@
 
        * texi2html.pl: (dir) is added as up node only if automatic
        directions are used.
+       * texi2html.pl, texi2html.init, examples/*: Handle the raw 
+       formats during output formatting, not in the first pass.
 
 2009-01-08  Patrice Dumas  <address@hidden>
 

Index: TODO
===================================================================
RCS file: /cvsroot/texi2html/texi2html/TODO,v
retrieving revision 1.79
retrieving revision 1.80
diff -u -b -r1.79 -r1.80
--- TODO        8 Jan 2009 00:21:33 -0000       1.79
+++ TODO        9 Jan 2009 21:20:01 -0000       1.80
@@ -404,9 +404,6 @@
 * add as a filter when things come from STDIN, and there is no file in 
   argument. If there is no setfilename, file name is stdin.info.
 
-* @FORMAT like @tex, @html... should be kept with -E and certainly handled 
-  in formatting function. Cf test/macros/out/texi_cond for a wrong output.
-
 * texi2html doesn't understand `-o /dev/null'.  It aborts with
       *** /dev/ not writable
   report from Werner LEMBERG.

Index: texi2html.init
===================================================================
RCS file: /cvsroot/texi2html/texi2html/texi2html.init,v
retrieving revision 1.175
retrieving revision 1.176
diff -u -b -r1.175 -r1.176
--- texi2html.init      8 Jan 2009 00:21:33 -0000       1.175
+++ texi2html.init      9 Jan 2009 21:20:01 -0000       1.176
@@ -12,7 +12,7 @@
 # Afterwards, load the file with command-line 
 # option -init-file <your_init_file>
 #
-# $Id: texi2html.init,v 1.175 2009/01/08 00:21:33 pertusus Exp $
+# $Id: texi2html.init,v 1.176 2009/01/09 21:20:01 pertusus Exp $
 
 ######################################################################
 # The following variables can also be set by command-line options
@@ -3975,10 +3975,10 @@
      'ifxml' => 0,
      'ifhtml' => 0, 
      'ifdocbook' => 0, 
-     'html' => 0, 
-     'tex' => 0, 
-     'xml' => 0,
-     'docbook' => 0,
+#     'html' => 0, 
+#     'tex' => 0, 
+#     'xml' => 0,
+#     'docbook' => 0,
      'titlepage' => 1, 
      'documentdescription' => 1, 
      'copying' => 1, 
@@ -6015,20 +6015,25 @@
 {
     my $style = shift;
     my $text = shift;
-    if ($style eq 'verbatim' or $style eq 'tex')
+    my $expanded = 1 if (grep {$style eq $_} @EXPAND);
+    if ($style eq 'verbatim' or ($style eq 'tex' and $expanded))
     {
         return "<pre class=\"$style\">" . &$protect_text($text) . '</pre>';
     }
-    elsif ($style eq 'html')
+    elsif ($style eq 'html' and $expanded)
     {
         chomp ($text);
         return $text;
     }
-    else
+    elsif ($expanded)
     {
-        main::echo_warn ("Raw style $style not handled");
+        main::echo_warn ("Raw $style not handled especially, but expanded");
         return &$protect_text($text);
     }
+    else
+    {
+        return '';
+    }
 }
 
 # raw environment when removing texi (in comments) 
@@ -6036,7 +6041,11 @@
 {
     my $style = shift;
     my $text = shift;
+    if ($style eq 'verbatim' or grep {$style eq $_} @EXPAND)
+    {
     return $text;
+    }
+    return '';
 }
 
 # This function formats a footnote reference and the footnote text associated

Index: texi2html.pl
===================================================================
RCS file: /cvsroot/texi2html/texi2html/texi2html.pl,v
retrieving revision 1.258
retrieving revision 1.259
diff -u -b -r1.258 -r1.259
--- texi2html.pl        9 Jan 2009 16:55:19 -0000       1.258
+++ texi2html.pl        9 Jan 2009 21:20:04 -0000       1.259
@@ -74,7 +74,7 @@
 }
 
 # CVS version:
-# $Id: texi2html.pl,v 1.258 2009/01/09 16:55:19 pertusus Exp $
+# $Id: texi2html.pl,v 1.259 2009/01/09 21:20:04 pertusus Exp $
 
 # Homepage:
 my $T2H_HOMEPAGE = "http://www.nongnu.org/texi2html/";;
@@ -3120,6 +3120,7 @@
     }
 }
 
+# don't set set_no_line_macro for raw EXPAND formats 
 foreach my $key (keys(%Texi2HTML::Config::texi_formats_map))
 {
     unless ($Texi2HTML::Config::texi_formats_map{$key} eq 'raw')
@@ -3129,6 +3130,20 @@
     }
 }
 
+# the remaining (not EXPAND) raw formats are set as 'raw' such that 
+# they are propagated to formatting functions, but
+# they don't start paragraphs or preformatted.
+foreach my $raw (@raw_regions)
+{
+    if (!defined($Texi2HTML::Config::texi_formats_map{$raw}))
+    {
+        $Texi2HTML::Config::texi_formats_map{$raw} = 'raw'; 
+        $Texi2HTML::Config::format_in_paragraph{$raw} = 1;
+        set_no_line_macro($raw, 1);
+        set_no_line_macro("end $raw", 1);
+    }
+}
+
 # handle ifnot regions
 foreach my $region (keys (%Texi2HTML::Config::texi_formats_map))
 {
@@ -10500,20 +10515,15 @@
             if ($cline =~ /^(.*?)address@hidden([a-zA-Z][\w-]*)/o and ($2 eq 
$tag))
             {
                 $cline =~ s/^(.*?)(address@hidden)//;
-            # we add it even if 'ignored', it'll be discarded when there is
-            # the @end
+            # we add it even if 'ignored', it'll be discarded just below
+            # with the @end
                 add_prev ($text, $stack, $1);
                 my $end = $2;
                 my $style = pop @$stack;
-                if ($style->{'text'} !~ /^\s*$/ or $state->{'arg_expansion'})
-                # FIXME if 'arg_expansion' and also 'ignored' is true, 
-                # theoretically we should keep
-                # what is in the raw format however
-                # it will be removed later anyway 
-                {# ARG_EXPANSION
+                # if 'arg_expansion' and 'ignored' are both true text 
+                # is ignored.
                     add_prev ($text, $stack, $style->{'text'} . $end) unless 
($state->{'ignored'});
                     delete $state->{'raw'};
-                }
                 next;
             }
             else
@@ -10749,63 +10759,6 @@
                 next if $macro_kept;
                 return if ($cline =~ /^\s*$/);
             }
-#            elsif ($macro eq 'definfoenclose')
-#            {
-#                die "Not here definfoenclose expansion";
-#                # FIXME if 'ignored' or 'arg_expansion' maybe we could parse
-#                # the args anyway and don't take away the whole line?
-#
-#                # as in the makeinfo doc 'definfoenclose' may override
-#                # texinfo @-commands like @i. It is what we do here.
-#                if ($state->{'arg_expansion'})
-#                {
-#                    add_prev($text, $stack, "address@hidden" . $cline);
-#                    return;
-#                }
-#                return if ($state->{'ignored'});
-#                if ($cline =~ s/^\s+([a-z]+)\s*,\s*([^\s]+)\s*,\s*([^\s]+)//)
-#                {
-#                    $info_enclose{$1} = [ $2, $3 ];
-#                }
-#                else
-#                {
-#                    echo_error("Bad address@hidden", $line_nr);
-#                }
-#                return if ($cline =~ /^\s*$/);
-#                $cline =~ s/^\s*//;
-#            }
-#            elsif ($macro eq 'include')
-#            {
-#                die "Not here include expansion";
-#                if ($state->{'arg_expansion'})
-#                {
-#                    add_prev($text, $stack, "address@hidden" . $cline);
-#                    return;
-#                }
-#                return if ($state->{'ignored'});
-#                #if (s/^\s+([\/\w.+-]+)//o)
-#                if ($cline =~ s/^(\s+)(.*)//o)
-#                {
-#                    my $file_name = $2;
-#                    $file_name =~ s/\s*$//;
-#                    my $file = locate_include_file($file_name);
-#                    if (defined($file))
-#                    {
-#                        open_file($file, $line_nr);
-#                        print STDERR "# including $file\n" if $T2H_VERBOSE;
-#                    }
-#                    else
-#                    {
-#                        echo_error ("Can't find $file_name, skipping", 
$line_nr);
-#                    }
-#                }
-#                else
-#                {
-#                    echo_error ("Bad include line: $cline", $line_nr);
-#                    return;
-#                } 
-#                return;
-#            }
             elsif ($macro eq 'value')
             {
                 if ($cline =~ s/^{($VARRE)}//)
@@ -11890,6 +11843,7 @@
                     return if ($cline =~ /^\s*$/);
                 }
                 delete $state->{'raw'};
+                return if (($cline =~ /^\s*$/) and $state->{'remove_texi'});
                 next;
             }
             else

Index: examples/docbook.init
===================================================================
RCS file: /cvsroot/texi2html/texi2html/examples/docbook.init,v
retrieving revision 1.16
retrieving revision 1.17
diff -u -b -r1.16 -r1.17
--- examples/docbook.init       8 Jan 2009 00:21:35 -0000       1.16
+++ examples/docbook.init       9 Jan 2009 21:20:05 -0000       1.17
@@ -1448,7 +1448,8 @@
     {
         return docbook_add_id('screen').'>' . &$protect_text($text) . 
'</screen>';
     }
-    elsif ($style eq 'docbook')
+    return '' unless (grep {$style eq $_} @EXPAND);
+    if ($style eq 'docbook')
     {
         chomp ($text);
         return $text;

Index: examples/html32.init
===================================================================
RCS file: /cvsroot/texi2html/texi2html/examples/html32.init,v
retrieving revision 1.22
retrieving revision 1.23
diff -u -b -r1.22 -r1.23
--- examples/html32.init        27 Dec 2008 20:53:25 -0000      1.22
+++ examples/html32.init        9 Jan 2009 21:20:07 -0000       1.23
@@ -218,19 +218,22 @@
 {
     my $style = shift;
     my $text = shift;
-    if ($style eq 'verbatim' or $style eq 'tex')
+    my $expanded = 1 if (grep {$style eq $_} @EXPAND);
+    if ($style eq 'verbatim' or ($style eq 'tex' and $expanded))
     {
         return "<pre>" . &$protect_text($text) . '</pre>';
     }
-    elsif ($style eq 'html')
+    elsif ($style eq 'html' and $expanded)
     {
+        chomp ($text);
         return $text;
     }
-    else
+    elsif ($expanded)
     {
         warn "$WARN (bug) unknown style $style\n";
         return &$protect_text($text);
     }
+    return '';
 }
 
 # a whole menu

Index: examples/roff.init
===================================================================
RCS file: /cvsroot/texi2html/texi2html/examples/roff.init,v
retrieving revision 1.26
retrieving revision 1.27
diff -u -b -r1.26 -r1.27
--- examples/roff.init  14 Nov 2008 22:34:35 -0000      1.26
+++ examples/roff.init  9 Jan 2009 21:20:08 -0000       1.27
@@ -997,16 +997,18 @@
 {
     my $style = shift;
     my $text = shift;
-    if ($style eq 'verbatim' or $style eq 'tex' or $style eq 'html')
+    my $expanded = 1 if (grep {$style eq $_} @EXPAND);
+    if ($style eq 'verbatim' or ($expanded and ($style eq 'tex' or $style eq 
'html')))
     {
         chomp ($text);
         return ".(l M\n\\fR\\&\\f(CW" . &$protect_text($text) . "\\fR\n.)l\n" ;
     }
-    else
+    elsif ($expanded)
     {
         warn "$WARN (bug) unknown style $style\n";
         return &$protect_text($text);
     }
+    return '';
 }
 
 # This function formats a footnote reference and the footnote text associated

Index: examples/xml.init
===================================================================
RCS file: /cvsroot/texi2html/texi2html/examples/xml.init,v
retrieving revision 1.12
retrieving revision 1.13
diff -u -b -r1.12 -r1.13
--- examples/xml.init   27 Dec 2008 20:53:25 -0000      1.12
+++ examples/xml.init   9 Jan 2009 21:20:09 -0000       1.13
@@ -1157,7 +1157,8 @@
     {
         return '<verbatim xml:space="preserve">' . &$protect_text($text) . 
'</verbatim>';
     }
-    elsif ($style eq 'xml')
+    return '' unless (grep {$style eq $_} @EXPAND);
+    if ($style eq 'xml')
     {
         chomp ($text);
         return $text;

Index: test/coverage/res/formatting/formatting.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/coverage/res/formatting/formatting.html,v
retrieving revision 1.17
retrieving revision 1.18
diff -u -b -r1.17 -r1.18
--- test/coverage/res/formatting/formatting.html        8 Jan 2009 00:21:35 
-0000       1.17
+++ test/coverage/res/formatting/formatting.html        9 Jan 2009 21:20:10 
-0000       1.18
@@ -534,12 +534,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading

Index: test/coverage/res/texi_formatting/formatting.passfirst
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/coverage/res/texi_formatting/formatting.passfirst,v
retrieving revision 1.7
retrieving revision 1.8
diff -u -b -r1.7 -r1.8
--- test/coverage/res/texi_formatting/formatting.passfirst      11 Nov 2008 
00:52:26 -0000      1.7
+++ test/coverage/res/texi_formatting/formatting.passfirst      9 Jan 2009 
21:20:12 -0000       1.8
@@ -586,12 +586,21 @@
 formatting.texi(mymacro,38) in verbatim ''
 formatting.texi(mymacro,38) @end verbatim
 formatting.texi(mymacro,38) 
+formatting.texi(mymacro,38) @xml
+formatting.texi(mymacro,38) <para> xml para </para> ''
+formatting.texi(mymacro,38) @end xml
 formatting.texi(mymacro,38) 
 formatting.texi(mymacro,38) @html
 formatting.texi(mymacro,38) html ''
 formatting.texi(mymacro,38) @end html
 formatting.texi(mymacro,38) 
-formatting.texi(mymacro,38) 
+formatting.texi(mymacro,38) @tex
+formatting.texi(mymacro,38) $$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$ ''
+formatting.texi(mymacro,38) @end tex
+formatting.texi(mymacro,38) 
+formatting.texi(mymacro,38) @docbook
+formatting.texi(mymacro,38) docbook ''
+formatting.texi(mymacro,38) @end docbook
 formatting.texi(mymacro,38) 
 formatting.texi(mymacro,38) @majorheading majorheading
 formatting.texi(mymacro,38) 
@@ -1286,12 +1295,21 @@
 formatting.texi(mymacro,42) in verbatim ''
 formatting.texi(mymacro,42) @end verbatim
 formatting.texi(mymacro,42) 
+formatting.texi(mymacro,42) @xml
+formatting.texi(mymacro,42) <para> xml para </para> ''
+formatting.texi(mymacro,42) @end xml
 formatting.texi(mymacro,42) 
 formatting.texi(mymacro,42) @html
 formatting.texi(mymacro,42) html ''
 formatting.texi(mymacro,42) @end html
 formatting.texi(mymacro,42) 
-formatting.texi(mymacro,42) 
+formatting.texi(mymacro,42) @tex
+formatting.texi(mymacro,42) $$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$ ''
+formatting.texi(mymacro,42) @end tex
+formatting.texi(mymacro,42) 
+formatting.texi(mymacro,42) @docbook
+formatting.texi(mymacro,42) docbook ''
+formatting.texi(mymacro,42) @end docbook
 formatting.texi(mymacro,42) 
 formatting.texi(mymacro,42) @majorheading majorheading
 formatting.texi(mymacro,42) 

Index: test/coverage/res/texi_formatting/formatting.passtexi
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/coverage/res/texi_formatting/formatting.passtexi,v
retrieving revision 1.7
retrieving revision 1.8
diff -u -b -r1.7 -r1.8
--- test/coverage/res/texi_formatting/formatting.passtexi       11 Nov 2008 
00:52:26 -0000      1.7
+++ test/coverage/res/texi_formatting/formatting.passtexi       9 Jan 2009 
21:20:14 -0000       1.8
@@ -583,12 +583,21 @@
 formatting.texi(mymacro,18) in verbatim ''
 formatting.texi(mymacro,18) @end verbatim
 formatting.texi(mymacro,18) 
+formatting.texi(mymacro,18) @xml
+formatting.texi(mymacro,18) <para> xml para </para> ''
+formatting.texi(mymacro,18) @end xml
 formatting.texi(mymacro,18) 
 formatting.texi(mymacro,18) @html
 formatting.texi(mymacro,18) html ''
 formatting.texi(mymacro,18) @end html
 formatting.texi(mymacro,18) 
-formatting.texi(mymacro,18) 
+formatting.texi(mymacro,18) @tex
+formatting.texi(mymacro,18) $$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$ ''
+formatting.texi(mymacro,18) @end tex
+formatting.texi(mymacro,18) 
+formatting.texi(mymacro,18) @docbook
+formatting.texi(mymacro,18) docbook ''
+formatting.texi(mymacro,18) @end docbook
 formatting.texi(mymacro,18) 
 formatting.texi(mymacro,18) @majorheading majorheading
 formatting.texi(mymacro,18) 
@@ -1290,12 +1299,21 @@
 formatting.texi(mymacro,28) in verbatim ''
 formatting.texi(mymacro,28) @end verbatim
 formatting.texi(mymacro,28) 
+formatting.texi(mymacro,28) @xml
+formatting.texi(mymacro,28) <para> xml para </para> ''
+formatting.texi(mymacro,28) @end xml
 formatting.texi(mymacro,28) 
 formatting.texi(mymacro,28) @html
 formatting.texi(mymacro,28) html ''
 formatting.texi(mymacro,28) @end html
 formatting.texi(mymacro,28) 
-formatting.texi(mymacro,28) 
+formatting.texi(mymacro,28) @tex
+formatting.texi(mymacro,28) $$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$ ''
+formatting.texi(mymacro,28) @end tex
+formatting.texi(mymacro,28) 
+formatting.texi(mymacro,28) @docbook
+formatting.texi(mymacro,28) docbook ''
+formatting.texi(mymacro,28) @end docbook
 formatting.texi(mymacro,28) 
 formatting.texi(mymacro,28) @majorheading majorheading
 formatting.texi(mymacro,28) 
@@ -1997,12 +2015,21 @@
 formatting.texi(mymacro,38) in verbatim ''
 formatting.texi(mymacro,38) @end verbatim
 formatting.texi(mymacro,38) 
+formatting.texi(mymacro,38) @xml
+formatting.texi(mymacro,38) <para> xml para </para> ''
+formatting.texi(mymacro,38) @end xml
 formatting.texi(mymacro,38) 
 formatting.texi(mymacro,38) @html
 formatting.texi(mymacro,38) html ''
 formatting.texi(mymacro,38) @end html
 formatting.texi(mymacro,38) 
-formatting.texi(mymacro,38) 
+formatting.texi(mymacro,38) @tex
+formatting.texi(mymacro,38) $$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$ ''
+formatting.texi(mymacro,38) @end tex
+formatting.texi(mymacro,38) 
+formatting.texi(mymacro,38) @docbook
+formatting.texi(mymacro,38) docbook ''
+formatting.texi(mymacro,38) @end docbook
 formatting.texi(mymacro,38) 
 formatting.texi(mymacro,38) @majorheading majorheading
 formatting.texi(mymacro,38) 
@@ -2698,12 +2725,21 @@
 formatting.texi(mymacro,42) in verbatim ''
 formatting.texi(mymacro,42) @end verbatim
 formatting.texi(mymacro,42) 
+formatting.texi(mymacro,42) @xml
+formatting.texi(mymacro,42) <para> xml para </para> ''
+formatting.texi(mymacro,42) @end xml
 formatting.texi(mymacro,42) 
 formatting.texi(mymacro,42) @html
 formatting.texi(mymacro,42) html ''
 formatting.texi(mymacro,42) @end html
 formatting.texi(mymacro,42) 
-formatting.texi(mymacro,42) 
+formatting.texi(mymacro,42) @tex
+formatting.texi(mymacro,42) $$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$ ''
+formatting.texi(mymacro,42) @end tex
+formatting.texi(mymacro,42) 
+formatting.texi(mymacro,42) @docbook
+formatting.texi(mymacro,42) docbook ''
+formatting.texi(mymacro,42) @end docbook
 formatting.texi(mymacro,42) 
 formatting.texi(mymacro,42) @majorheading majorheading
 formatting.texi(mymacro,42) 

Index: test/coverage/res/texi_formatting/formatting.texi
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/coverage/res/texi_formatting/formatting.texi,v
retrieving revision 1.7
retrieving revision 1.8
diff -u -b -r1.7 -r1.8
--- test/coverage/res/texi_formatting/formatting.texi   11 Nov 2008 00:52:26 
-0000      1.7
+++ test/coverage/res/texi_formatting/formatting.texi   9 Jan 2009 21:20:15 
-0000       1.8
@@ -584,12 +584,21 @@
 in verbatim ''
 @end verbatim
 
address@hidden
+<para> xml para </para> ''
address@hidden xml
 
 @html
 html ''
 @end html
 
-
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$ ''
address@hidden tex
+
address@hidden
+docbook ''
address@hidden docbook
 
 @majorheading majorheading
 
@@ -1291,12 +1300,21 @@
 in verbatim ''
 @end verbatim
 
address@hidden
+<para> xml para </para> ''
address@hidden xml
 
 @html
 html ''
 @end html
 
-
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$ ''
address@hidden tex
+
address@hidden
+docbook ''
address@hidden docbook
 
 @majorheading majorheading
 
@@ -1998,12 +2016,21 @@
 in verbatim ''
 @end verbatim
 
address@hidden
+<para> xml para </para> ''
address@hidden xml
 
 @html
 html ''
 @end html
 
-
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$ ''
address@hidden tex
+
address@hidden
+docbook ''
address@hidden docbook
 
 @majorheading majorheading
 
@@ -2699,12 +2726,21 @@
 in verbatim ''
 @end verbatim
 
address@hidden
+<para> xml para </para> ''
address@hidden xml
 
 @html
 html ''
 @end html
 
-
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$ ''
address@hidden tex
+
address@hidden
+docbook ''
address@hidden docbook
 
 @majorheading majorheading
 

Index: test/coverage/res/texi_imbrications/imbrications.passfirst
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/coverage/res/texi_imbrications/imbrications.passfirst,v
retrieving revision 1.1
retrieving revision 1.2
diff -u -b -r1.1 -r1.2
--- test/coverage/res/texi_imbrications/imbrications.passfirst  18 Aug 2008 
18:02:13 -0000      1.1
+++ test/coverage/res/texi_imbrications/imbrications.passfirst  9 Jan 2009 
21:20:16 -0000       1.2
@@ -18,6 +18,15 @@
 imbrications.texi(,19) 
 imbrications.texi(,20) @cindex elem
 imbrications.texi(,21) 
+imbrications.texi(,22) @tex
+imbrications.texi(,23) 
+imbrications.texi(,24) $$ 
+imbrications.texi(,25) \chi^2 = \sum_{i=1}^N
+imbrications.texi(,26) \left(y_i - (a + b x_i)
+imbrications.texi(,27) \over \sigma_i\right)^2 
+imbrications.texi(,28) $$
+imbrications.texi(,29) 
+imbrications.texi(,30) @end tex
 imbrications.texi(,31) 
 imbrications.texi(,32) @node Second node
 imbrications.texi(,33) @chapter second
@@ -113,6 +122,15 @@
 imbrications.texi(,123) 
 imbrications.texi(,124) two line breaks
 imbrications.texi(,125) Tex doesn't like math in @@example
+imbrications.texi(,127) @tex
+imbrications.texi(,128) 
+imbrications.texi(,129) $$ 
+imbrications.texi(,130) \chi^2 = \sum_{i=1}^N
+imbrications.texi(,131) \left(y_i - (a + b x_i)
+imbrications.texi(,132) \over \sigma_i\right)^2 
+imbrications.texi(,133) $$
+imbrications.texi(,134) 
+imbrications.texi(,135) @end tex
 imbrications.texi(,137) @cindex index in example
 imbrications.texi(,138) 
 imbrications.texi(,139) Now a content within example

Index: test/coverage/res/texi_imbrications/imbrications.passtexi
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/coverage/res/texi_imbrications/imbrications.passtexi,v
retrieving revision 1.1
retrieving revision 1.2
diff -u -b -r1.1 -r1.2
--- test/coverage/res/texi_imbrications/imbrications.passtexi   18 Aug 2008 
18:02:13 -0000      1.1
+++ test/coverage/res/texi_imbrications/imbrications.passtexi   9 Jan 2009 
21:20:17 -0000       1.2
@@ -18,6 +18,15 @@
 imbrications.texi(,19) 
 imbrications.texi(,20) @cindex elem
 imbrications.texi(,21) 
+imbrications.texi(,22) @tex
+imbrications.texi(,23) 
+imbrications.texi(,24) $$ 
+imbrications.texi(,25) \chi^2 = \sum_{i=1}^N
+imbrications.texi(,26) \left(y_i - (a + b x_i)
+imbrications.texi(,27) \over \sigma_i\right)^2 
+imbrications.texi(,28) $$
+imbrications.texi(,29) 
+imbrications.texi(,30) @end tex
 imbrications.texi(,31) 
 imbrications.texi(,32) @node Second node
 imbrications.texi(,33) @chapter second
@@ -113,6 +122,15 @@
 imbrications.texi(,123) 
 imbrications.texi(,124) two line breaks
 imbrications.texi(,125) Tex doesn't like math in @@example
+imbrications.texi(,127) @tex
+imbrications.texi(,128) 
+imbrications.texi(,129) $$ 
+imbrications.texi(,130) \chi^2 = \sum_{i=1}^N
+imbrications.texi(,131) \left(y_i - (a + b x_i)
+imbrications.texi(,132) \over \sigma_i\right)^2 
+imbrications.texi(,133) $$
+imbrications.texi(,134) 
+imbrications.texi(,135) @end tex
 imbrications.texi(,137) @cindex index in example
 imbrications.texi(,138) 
 imbrications.texi(,139) Now a content within example

Index: test/coverage/res/texi_imbrications/imbrications.texi
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/coverage/res/texi_imbrications/imbrications.texi,v
retrieving revision 1.1
retrieving revision 1.2
diff -u -b -r1.1 -r1.2
--- test/coverage/res/texi_imbrications/imbrications.texi       18 Aug 2008 
18:02:14 -0000      1.1
+++ test/coverage/res/texi_imbrications/imbrications.texi       9 Jan 2009 
21:20:18 -0000       1.2
@@ -19,6 +19,15 @@
 
 @cindex elem
 
address@hidden
+
+$$ 
+\chi^2 = \sum_{i=1}^N
+\left(y_i - (a + b x_i)
+\over \sigma_i\right)^2 
+$$
+
address@hidden tex
 
 @node Second node
 @chapter second
@@ -114,6 +123,15 @@
 
 two line breaks
 Tex doesn't like math in @@example
address@hidden
+
+$$ 
+\chi^2 = \sum_{i=1}^N
+\left(y_i - (a + b x_i)
+\over \sigma_i\right)^2 
+$$
+
address@hidden tex
 @cindex index in example
 
 Now a content within example

Index: test/encodings/res/formatting_converted_to_utf8/formatting.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/encodings/res/formatting_converted_to_utf8/formatting.html,v
retrieving revision 1.17
retrieving revision 1.18
diff -u -b -r1.17 -r1.18
--- test/encodings/res/formatting_converted_to_utf8/formatting.html     8 Jan 
2009 00:21:36 -0000       1.17
+++ test/encodings/res/formatting_converted_to_utf8/formatting.html     9 Jan 
2009 21:20:19 -0000       1.18
@@ -534,12 +534,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading

Index: test/encodings/res/formatting_fr/formatting.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/encodings/res/formatting_fr/formatting.html,v
retrieving revision 1.17
retrieving revision 1.18
diff -u -b -r1.17 -r1.18
--- test/encodings/res/formatting_fr/formatting.html    8 Jan 2009 00:21:36 
-0000       1.17
+++ test/encodings/res/formatting_fr/formatting.html    9 Jan 2009 21:20:21 
-0000       1.18
@@ -534,12 +534,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading

Index: test/encodings/res/formatting_fr_icons/formatting.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/encodings/res/formatting_fr_icons/formatting.html,v
retrieving revision 1.17
retrieving revision 1.18
diff -u -b -r1.17 -r1.18
--- test/encodings/res/formatting_fr_icons/formatting.html      8 Jan 2009 
00:21:36 -0000       1.17
+++ test/encodings/res/formatting_fr_icons/formatting.html      9 Jan 2009 
21:20:22 -0000       1.18
@@ -534,12 +534,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading

Index: test/formatting/res/formatting_weird_quotes/formatting.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/formatting/res/formatting_weird_quotes/formatting.html,v
retrieving revision 1.18
retrieving revision 1.19
diff -u -b -r1.18 -r1.19
--- test/formatting/res/formatting_weird_quotes/formatting.html 8 Jan 2009 
00:21:37 -0000       1.18
+++ test/formatting/res/formatting_weird_quotes/formatting.html 9 Jan 2009 
21:20:22 -0000       1.19
@@ -534,12 +534,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading

Index: test/formatting/res/texi_block_EOL/block_EOL.passfirst
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/formatting/res/texi_block_EOL/block_EOL.passfirst,v
retrieving revision 1.1
retrieving revision 1.2
diff -u -b -r1.1 -r1.2
--- test/formatting/res/texi_block_EOL/block_EOL.passfirst      18 Aug 2008 
18:03:13 -0000      1.1
+++ test/formatting/res/texi_block_EOL/block_EOL.passfirst      9 Jan 2009 
21:20:23 -0000       1.2
@@ -41,15 +41,28 @@
 block_EOL.texi(,42) @heading tex
 block_EOL.texi(,43) 
 block_EOL.texi(,44) Block commands on a line
+block_EOL.texi(,45) @tex
+block_EOL.texi(,46) in block
+block_EOL.texi(,47) @end tex
 block_EOL.texi(,48) end commands on a line.
 block_EOL.texi(,49) 
-block_EOL.texi(,53) Before the opening command end commands on a line.
+block_EOL.texi(,50) Before the opening command @tex
+block_EOL.texi(,51) in block
+block_EOL.texi(,52) @end tex
+block_EOL.texi(,53) end commands on a line.
 block_EOL.texi(,54) 
-block_EOL.texi(,57) Before the opening command  after the closing command.
+block_EOL.texi(,55) Before the opening command @tex
+block_EOL.texi(,56) in block
+block_EOL.texi(,57) @end tex after the closing command.
 block_EOL.texi(,58) 
-block_EOL.texi(,62) Before the opening command . A symbol on a line.
+block_EOL.texi(,59) Before the opening command @tex
+block_EOL.texi(,60) in block
+block_EOL.texi(,61) @end tex
+block_EOL.texi(,62) . A symbol on a line.
 block_EOL.texi(,63) 
-block_EOL.texi(,66) Before the opening command . A symbol after the closing 
command.
+block_EOL.texi(,64) Before the opening command @tex
+block_EOL.texi(,65) in block
+block_EOL.texi(,66) @end tex. A symbol after the closing command.
 block_EOL.texi(,67) 
 block_EOL.texi(,68) 
 block_EOL.texi(,69) @heading verbatim

Index: test/formatting/res/texi_block_EOL/block_EOL.passtexi
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/formatting/res/texi_block_EOL/block_EOL.passtexi,v
retrieving revision 1.1
retrieving revision 1.2
diff -u -b -r1.1 -r1.2
--- test/formatting/res/texi_block_EOL/block_EOL.passtexi       18 Aug 2008 
18:03:13 -0000      1.1
+++ test/formatting/res/texi_block_EOL/block_EOL.passtexi       9 Jan 2009 
21:20:25 -0000       1.2
@@ -41,15 +41,28 @@
 block_EOL.texi(,42) @heading tex
 block_EOL.texi(,43) 
 block_EOL.texi(,44) Block commands on a line
+block_EOL.texi(,45) @tex
+block_EOL.texi(,46) in block
+block_EOL.texi(,47) @end tex
 block_EOL.texi(,48) end commands on a line.
 block_EOL.texi(,49) 
-block_EOL.texi(,53) Before the opening command block_EOL.texi(,53) end 
commands on a line.
+block_EOL.texi(,50) Before the opening command @tex
+block_EOL.texi(,51) in block
+block_EOL.texi(,52) @end tex
+block_EOL.texi(,53) end commands on a line.
 block_EOL.texi(,54) 
-block_EOL.texi(,57) Before the opening command block_EOL.texi(,57)  after the 
closing command.
+block_EOL.texi(,55) Before the opening command @tex
+block_EOL.texi(,56) in block
+block_EOL.texi(,57) @end tex after the closing command.
 block_EOL.texi(,58) 
-block_EOL.texi(,62) Before the opening command block_EOL.texi(,62) . A symbol 
on a line.
+block_EOL.texi(,59) Before the opening command @tex
+block_EOL.texi(,60) in block
+block_EOL.texi(,61) @end tex
+block_EOL.texi(,62) . A symbol on a line.
 block_EOL.texi(,63) 
-block_EOL.texi(,66) Before the opening command block_EOL.texi(,66) . A symbol 
after the closing command.
+block_EOL.texi(,64) Before the opening command @tex
+block_EOL.texi(,65) in block
+block_EOL.texi(,66) @end tex. A symbol after the closing command.
 block_EOL.texi(,67) 
 block_EOL.texi(,68) 
 block_EOL.texi(,69) @heading verbatim

Index: test/formatting/res/texi_block_EOL/block_EOL.texi
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/formatting/res/texi_block_EOL/block_EOL.texi,v
retrieving revision 1.1
retrieving revision 1.2
diff -u -b -r1.1 -r1.2
--- test/formatting/res/texi_block_EOL/block_EOL.texi   18 Aug 2008 18:03:13 
-0000      1.1
+++ test/formatting/res/texi_block_EOL/block_EOL.texi   9 Jan 2009 21:20:26 
-0000       1.2
@@ -42,15 +42,28 @@
 @heading tex
 
 Block commands on a line
address@hidden
+in block
address@hidden tex
 end commands on a line.
 
-Before the opening command end commands on a line.
+Before the opening command @tex
+in block
address@hidden tex
+end commands on a line.
 
-Before the opening command  after the closing command.
+Before the opening command @tex
+in block
address@hidden tex after the closing command.
 
-Before the opening command . A symbol on a line.
+Before the opening command @tex
+in block
address@hidden tex
+. A symbol on a line.
 
-Before the opening command . A symbol after the closing command.
+Before the opening command @tex
+in block
address@hidden tex. A symbol after the closing command.
 
 
 @heading verbatim

Index: test/formatting/res/texi_formatting/formatting.passfirst
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/formatting/res/texi_formatting/formatting.passfirst,v
retrieving revision 1.4
retrieving revision 1.5
diff -u -b -r1.4 -r1.5
--- test/formatting/res/texi_formatting/formatting.passfirst    1 Jan 2009 
22:35:21 -0000       1.4
+++ test/formatting/res/texi_formatting/formatting.passfirst    9 Jan 2009 
21:20:27 -0000       1.5
@@ -573,12 +573,21 @@
 formatting.texi(mymacro,38) in verbatim ''
 formatting.texi(mymacro,38) @end verbatim
 formatting.texi(mymacro,38) 
+formatting.texi(mymacro,38) @xml
+formatting.texi(mymacro,38) <para> xml para </para> ''
+formatting.texi(mymacro,38) @end xml
 formatting.texi(mymacro,38) 
 formatting.texi(mymacro,38) @html
 formatting.texi(mymacro,38) html ''
 formatting.texi(mymacro,38) @end html
 formatting.texi(mymacro,38) 
-formatting.texi(mymacro,38) 
+formatting.texi(mymacro,38) @tex
+formatting.texi(mymacro,38) $$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$ ''
+formatting.texi(mymacro,38) @end tex
+formatting.texi(mymacro,38) 
+formatting.texi(mymacro,38) @docbook
+formatting.texi(mymacro,38) docbook ''
+formatting.texi(mymacro,38) @end docbook
 formatting.texi(mymacro,38) 
 formatting.texi(mymacro,38) @majorheading majorheading
 formatting.texi(mymacro,38) 
@@ -1154,12 +1163,21 @@
 formatting.texi(mymacro,42) in verbatim ''
 formatting.texi(mymacro,42) @end verbatim
 formatting.texi(mymacro,42) 
+formatting.texi(mymacro,42) @xml
+formatting.texi(mymacro,42) <para> xml para </para> ''
+formatting.texi(mymacro,42) @end xml
 formatting.texi(mymacro,42) 
 formatting.texi(mymacro,42) @html
 formatting.texi(mymacro,42) html ''
 formatting.texi(mymacro,42) @end html
 formatting.texi(mymacro,42) 
-formatting.texi(mymacro,42) 
+formatting.texi(mymacro,42) @tex
+formatting.texi(mymacro,42) $$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$ ''
+formatting.texi(mymacro,42) @end tex
+formatting.texi(mymacro,42) 
+formatting.texi(mymacro,42) @docbook
+formatting.texi(mymacro,42) docbook ''
+formatting.texi(mymacro,42) @end docbook
 formatting.texi(mymacro,42) 
 formatting.texi(mymacro,42) @majorheading majorheading
 formatting.texi(mymacro,42) 

Index: test/formatting/res/texi_formatting/formatting.passtexi
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/formatting/res/texi_formatting/formatting.passtexi,v
retrieving revision 1.4
retrieving revision 1.5
diff -u -b -r1.4 -r1.5
--- test/formatting/res/texi_formatting/formatting.passtexi     1 Jan 2009 
22:35:22 -0000       1.4
+++ test/formatting/res/texi_formatting/formatting.passtexi     9 Jan 2009 
21:20:28 -0000       1.5
@@ -570,12 +570,21 @@
 formatting.texi(mymacro,18) in verbatim ''
 formatting.texi(mymacro,18) @end verbatim
 formatting.texi(mymacro,18) 
+formatting.texi(mymacro,18) @xml
+formatting.texi(mymacro,18) <para> xml para </para> ''
+formatting.texi(mymacro,18) @end xml
 formatting.texi(mymacro,18) 
 formatting.texi(mymacro,18) @html
 formatting.texi(mymacro,18) html ''
 formatting.texi(mymacro,18) @end html
 formatting.texi(mymacro,18) 
+formatting.texi(mymacro,18) @tex
+formatting.texi(mymacro,18) $$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$ ''
+formatting.texi(mymacro,18) @end tex
 formatting.texi(mymacro,18) 
+formatting.texi(mymacro,18) @docbook
+formatting.texi(mymacro,18) docbook ''
+formatting.texi(mymacro,18) @end docbook
 formatting.texi(mymacro,18) 
 formatting.texi(mymacro,18) @majorheading majorheading
 formatting.texi(mymacro,18) 
@@ -1158,12 +1167,21 @@
 formatting.texi(mymacro,28) in verbatim ''
 formatting.texi(mymacro,28) @end verbatim
 formatting.texi(mymacro,28) 
+formatting.texi(mymacro,28) @xml
+formatting.texi(mymacro,28) <para> xml para </para> ''
+formatting.texi(mymacro,28) @end xml
 formatting.texi(mymacro,28) 
 formatting.texi(mymacro,28) @html
 formatting.texi(mymacro,28) html ''
 formatting.texi(mymacro,28) @end html
 formatting.texi(mymacro,28) 
-formatting.texi(mymacro,28) 
+formatting.texi(mymacro,28) @tex
+formatting.texi(mymacro,28) $$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$ ''
+formatting.texi(mymacro,28) @end tex
+formatting.texi(mymacro,28) 
+formatting.texi(mymacro,28) @docbook
+formatting.texi(mymacro,28) docbook ''
+formatting.texi(mymacro,28) @end docbook
 formatting.texi(mymacro,28) 
 formatting.texi(mymacro,28) @majorheading majorheading
 formatting.texi(mymacro,28) 
@@ -1746,12 +1764,21 @@
 formatting.texi(mymacro,38) in verbatim ''
 formatting.texi(mymacro,38) @end verbatim
 formatting.texi(mymacro,38) 
+formatting.texi(mymacro,38) @xml
+formatting.texi(mymacro,38) <para> xml para </para> ''
+formatting.texi(mymacro,38) @end xml
 formatting.texi(mymacro,38) 
 formatting.texi(mymacro,38) @html
 formatting.texi(mymacro,38) html ''
 formatting.texi(mymacro,38) @end html
 formatting.texi(mymacro,38) 
-formatting.texi(mymacro,38) 
+formatting.texi(mymacro,38) @tex
+formatting.texi(mymacro,38) $$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$ ''
+formatting.texi(mymacro,38) @end tex
+formatting.texi(mymacro,38) 
+formatting.texi(mymacro,38) @docbook
+formatting.texi(mymacro,38) docbook ''
+formatting.texi(mymacro,38) @end docbook
 formatting.texi(mymacro,38) 
 formatting.texi(mymacro,38) @majorheading majorheading
 formatting.texi(mymacro,38) 
@@ -2328,12 +2355,21 @@
 formatting.texi(mymacro,42) in verbatim ''
 formatting.texi(mymacro,42) @end verbatim
 formatting.texi(mymacro,42) 
+formatting.texi(mymacro,42) @xml
+formatting.texi(mymacro,42) <para> xml para </para> ''
+formatting.texi(mymacro,42) @end xml
 formatting.texi(mymacro,42) 
 formatting.texi(mymacro,42) @html
 formatting.texi(mymacro,42) html ''
 formatting.texi(mymacro,42) @end html
 formatting.texi(mymacro,42) 
-formatting.texi(mymacro,42) 
+formatting.texi(mymacro,42) @tex
+formatting.texi(mymacro,42) $$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$ ''
+formatting.texi(mymacro,42) @end tex
+formatting.texi(mymacro,42) 
+formatting.texi(mymacro,42) @docbook
+formatting.texi(mymacro,42) docbook ''
+formatting.texi(mymacro,42) @end docbook
 formatting.texi(mymacro,42) 
 formatting.texi(mymacro,42) @majorheading majorheading
 formatting.texi(mymacro,42) 

Index: test/formatting/res/texi_formatting/formatting.texi
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/formatting/res/texi_formatting/formatting.texi,v
retrieving revision 1.4
retrieving revision 1.5
diff -u -b -r1.4 -r1.5
--- test/formatting/res/texi_formatting/formatting.texi 1 Jan 2009 22:35:22 
-0000       1.4
+++ test/formatting/res/texi_formatting/formatting.texi 9 Jan 2009 21:20:28 
-0000       1.5
@@ -571,12 +571,21 @@
 in verbatim ''
 @end verbatim
 
address@hidden
+<para> xml para </para> ''
address@hidden xml
 
 @html
 html ''
 @end html
 
-
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$ ''
address@hidden tex
+
address@hidden
+docbook ''
address@hidden docbook
 
 @majorheading majorheading
 
@@ -1159,12 +1168,21 @@
 in verbatim ''
 @end verbatim
 
address@hidden
+<para> xml para </para> ''
address@hidden xml
 
 @html
 html ''
 @end html
 
-
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$ ''
address@hidden tex
+
address@hidden
+docbook ''
address@hidden docbook
 
 @majorheading majorheading
 
@@ -1747,12 +1765,21 @@
 in verbatim ''
 @end verbatim
 
address@hidden
+<para> xml para </para> ''
address@hidden xml
 
 @html
 html ''
 @end html
 
-
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$ ''
address@hidden tex
+
address@hidden
+docbook ''
address@hidden docbook
 
 @majorheading majorheading
 
@@ -2329,12 +2356,21 @@
 in verbatim ''
 @end verbatim
 
address@hidden
+<para> xml para </para> ''
address@hidden xml
 
 @html
 html ''
 @end html
 
-
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$ ''
address@hidden tex
+
address@hidden
+docbook ''
address@hidden docbook
 
 @majorheading majorheading
 

Index: test/layout/res/formatting_chm/formatting.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/layout/res/formatting_chm/formatting.html,v
retrieving revision 1.10
retrieving revision 1.11
diff -u -b -r1.10 -r1.11
--- test/layout/res/formatting_chm/formatting.html      1 Jan 2009 22:35:23 
-0000       1.10
+++ test/layout/res/formatting_chm/formatting.html      9 Jan 2009 21:20:29 
-0000       1.11
@@ -534,12 +534,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading

Index: test/layout/res/formatting_chm/formatting_1.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/layout/res/formatting_chm/formatting_1.html,v
retrieving revision 1.5
retrieving revision 1.6
diff -u -b -r1.5 -r1.6
--- test/layout/res/formatting_chm/formatting_1.html    11 Nov 2008 13:29:14 
-0000      1.5
+++ test/layout/res/formatting_chm/formatting_1.html    9 Jan 2009 21:20:30 
-0000       1.6
@@ -534,12 +534,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading

Index: test/layout/res/formatting_chm/formatting_2.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/layout/res/formatting_chm/formatting_2.html,v
retrieving revision 1.5
retrieving revision 1.6
diff -u -b -r1.5 -r1.6
--- test/layout/res/formatting_chm/formatting_2.html    11 Nov 2008 13:29:15 
-0000      1.5
+++ test/layout/res/formatting_chm/formatting_2.html    9 Jan 2009 21:20:30 
-0000       1.6
@@ -534,12 +534,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading

Index: test/layout/res/formatting_chm/formatting_3.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/layout/res/formatting_chm/formatting_3.html,v
retrieving revision 1.5
retrieving revision 1.6
diff -u -b -r1.5 -r1.6
--- test/layout/res/formatting_chm/formatting_3.html    11 Nov 2008 13:29:15 
-0000      1.5
+++ test/layout/res/formatting_chm/formatting_3.html    9 Jan 2009 21:20:31 
-0000       1.6
@@ -534,12 +534,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading

Index: test/layout/res/formatting_chm/formatting_4.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/layout/res/formatting_chm/formatting_4.html,v
retrieving revision 1.5
retrieving revision 1.6
diff -u -b -r1.5 -r1.6
--- test/layout/res/formatting_chm/formatting_4.html    11 Nov 2008 13:29:15 
-0000      1.5
+++ test/layout/res/formatting_chm/formatting_4.html    9 Jan 2009 21:20:31 
-0000       1.6
@@ -534,12 +534,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading

Index: test/layout/res/formatting_chm/formatting_5.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/layout/res/formatting_chm/formatting_5.html,v
retrieving revision 1.7
retrieving revision 1.8
diff -u -b -r1.7 -r1.8
--- test/layout/res/formatting_chm/formatting_5.html    8 Jan 2009 00:21:38 
-0000       1.7
+++ test/layout/res/formatting_chm/formatting_5.html    9 Jan 2009 21:20:32 
-0000       1.8
@@ -534,12 +534,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading

Index: test/layout/res/formatting_chm/formatting_abt.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/layout/res/formatting_chm/formatting_abt.html,v
retrieving revision 1.5
retrieving revision 1.6
diff -u -b -r1.5 -r1.6
--- test/layout/res/formatting_chm/formatting_abt.html  11 Nov 2008 13:29:15 
-0000      1.5
+++ test/layout/res/formatting_chm/formatting_abt.html  9 Jan 2009 21:20:32 
-0000       1.6
@@ -534,12 +534,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading

Index: test/layout/res/formatting_chm/formatting_ovr.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/layout/res/formatting_chm/formatting_ovr.html,v
retrieving revision 1.7
retrieving revision 1.8
diff -u -b -r1.7 -r1.8
--- test/layout/res/formatting_chm/formatting_ovr.html  8 Jan 2009 00:21:38 
-0000       1.7
+++ test/layout/res/formatting_chm/formatting_ovr.html  9 Jan 2009 21:20:33 
-0000       1.8
@@ -534,12 +534,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading

Index: test/layout/res/formatting_chm/formatting_toc.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/layout/res/formatting_chm/formatting_toc.html,v
retrieving revision 1.7
retrieving revision 1.8
diff -u -b -r1.7 -r1.8
--- test/layout/res/formatting_chm/formatting_toc.html  8 Jan 2009 00:21:38 
-0000       1.7
+++ test/layout/res/formatting_chm/formatting_toc.html  9 Jan 2009 21:20:34 
-0000       1.8
@@ -534,12 +534,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading

Index: test/layout/res/formatting_exotic/formatting.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/layout/res/formatting_exotic/formatting.html,v
retrieving revision 1.15
retrieving revision 1.16
diff -u -b -r1.15 -r1.16
--- test/layout/res/formatting_exotic/formatting.html   1 Jan 2009 22:35:23 
-0000       1.15
+++ test/layout/res/formatting_exotic/formatting.html   9 Jan 2009 21:20:35 
-0000       1.16
@@ -534,12 +534,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading

Index: test/layout/res/formatting_exotic/formatting_1.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/layout/res/formatting_exotic/formatting_1.html,v
retrieving revision 1.5
retrieving revision 1.6
diff -u -b -r1.5 -r1.6
--- test/layout/res/formatting_exotic/formatting_1.html 11 Nov 2008 13:29:16 
-0000      1.5
+++ test/layout/res/formatting_exotic/formatting_1.html 9 Jan 2009 21:20:36 
-0000       1.6
@@ -534,12 +534,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading

Index: test/layout/res/formatting_exotic/formatting_2.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/layout/res/formatting_exotic/formatting_2.html,v
retrieving revision 1.11
retrieving revision 1.12
diff -u -b -r1.11 -r1.12
--- test/layout/res/formatting_exotic/formatting_2.html 11 Nov 2008 13:29:16 
-0000      1.11
+++ test/layout/res/formatting_exotic/formatting_2.html 9 Jan 2009 21:20:36 
-0000       1.12
@@ -534,12 +534,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading

Index: test/layout/res/formatting_exotic/formatting_3.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/layout/res/formatting_exotic/formatting_3.html,v
retrieving revision 1.11
retrieving revision 1.12
diff -u -b -r1.11 -r1.12
--- test/layout/res/formatting_exotic/formatting_3.html 8 Jan 2009 00:21:39 
-0000       1.11
+++ test/layout/res/formatting_exotic/formatting_3.html 9 Jan 2009 21:20:37 
-0000       1.12
@@ -534,12 +534,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading

Index: test/layout/res/formatting_exotic/formatting_4.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/layout/res/formatting_exotic/formatting_4.html,v
retrieving revision 1.10
retrieving revision 1.11
diff -u -b -r1.10 -r1.11
--- test/layout/res/formatting_exotic/formatting_4.html 8 Jan 2009 00:21:39 
-0000       1.10
+++ test/layout/res/formatting_exotic/formatting_4.html 9 Jan 2009 21:20:37 
-0000       1.11
@@ -534,12 +534,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading

Index: test/layout/res/formatting_exotic/formatting_abt.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/layout/res/formatting_exotic/formatting_abt.html,v
retrieving revision 1.7
retrieving revision 1.8
diff -u -b -r1.7 -r1.8
--- test/layout/res/formatting_exotic/formatting_abt.html       11 Nov 2008 
13:29:16 -0000      1.7
+++ test/layout/res/formatting_exotic/formatting_abt.html       9 Jan 2009 
21:20:37 -0000       1.8
@@ -534,12 +534,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading

Index: test/layout/res/formatting_exotic/formatting_ovr.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/layout/res/formatting_exotic/formatting_ovr.html,v
retrieving revision 1.9
retrieving revision 1.10
diff -u -b -r1.9 -r1.10
--- test/layout/res/formatting_exotic/formatting_ovr.html       11 Nov 2008 
13:29:16 -0000      1.9
+++ test/layout/res/formatting_exotic/formatting_ovr.html       9 Jan 2009 
21:20:38 -0000       1.10
@@ -534,12 +534,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading

Index: test/layout/res/formatting_exotic/formatting_toc.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/layout/res/formatting_exotic/formatting_toc.html,v
retrieving revision 1.9
retrieving revision 1.10
diff -u -b -r1.9 -r1.10
--- test/layout/res/formatting_exotic/formatting_toc.html       11 Nov 2008 
13:29:16 -0000      1.9
+++ test/layout/res/formatting_exotic/formatting_toc.html       9 Jan 2009 
21:20:39 -0000       1.10
@@ -534,12 +534,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading

Index: test/layout/res/formatting_makeinfo/chapter.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/layout/res/formatting_makeinfo/chapter.html,v
retrieving revision 1.10
retrieving revision 1.11
diff -u -b -r1.10 -r1.11
--- test/layout/res/formatting_makeinfo/chapter.html    9 Jan 2009 00:14:49 
-0000       1.10
+++ test/layout/res/formatting_makeinfo/chapter.html    9 Jan 2009 21:20:39 
-0000       1.11
@@ -525,12 +525,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading

Index: test/layout/res/formatting_makeinfo/chapter2.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/layout/res/formatting_makeinfo/chapter2.html,v
retrieving revision 1.12
retrieving revision 1.13
diff -u -b -r1.12 -r1.13
--- test/layout/res/formatting_makeinfo/chapter2.html   8 Jan 2009 00:21:39 
-0000       1.12
+++ test/layout/res/formatting_makeinfo/chapter2.html   9 Jan 2009 21:20:40 
-0000       1.13
@@ -525,12 +525,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading

Index: test/layout/res/formatting_makeinfo/formatting_abt.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/layout/res/formatting_makeinfo/formatting_abt.html,v
retrieving revision 1.6
retrieving revision 1.7
diff -u -b -r1.6 -r1.7
--- test/layout/res/formatting_makeinfo/formatting_abt.html     11 Nov 2008 
13:29:17 -0000      1.6
+++ test/layout/res/formatting_makeinfo/formatting_abt.html     9 Jan 2009 
21:20:41 -0000       1.7
@@ -525,12 +525,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading

Index: test/layout/res/formatting_makeinfo/index.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/layout/res/formatting_makeinfo/index.html,v
retrieving revision 1.13
retrieving revision 1.14
diff -u -b -r1.13 -r1.14
--- test/layout/res/formatting_makeinfo/index.html      9 Jan 2009 00:14:49 
-0000       1.13
+++ test/layout/res/formatting_makeinfo/index.html      9 Jan 2009 21:20:41 
-0000       1.14
@@ -525,12 +525,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading

Index: test/layout/res/formatting_makeinfo/s_002d_002dect_002cion.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/layout/res/formatting_makeinfo/s_002d_002dect_002cion.html,v
retrieving revision 1.9
retrieving revision 1.10
diff -u -b -r1.9 -r1.10
--- test/layout/res/formatting_makeinfo/s_002d_002dect_002cion.html     8 Jan 
2009 00:21:40 -0000       1.9
+++ test/layout/res/formatting_makeinfo/s_002d_002dect_002cion.html     9 Jan 
2009 21:20:42 -0000       1.10
@@ -525,12 +525,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading

Index: test/layout/res/formatting_makeinfo/subsection.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/layout/res/formatting_makeinfo/subsection.html,v
retrieving revision 1.9
retrieving revision 1.10
diff -u -b -r1.9 -r1.10
--- test/layout/res/formatting_makeinfo/subsection.html 8 Jan 2009 00:21:40 
-0000       1.9
+++ test/layout/res/formatting_makeinfo/subsection.html 9 Jan 2009 21:20:42 
-0000       1.10
@@ -525,12 +525,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading

Index: 
test/layout/res/formatting_makeinfo/subsubsection-_0060_0060simple_002ddouble_002d_002dthree_002d_002d_002dfour_002d_002d_002d_002d_0027_0027.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/layout/res/formatting_makeinfo/subsubsection-_0060_0060simple_002ddouble_002d_002dthree_002d_002d_002dfour_002d_002d_002d_002d_0027_0027.html,v
retrieving revision 1.9
retrieving revision 1.10
diff -u -b -r1.9 -r1.10
--- 
test/layout/res/formatting_makeinfo/subsubsection-_0060_0060simple_002ddouble_002d_002dthree_002d_002d_002dfour_002d_002d_002d_002d_0027_0027.html
  8 Jan 2009 00:21:40 -0000       1.9
+++ 
test/layout/res/formatting_makeinfo/subsubsection-_0060_0060simple_002ddouble_002d_002dthree_002d_002d_002dfour_002d_002d_002d_002d_0027_0027.html
  9 Jan 2009 21:20:42 -0000       1.10
@@ -525,12 +525,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading

Index: test/layout/res/formatting_regions/formatting_regions.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/layout/res/formatting_regions/formatting_regions.html,v
retrieving revision 1.17
retrieving revision 1.18
diff -u -b -r1.17 -r1.18
--- test/layout/res/formatting_regions/formatting_regions.html  8 Jan 2009 
00:21:40 -0000       1.17
+++ test/layout/res/formatting_regions/formatting_regions.html  9 Jan 2009 
21:20:43 -0000       1.18
@@ -524,12 +524,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading

Index: test/layout/res/texi_formatting_regions/formatting_regions.passfirst
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/layout/res/texi_formatting_regions/formatting_regions.passfirst,v
retrieving revision 1.6
retrieving revision 1.7
diff -u -b -r1.6 -r1.7
--- test/layout/res/texi_formatting_regions/formatting_regions.passfirst        
11 Nov 2008 00:52:31 -0000      1.6
+++ test/layout/res/texi_formatting_regions/formatting_regions.passfirst        
9 Jan 2009 21:20:44 -0000       1.7
@@ -578,12 +578,21 @@
 formatting_regions.texi(mymacro,46) in verbatim ''
 formatting_regions.texi(mymacro,46) @end verbatim
 formatting_regions.texi(mymacro,46) 
+formatting_regions.texi(mymacro,46) @xml
+formatting_regions.texi(mymacro,46) <para> xml para </para> ''
+formatting_regions.texi(mymacro,46) @end xml
 formatting_regions.texi(mymacro,46) 
 formatting_regions.texi(mymacro,46) @html
 formatting_regions.texi(mymacro,46) html ''
 formatting_regions.texi(mymacro,46) @end html
 formatting_regions.texi(mymacro,46) 
-formatting_regions.texi(mymacro,46) 
+formatting_regions.texi(mymacro,46) @tex
+formatting_regions.texi(mymacro,46) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$ ''
+formatting_regions.texi(mymacro,46) @end tex
+formatting_regions.texi(mymacro,46) 
+formatting_regions.texi(mymacro,46) @docbook
+formatting_regions.texi(mymacro,46) docbook ''
+formatting_regions.texi(mymacro,46) @end docbook
 formatting_regions.texi(mymacro,46) 
 formatting_regions.texi(mymacro,46) @majorheading majorheading
 formatting_regions.texi(mymacro,46) 
@@ -1277,12 +1286,21 @@
 formatting_regions.texi(mymacro,49) in verbatim ''
 formatting_regions.texi(mymacro,49) @end verbatim
 formatting_regions.texi(mymacro,49) 
+formatting_regions.texi(mymacro,49) @xml
+formatting_regions.texi(mymacro,49) <para> xml para </para> ''
+formatting_regions.texi(mymacro,49) @end xml
 formatting_regions.texi(mymacro,49) 
 formatting_regions.texi(mymacro,49) @html
 formatting_regions.texi(mymacro,49) html ''
 formatting_regions.texi(mymacro,49) @end html
 formatting_regions.texi(mymacro,49) 
-formatting_regions.texi(mymacro,49) 
+formatting_regions.texi(mymacro,49) @tex
+formatting_regions.texi(mymacro,49) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$ ''
+formatting_regions.texi(mymacro,49) @end tex
+formatting_regions.texi(mymacro,49) 
+formatting_regions.texi(mymacro,49) @docbook
+formatting_regions.texi(mymacro,49) docbook ''
+formatting_regions.texi(mymacro,49) @end docbook
 formatting_regions.texi(mymacro,49) 
 formatting_regions.texi(mymacro,49) @majorheading majorheading
 formatting_regions.texi(mymacro,49) 

Index: test/layout/res/texi_formatting_regions/formatting_regions.passtexi
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/layout/res/texi_formatting_regions/formatting_regions.passtexi,v
retrieving revision 1.6
retrieving revision 1.7
diff -u -b -r1.6 -r1.7
--- test/layout/res/texi_formatting_regions/formatting_regions.passtexi 11 Nov 
2008 00:52:31 -0000      1.6
+++ test/layout/res/texi_formatting_regions/formatting_regions.passtexi 9 Jan 
2009 21:20:44 -0000       1.7
@@ -581,12 +581,21 @@
 formatting_regions.texi(mymacro,28) in verbatim ''
 formatting_regions.texi(mymacro,28) @end verbatim
 formatting_regions.texi(mymacro,28) 
+formatting_regions.texi(mymacro,28) @xml
+formatting_regions.texi(mymacro,28) <para> xml para </para> ''
+formatting_regions.texi(mymacro,28) @end xml
 formatting_regions.texi(mymacro,28) 
 formatting_regions.texi(mymacro,28) @html
 formatting_regions.texi(mymacro,28) html ''
 formatting_regions.texi(mymacro,28) @end html
 formatting_regions.texi(mymacro,28) 
-formatting_regions.texi(mymacro,28) 
+formatting_regions.texi(mymacro,28) @tex
+formatting_regions.texi(mymacro,28) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$ ''
+formatting_regions.texi(mymacro,28) @end tex
+formatting_regions.texi(mymacro,28) 
+formatting_regions.texi(mymacro,28) @docbook
+formatting_regions.texi(mymacro,28) docbook ''
+formatting_regions.texi(mymacro,28) @end docbook
 formatting_regions.texi(mymacro,28) 
 formatting_regions.texi(mymacro,28) @majorheading majorheading
 formatting_regions.texi(mymacro,28) 
@@ -1289,12 +1298,21 @@
 formatting_regions.texi(mymacro,39) in verbatim ''
 formatting_regions.texi(mymacro,39) @end verbatim
 formatting_regions.texi(mymacro,39) 
+formatting_regions.texi(mymacro,39) @xml
+formatting_regions.texi(mymacro,39) <para> xml para </para> ''
+formatting_regions.texi(mymacro,39) @end xml
 formatting_regions.texi(mymacro,39) 
 formatting_regions.texi(mymacro,39) @html
 formatting_regions.texi(mymacro,39) html ''
 formatting_regions.texi(mymacro,39) @end html
 formatting_regions.texi(mymacro,39) 
-formatting_regions.texi(mymacro,39) 
+formatting_regions.texi(mymacro,39) @tex
+formatting_regions.texi(mymacro,39) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$ ''
+formatting_regions.texi(mymacro,39) @end tex
+formatting_regions.texi(mymacro,39) 
+formatting_regions.texi(mymacro,39) @docbook
+formatting_regions.texi(mymacro,39) docbook ''
+formatting_regions.texi(mymacro,39) @end docbook
 formatting_regions.texi(mymacro,39) 
 formatting_regions.texi(mymacro,39) @majorheading majorheading
 formatting_regions.texi(mymacro,39) 
@@ -1993,12 +2011,21 @@
 formatting_regions.texi(mymacro,46) in verbatim ''
 formatting_regions.texi(mymacro,46) @end verbatim
 formatting_regions.texi(mymacro,46) 
+formatting_regions.texi(mymacro,46) @xml
+formatting_regions.texi(mymacro,46) <para> xml para </para> ''
+formatting_regions.texi(mymacro,46) @end xml
 formatting_regions.texi(mymacro,46) 
 formatting_regions.texi(mymacro,46) @html
 formatting_regions.texi(mymacro,46) html ''
 formatting_regions.texi(mymacro,46) @end html
 formatting_regions.texi(mymacro,46) 
-formatting_regions.texi(mymacro,46) 
+formatting_regions.texi(mymacro,46) @tex
+formatting_regions.texi(mymacro,46) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$ ''
+formatting_regions.texi(mymacro,46) @end tex
+formatting_regions.texi(mymacro,46) 
+formatting_regions.texi(mymacro,46) @docbook
+formatting_regions.texi(mymacro,46) docbook ''
+formatting_regions.texi(mymacro,46) @end docbook
 formatting_regions.texi(mymacro,46) 
 formatting_regions.texi(mymacro,46) @majorheading majorheading
 formatting_regions.texi(mymacro,46) 
@@ -2693,12 +2720,21 @@
 formatting_regions.texi(mymacro,49) in verbatim ''
 formatting_regions.texi(mymacro,49) @end verbatim
 formatting_regions.texi(mymacro,49) 
+formatting_regions.texi(mymacro,49) @xml
+formatting_regions.texi(mymacro,49) <para> xml para </para> ''
+formatting_regions.texi(mymacro,49) @end xml
 formatting_regions.texi(mymacro,49) 
 formatting_regions.texi(mymacro,49) @html
 formatting_regions.texi(mymacro,49) html ''
 formatting_regions.texi(mymacro,49) @end html
 formatting_regions.texi(mymacro,49) 
-formatting_regions.texi(mymacro,49) 
+formatting_regions.texi(mymacro,49) @tex
+formatting_regions.texi(mymacro,49) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$ ''
+formatting_regions.texi(mymacro,49) @end tex
+formatting_regions.texi(mymacro,49) 
+formatting_regions.texi(mymacro,49) @docbook
+formatting_regions.texi(mymacro,49) docbook ''
+formatting_regions.texi(mymacro,49) @end docbook
 formatting_regions.texi(mymacro,49) 
 formatting_regions.texi(mymacro,49) @majorheading majorheading
 formatting_regions.texi(mymacro,49) 

Index: test/layout/res/texi_formatting_regions/formatting_regions.texi
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/layout/res/texi_formatting_regions/formatting_regions.texi,v
retrieving revision 1.6
retrieving revision 1.7
diff -u -b -r1.6 -r1.7
--- test/layout/res/texi_formatting_regions/formatting_regions.texi     11 Nov 
2008 00:52:31 -0000      1.6
+++ test/layout/res/texi_formatting_regions/formatting_regions.texi     9 Jan 
2009 21:20:44 -0000       1.7
@@ -582,12 +582,21 @@
 in verbatim ''
 @end verbatim
 
address@hidden
+<para> xml para </para> ''
address@hidden xml
 
 @html
 html ''
 @end html
 
-
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$ ''
address@hidden tex
+
address@hidden
+docbook ''
address@hidden docbook
 
 @majorheading majorheading
 
@@ -1290,12 +1299,21 @@
 in verbatim ''
 @end verbatim
 
address@hidden
+<para> xml para </para> ''
address@hidden xml
 
 @html
 html ''
 @end html
 
-
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$ ''
address@hidden tex
+
address@hidden
+docbook ''
address@hidden docbook
 
 @majorheading majorheading
 
@@ -1994,12 +2012,21 @@
 in verbatim ''
 @end verbatim
 
address@hidden
+<para> xml para </para> ''
address@hidden xml
 
 @html
 html ''
 @end html
 
-
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$ ''
address@hidden tex
+
address@hidden
+docbook ''
address@hidden docbook
 
 @majorheading majorheading
 
@@ -2694,12 +2721,21 @@
 in verbatim ''
 @end verbatim
 
address@hidden
+<para> xml para </para> ''
address@hidden xml
 
 @html
 html ''
 @end html
 
-
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$ ''
address@hidden tex
+
address@hidden
+docbook ''
address@hidden docbook
 
 @majorheading majorheading
 

Index: test/macros/tests.txt
===================================================================
RCS file: /cvsroot/texi2html/texi2html/test/macros/tests.txt,v
retrieving revision 1.6
retrieving revision 1.7
diff -u -b -r1.6 -r1.7
--- test/macros/tests.txt       26 Nov 2008 19:09:04 -0000      1.6
+++ test/macros/tests.txt       9 Jan 2009 21:20:45 -0000       1.7
@@ -38,9 +38,11 @@
 cond_xml cond.texi --init xml.init
 cond_no-ifhtml_no-ifinfo_no-iftex cond.texi --no-ifhtml --no-ifinfo --no-iftex
 cond_ifhtml_ifinfo_iftex cond.texi --ifhtml --ifinfo --iftex
+cond_info cond.texi --init info.init
 defcondx_Dbar defxcond.texi -D bar
 defcondx_Ubar defxcond.texi -U bar
 macro-at macro-at.texi
+macro-at_info macro-at.texi --init info.init
 value_in_pass0_macros value_in_pass0_macros.texi -init makeinfo.init
 macros_in_pass0_macros macros_in_pass0_macros.texi -init makeinfo.init
 node-expand node-expand.texi -init makeinfo.init

Index: test/macros/res/texi_cond/cond.passfirst
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/macros/res/texi_cond/cond.passfirst,v
retrieving revision 1.1
retrieving revision 1.2
diff -u -b -r1.1 -r1.2
--- test/macros/res/texi_cond/cond.passfirst    16 Dec 2008 11:18:41 -0000      
1.1
+++ test/macros/res/texi_cond/cond.passfirst    9 Jan 2009 21:20:45 -0000       
1.2
@@ -14,6 +14,9 @@
 cond.texi(,22) 
 cond.texi(,26) 
 cond.texi(,27) 
+cond.texi(,28) @tex
+cond.texi(,29) This is tex text.
+cond.texi(,30) @end tex
 cond.texi(,31) 
 cond.texi(,35) 
 cond.texi(,37) This is ifnottex text.

Index: test/macros/res/texi_cond/cond.passtexi
===================================================================
RCS file: /cvsroot/texi2html/texi2html/test/macros/res/texi_cond/cond.passtexi,v
retrieving revision 1.1
retrieving revision 1.2
diff -u -b -r1.1 -r1.2
--- test/macros/res/texi_cond/cond.passtexi     16 Dec 2008 11:18:41 -0000      
1.1
+++ test/macros/res/texi_cond/cond.passtexi     9 Jan 2009 21:20:46 -0000       
1.2
@@ -14,6 +14,9 @@
 cond.texi(,22) 
 cond.texi(,26) 
 cond.texi(,27) 
+cond.texi(,28) @tex
+cond.texi(,29) This is tex text.
+cond.texi(,30) @end tex
 cond.texi(,31) 
 cond.texi(,35) 
 cond.texi(,37) This is ifnottex text.

Index: test/macros/res/texi_cond/cond.texi
===================================================================
RCS file: /cvsroot/texi2html/texi2html/test/macros/res/texi_cond/cond.texi,v
retrieving revision 1.1
retrieving revision 1.2
diff -u -b -r1.1 -r1.2
--- test/macros/res/texi_cond/cond.texi 16 Dec 2008 11:18:42 -0000      1.1
+++ test/macros/res/texi_cond/cond.texi 9 Jan 2009 21:20:46 -0000       1.2
@@ -15,6 +15,9 @@
 
 
 
address@hidden
+This is tex text.
address@hidden tex
 
 
 This is ifnottex text.

Index: test/manuals/res/texi_mini_ker/mini_ker.passfirst
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/manuals/res/texi_mini_ker/mini_ker.passfirst,v
retrieving revision 1.2
retrieving revision 1.3
diff -u -b -r1.2 -r1.3
--- test/manuals/res/texi_mini_ker/mini_ker.passfirst   2 Nov 2008 00:49:19 
-0000       1.2
+++ test/manuals/res/texi_mini_ker/mini_ker.passfirst   9 Jan 2009 21:20:47 
-0000       1.3
@@ -179,6 +179,9 @@
 mini_ker.texi(,229) @enumerate
 mini_ker.texi(,230) @item Cells which are elementary models and correspond to 
evolution equations
 mini_ker.texi(,231) such as:
+mini_ker.texi(,241) @tex
+mini_ker.texi(,242) $$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$
+mini_ker.texi(,243) @end tex
 mini_ker.texi(,245) 
 mini_ker.texi(,246) @noindent @math{d eta(t)/d t = g(eta(t),phi(t))}
 mini_ker.texi(,247) 
@@ -195,6 +198,11 @@
 mini_ker.texi(,260) 
 mini_ker.texi(,261) 
 mini_ker.texi(,262) @item Transfers which are determined by constraint 
equations such as:
+mini_ker.texi(,272) @tex
+mini_ker.texi(,273) $$
+mini_ker.texi(,274) \varphi(t) = f(\eta(t),\varphi(t))
+mini_ker.texi(,275) $$
+mini_ker.texi(,276) @end tex
 mini_ker.texi(,278) 
 mini_ker.texi(,279) @noindent @math{phi(t) = f(eta(t),phi(t))}
 mini_ker.texi(,280) 
@@ -222,6 +230,12 @@
 mini_ker.texi(,304) 
 mini_ker.texi(,305) 
 mini_ker.texi(,319) 
+mini_ker.texi(,321) @tex
+mini_ker.texi(,322) $$\pmatrix{A & B\cr
+mini_ker.texi(,323) -C^+ & I-D\cr} \pmatrix{\delta \eta\cr
+mini_ker.texi(,324) \delta \varphi\cr} = \pmatrix{\Gamma\cr
+mini_ker.texi(,325) \Omega\cr}$$
+mini_ker.texi(,326) @end tex
 mini_ker.texi(,328) 
 mini_ker.texi(,329) The blocks appearing in the Jacobian matrix are 
constructed with partial derivative
 mini_ker.texi(,330) of @math{f} and @math{g}, and with @math{\delta t}. From 
this system the
@@ -286,6 +300,11 @@
 mini_ker.texi(,389) @cindex TEF
 mini_ker.texi(,390) 
 mini_ker.texi(,391) The general @acronym{TEF} system writes:
+mini_ker.texi(,402) @tex
+mini_ker.texi(,403) $$\eqalign{\partial_t \eta (t) &= g(\eta(t),\varphi(t))\cr
+mini_ker.texi(,404) \varphi(t) &= f(\eta(t),\varphi(t))\cr
+mini_ker.texi(,405) }$$
+mini_ker.texi(,406) @end tex
 mini_ker.texi(,408) 
 mini_ker.texi(,409) @noindent @math{d eta(t)/d t = g(eta(t),phi(t))@*
 mini_ker.texi(,410) phi(t) = f(eta(t),phi(t))}
@@ -295,6 +314,13 @@
 mini_ker.texi(,416) model of Lotka-Volterra is used.
 mini_ker.texi(,417) This model can be written in the following @acronym{TEF} 
form:
 mini_ker.texi(,418) 
+mini_ker.texi(,436) @tex
+mini_ker.texi(,437) $$\left\{\eqalign{\partial_t \eta _{prey} &=  a \eta 
_{prey} - a \varphi _{meet} \cr
+mini_ker.texi(,438) \partial_t \eta _{pred} &=  -c \eta _{pred} + c \varphi 
_{meet}\cr}\right.$$
+mini_ker.texi(,439) @end tex
+mini_ker.texi(,440) @tex
+mini_ker.texi(,441) $$\varphi _{meet} = \eta _{prey}\eta _{pred}$$
+mini_ker.texi(,442) @end tex
 mini_ker.texi(,444) @noindent @math{d eta_prey(t)/d t = a * eta_prey - a * 
address@hidden
 mini_ker.texi(,445) d eta_pred(t)/d t = -c * eta_pred +c * phi_meet}
 mini_ker.texi(,446) 
@@ -1007,15 +1033,31 @@
 mini_ker.texi(,1183) The Jacobian matrix corresponding with:
 mini_ker.texi(,1184) @c \varphi(t) &= f(\eta(t),\varphi(t))\cr
 mini_ker.texi(,1185) @c \frac{\partial g(\eta(t),\varphi(t))}{\partial \eta(t)}
+mini_ker.texi(,1186) @tex
+mini_ker.texi(,1187) $$\partial_{\eta} g(\eta(t),\varphi(t));
+mini_ker.texi(,1188) $$
+mini_ker.texi(,1189) @end tex
 mini_ker.texi(,1191) g_1(eta,phi);
 mini_ker.texi(,1193) @item Bb
 mini_ker.texi(,1194) The Jacobian matrix corresponding with:
+mini_ker.texi(,1195) @tex
+mini_ker.texi(,1196) $$\partial_{\varphi} g(\eta(t),\varphi(t));
+mini_ker.texi(,1197) $$
+mini_ker.texi(,1198) @end tex
 mini_ker.texi(,1200) g_2(eta,phi);
 mini_ker.texi(,1202) @item Bt
 mini_ker.texi(,1203) The Jacobian matrix corresponding with:
+mini_ker.texi(,1204) @tex
+mini_ker.texi(,1205) $$\partial_{\eta} f(\eta(t),\varphi(t));
+mini_ker.texi(,1206) $$
+mini_ker.texi(,1207) @end tex
 mini_ker.texi(,1209) f_1(eta,phi);
 mini_ker.texi(,1211) @item D
 mini_ker.texi(,1212) The Jacobian matrix corresponding with:
+mini_ker.texi(,1213) @tex
+mini_ker.texi(,1214) $$\partial_{\varphi} f(\eta(t),\varphi(t));
+mini_ker.texi(,1215) $$
+mini_ker.texi(,1216) @end tex
 mini_ker.texi(,1218) f_2(eta,phi);
 mini_ker.texi(,1220) 
 mini_ker.texi(,1221) @item aspha
@@ -1222,6 +1264,18 @@
 mini_ker.texi(,1422) a chain of masselottes linked by springs and dumps is 
bounded to a wall on the left,
 mini_ker.texi(,1423) and open at right. The @acronym{TEF} formulation of the 
problem is written in the phase space (position-shift, velocity)
 mini_ker.texi(,1424) for node @math{k}, with bounding conditions:
+mini_ker.texi(,1457) @tex
+mini_ker.texi(,1458) $$\left\{\eqalign{\partial_t \eta _{k} ^{pos}  &=  \eta 
_{k} ^{vel} \cr
+mini_ker.texi(,1459) \partial_t \eta _{k} ^{vel}  &= ( \varphi_k ^{spr} 
-\varphi _{k+1} ^{spr} + \varphi _{k} ^{dmp}-\varphi _{k+1} ^{dmp})\,/m_k  
\cr}\right.$$
+mini_ker.texi(,1460) $$\left\{\eqalign{
+mini_ker.texi(,1461) \varphi_k ^{spr} &= -k_k (\eta _{k} ^{pos}- \eta _{k-1} 
^{pos})\cr
+mini_ker.texi(,1462) \varphi_k ^{spr} &= -d_k (\eta _{k} ^{vel}- \eta _{k-1} 
^{vel})
+mini_ker.texi(,1463) \cr}\right.$$
+mini_ker.texi(,1464) $$\left\{\eqalign{\eta ^{pos}_{0} &= 0\cr
+mini_ker.texi(,1465) \eta ^{vel}_{0} &= 0\cr
+mini_ker.texi(,1466) \varphi  ^{spr}_{N+1} &= 0\cr
+mini_ker.texi(,1467) \varphi ^{dmp}_{N+1} &= 0\cr}\right.$$
+mini_ker.texi(,1468) @end tex
 mini_ker.texi(,1470) 
 mini_ker.texi(,1471) States:@*
 mini_ker.texi(,1472) @noindent @math{d position(t,k)/d t = velocity(t,k)@* 
@@ -1595,6 +1649,10 @@
 mini_ker.texi(,1852) Its derivative will have the following form:
 mini_ker.texi(,1853) 
 mini_ker.texi(,1854) 
+mini_ker.texi(,1863) @tex
+mini_ker.texi(,1864) $$\eqalign{\partial_x f^g &= g f^{g-1}\partial_x f +  f^g 
\log f\partial_x g\cr
+mini_ker.texi(,1865)  &= f^{g-1}(g\partial_x f + f\partial_x g)\cr}$$
+mini_ker.texi(,1866) @end tex
 mini_ker.texi(,1868) 
 mini_ker.texi(,1869) and is in the macros list already defined in: 
@file{DERIVE_MAC}.
 mini_ker.texi(,1870) 
@@ -1712,6 +1770,11 @@
 mini_ker.texi(,1992) @c in this section ($\mu$ elsewhere,
 mini_ker.texi(,1993) and the observation function is noted @math{h}:
 mini_ker.texi(,1994) 
+mini_ker.texi(,1995) @tex
+mini_ker.texi(,1996) $$
+mini_ker.texi(,1997) \omega = h ( \eta , \varphi) 
+mini_ker.texi(,1998) $$
+mini_ker.texi(,1999) @end tex
 mini_ker.texi(,2001) 
 mini_ker.texi(,2002) @noindent @math{omega(t) = h(eta(t), phi(t))}
 mini_ker.texi(,2003) 
@@ -2284,6 +2347,11 @@
 mini_ker.texi(,2571) 
 mini_ker.texi(,2572) The functionnal @math{J} to be optimised is defined as
 mini_ker.texi(,2573) 
+mini_ker.texi(,2582) @tex
+mini_ker.texi(,2583) $$
+mini_ker.texi(,2584) J = \psi[\eta(T),\varphi(T) ,h(T)] + \int_0 ^T 
{l[\eta(\tau),\varphi(\tau),h(\tau)]}\, d\tau
+mini_ker.texi(,2585) $$
+mini_ker.texi(,2586) @end tex
 mini_ker.texi(,2588) @noindent @math{J = psi(eta(T),phi(T),h(T)) + int_0^T 
l(eta(tau),phi(tau),h(tau)) d tau}
 mini_ker.texi(,2591) 
 mini_ker.texi(,2592) @cindex final cost
@@ -2465,6 +2533,13 @@
 mini_ker.texi(,2768) stochastic perturbation on the state, and discrete noisy 
observations.
 mini_ker.texi(,2769) In the @acronym{TEF} this leads to:
 mini_ker.texi(,2770) 
+mini_ker.texi(,2781) @tex
+mini_ker.texi(,2782) $$\eqalign{
+mini_ker.texi(,2783) \partial_t \eta (t) &=  g(\eta(t),\varphi(t)) + W(t) 
\mu\cr
+mini_ker.texi(,2784) \varphi(t) &= f(\eta(t),\varphi(t))\cr
+mini_ker.texi(,2785) \omega(t) &= h ( \eta(t) , \varphi(t)) + \nu\cr
+mini_ker.texi(,2786) }$$
+mini_ker.texi(,2787) @end tex
 mini_ker.texi(,2789) 
 mini_ker.texi(,2790) @noindent @math{d eta(t)/d t = g(eta(t),phi(t)) + W(t) 
address@hidden
 mini_ker.texi(,2791) phi(i) = f(eta(t),phi(t))@*
@@ -2487,6 +2562,23 @@
 mini_ker.texi(,2810) transfers (equal to the states), but the error on the 
state is of dimension 
 mini_ker.texi(,2811) 2. The 3 states are observed. The corresponding equations 
read:
 mini_ker.texi(,2812) 
+mini_ker.texi(,2845) @tex
+mini_ker.texi(,2846) $$\left\{\eqalign{
+mini_ker.texi(,2847) \partial_t \eta_1 &= a_{11} \eta_1 + a_{12} \varphi_2 + 
a_{13} \varphi_3 + W_{11} \mu_1 + W_{12} \mu_2\cr
+mini_ker.texi(,2848) \partial_t \eta_2 &= a_{21} \varphi_1 + a_{22} \eta_2 + 
a_{23} \varphi_3 + W_{21} \mu_1 + W_{22} \mu_2\cr
+mini_ker.texi(,2849) \partial_t \eta_3 &= a_{31} \varphi_1 + a_{32} \varphi_2 
+ a_{33} \eta_3 + W_{31} \mu_1 + W_{32} \mu_2
+mini_ker.texi(,2850) }\right.$$
+mini_ker.texi(,2851) $$\left\{\eqalign{
+mini_ker.texi(,2852) \varphi _1 &= \eta _1\cr
+mini_ker.texi(,2853) \varphi _2 &= \eta _2\cr
+mini_ker.texi(,2854) \varphi _3 &= \eta _3
+mini_ker.texi(,2855) }\right.$$
+mini_ker.texi(,2856) $$\left\{\eqalign{
+mini_ker.texi(,2857) \omega _1 &= \varphi _1 + \nu_1\cr
+mini_ker.texi(,2858) \omega _2 &= \eta _2 + \nu_2 \cr
+mini_ker.texi(,2859) \omega _3 &= \eta _3 + \nu_3
+mini_ker.texi(,2860) }\right.$$
+mini_ker.texi(,2861) @end tex
 mini_ker.texi(,2862) 
 mini_ker.texi(,2864) 
 mini_ker.texi(,2865) Cells:@*
@@ -2944,6 +3036,11 @@
 mini_ker.texi(,3326) 
 mini_ker.texi(,3327) The Singular value decomposition of a matrix is noted
 mini_ker.texi(,3328) 
+mini_ker.texi(,3329) @tex
+mini_ker.texi(,3330) $$
+mini_ker.texi(,3331)  U w V^\dagger
+mini_ker.texi(,3332) $$
+mini_ker.texi(,3333) @end tex
 mini_ker.texi(,3335) 
 mini_ker.texi(,3336) @noindent @math{U w V^t}
 mini_ker.texi(,3337) 

Index: test/manuals/res/texi_mini_ker/mini_ker.passtexi
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/manuals/res/texi_mini_ker/mini_ker.passtexi,v
retrieving revision 1.3
retrieving revision 1.4
diff -u -b -r1.3 -r1.4
--- test/manuals/res/texi_mini_ker/mini_ker.passtexi    2 Nov 2008 00:49:19 
-0000       1.3
+++ test/manuals/res/texi_mini_ker/mini_ker.passtexi    9 Jan 2009 21:20:47 
-0000       1.4
@@ -207,6 +207,9 @@
 mini_ker.texi(,229) @enumerate
 mini_ker.texi(,230) @item Cells which are elementary models and correspond to 
evolution equations
 mini_ker.texi(,231) such as:
+mini_ker.texi(,241) @tex
+mini_ker.texi(,242) $$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$
+mini_ker.texi(,243) @end tex
 mini_ker.texi(,245) 
 mini_ker.texi(,246) @noindent @math{d eta(t)/d t = g(eta(t),phi(t))}
 mini_ker.texi(,247) 
@@ -223,6 +226,11 @@
 mini_ker.texi(,260) 
 mini_ker.texi(,261) 
 mini_ker.texi(,262) @item Transfers which are determined by constraint 
equations such as:
+mini_ker.texi(,272) @tex
+mini_ker.texi(,273) $$
+mini_ker.texi(,274) \varphi(t) = f(\eta(t),\varphi(t))
+mini_ker.texi(,275) $$
+mini_ker.texi(,276) @end tex
 mini_ker.texi(,278) 
 mini_ker.texi(,279) @noindent @math{phi(t) = f(eta(t),phi(t))}
 mini_ker.texi(,280) 
@@ -250,6 +258,12 @@
 mini_ker.texi(,304) 
 mini_ker.texi(,305) 
 mini_ker.texi(,319) 
+mini_ker.texi(,321) @tex
+mini_ker.texi(,322) $$\pmatrix{A & B\cr
+mini_ker.texi(,323) -C^+ & I-D\cr} \pmatrix{\delta \eta\cr
+mini_ker.texi(,324) \delta \varphi\cr} = \pmatrix{\Gamma\cr
+mini_ker.texi(,325) \Omega\cr}$$
+mini_ker.texi(,326) @end tex
 mini_ker.texi(,328) 
 mini_ker.texi(,329) The blocks appearing in the Jacobian matrix are 
constructed with partial derivative
 mini_ker.texi(,330) of @math{f} and @math{g}, and with @math{\delta t}. From 
this system the
@@ -314,6 +328,11 @@
 mini_ker.texi(,389) @cindex TEF
 mini_ker.texi(,390) 
 mini_ker.texi(,391) The general @acronym{TEF} system writes:
+mini_ker.texi(,402) @tex
+mini_ker.texi(,403) $$\eqalign{\partial_t \eta (t) &= g(\eta(t),\varphi(t))\cr
+mini_ker.texi(,404) \varphi(t) &= f(\eta(t),\varphi(t))\cr
+mini_ker.texi(,405) }$$
+mini_ker.texi(,406) @end tex
 mini_ker.texi(,408) 
 mini_ker.texi(,409) @noindent @math{d eta(t)/d t = g(eta(t),phi(t))@*
 mini_ker.texi(,410) phi(t) = f(eta(t),phi(t))}
@@ -323,6 +342,13 @@
 mini_ker.texi(,416) model of Lotka-Volterra is used.
 mini_ker.texi(,417) This model can be written in the following @acronym{TEF} 
form:
 mini_ker.texi(,418) 
+mini_ker.texi(,436) @tex
+mini_ker.texi(,437) $$\left\{\eqalign{\partial_t \eta _{prey} &=  a \eta 
_{prey} - a \varphi _{meet} \cr
+mini_ker.texi(,438) \partial_t \eta _{pred} &=  -c \eta _{pred} + c \varphi 
_{meet}\cr}\right.$$
+mini_ker.texi(,439) @end tex
+mini_ker.texi(,440) @tex
+mini_ker.texi(,441) $$\varphi _{meet} = \eta _{prey}\eta _{pred}$$
+mini_ker.texi(,442) @end tex
 mini_ker.texi(,444) @noindent @math{d eta_prey(t)/d t = a * eta_prey - a * 
address@hidden
 mini_ker.texi(,445) d eta_pred(t)/d t = -c * eta_pred +c * phi_meet}
 mini_ker.texi(,446) 
@@ -1035,15 +1061,31 @@
 mini_ker.texi(,1183) The Jacobian matrix corresponding with:
 mini_ker.texi(,1184) @c \varphi(t) &= f(\eta(t),\varphi(t))\cr
 mini_ker.texi(,1185) @c \frac{\partial g(\eta(t),\varphi(t))}{\partial \eta(t)}
+mini_ker.texi(,1186) @tex
+mini_ker.texi(,1187) $$\partial_{\eta} g(\eta(t),\varphi(t));
+mini_ker.texi(,1188) $$
+mini_ker.texi(,1189) @end tex
 mini_ker.texi(,1191) g_1(eta,phi);
 mini_ker.texi(,1193) @item Bb
 mini_ker.texi(,1194) The Jacobian matrix corresponding with:
+mini_ker.texi(,1195) @tex
+mini_ker.texi(,1196) $$\partial_{\varphi} g(\eta(t),\varphi(t));
+mini_ker.texi(,1197) $$
+mini_ker.texi(,1198) @end tex
 mini_ker.texi(,1200) g_2(eta,phi);
 mini_ker.texi(,1202) @item Bt
 mini_ker.texi(,1203) The Jacobian matrix corresponding with:
+mini_ker.texi(,1204) @tex
+mini_ker.texi(,1205) $$\partial_{\eta} f(\eta(t),\varphi(t));
+mini_ker.texi(,1206) $$
+mini_ker.texi(,1207) @end tex
 mini_ker.texi(,1209) f_1(eta,phi);
 mini_ker.texi(,1211) @item D
 mini_ker.texi(,1212) The Jacobian matrix corresponding with:
+mini_ker.texi(,1213) @tex
+mini_ker.texi(,1214) $$\partial_{\varphi} f(\eta(t),\varphi(t));
+mini_ker.texi(,1215) $$
+mini_ker.texi(,1216) @end tex
 mini_ker.texi(,1218) f_2(eta,phi);
 mini_ker.texi(,1220) 
 mini_ker.texi(,1221) @item aspha
@@ -1250,6 +1292,18 @@
 mini_ker.texi(,1422) a chain of masselottes linked by springs and dumps is 
bounded to a wall on the left,
 mini_ker.texi(,1423) and open at right. The @acronym{TEF} formulation of the 
problem is written in the phase space (position-shift, velocity)
 mini_ker.texi(,1424) for node @math{k}, with bounding conditions:
+mini_ker.texi(,1457) @tex
+mini_ker.texi(,1458) $$\left\{\eqalign{\partial_t \eta _{k} ^{pos}  &=  \eta 
_{k} ^{vel} \cr
+mini_ker.texi(,1459) \partial_t \eta _{k} ^{vel}  &= ( \varphi_k ^{spr} 
-\varphi _{k+1} ^{spr} + \varphi _{k} ^{dmp}-\varphi _{k+1} ^{dmp})\,/m_k  
\cr}\right.$$
+mini_ker.texi(,1460) $$\left\{\eqalign{
+mini_ker.texi(,1461) \varphi_k ^{spr} &= -k_k (\eta _{k} ^{pos}- \eta _{k-1} 
^{pos})\cr
+mini_ker.texi(,1462) \varphi_k ^{spr} &= -d_k (\eta _{k} ^{vel}- \eta _{k-1} 
^{vel})
+mini_ker.texi(,1463) \cr}\right.$$
+mini_ker.texi(,1464) $$\left\{\eqalign{\eta ^{pos}_{0} &= 0\cr
+mini_ker.texi(,1465) \eta ^{vel}_{0} &= 0\cr
+mini_ker.texi(,1466) \varphi  ^{spr}_{N+1} &= 0\cr
+mini_ker.texi(,1467) \varphi ^{dmp}_{N+1} &= 0\cr}\right.$$
+mini_ker.texi(,1468) @end tex
 mini_ker.texi(,1470) 
 mini_ker.texi(,1471) States:@*
 mini_ker.texi(,1472) @noindent @math{d position(t,k)/d t = velocity(t,k)@* 
@@ -1623,6 +1677,10 @@
 mini_ker.texi(,1852) Its derivative will have the following form:
 mini_ker.texi(,1853) 
 mini_ker.texi(,1854) 
+mini_ker.texi(,1863) @tex
+mini_ker.texi(,1864) $$\eqalign{\partial_x f^g &= g f^{g-1}\partial_x f +  f^g 
\log f\partial_x g\cr
+mini_ker.texi(,1865)  &= f^{g-1}(g\partial_x f + f\partial_x g)\cr}$$
+mini_ker.texi(,1866) @end tex
 mini_ker.texi(,1868) 
 mini_ker.texi(,1869) and is in the macros list already defined in: 
@file{DERIVE_MAC}.
 mini_ker.texi(,1870) 
@@ -1740,6 +1798,11 @@
 mini_ker.texi(,1992) @c in this section ($\mu$ elsewhere,
 mini_ker.texi(,1993) and the observation function is noted @math{h}:
 mini_ker.texi(,1994) 
+mini_ker.texi(,1995) @tex
+mini_ker.texi(,1996) $$
+mini_ker.texi(,1997) \omega = h ( \eta , \varphi) 
+mini_ker.texi(,1998) $$
+mini_ker.texi(,1999) @end tex
 mini_ker.texi(,2001) 
 mini_ker.texi(,2002) @noindent @math{omega(t) = h(eta(t), phi(t))}
 mini_ker.texi(,2003) 
@@ -2312,6 +2375,11 @@
 mini_ker.texi(,2571) 
 mini_ker.texi(,2572) The functionnal @math{J} to be optimised is defined as
 mini_ker.texi(,2573) 
+mini_ker.texi(,2582) @tex
+mini_ker.texi(,2583) $$
+mini_ker.texi(,2584) J = \psi[\eta(T),\varphi(T) ,h(T)] + \int_0 ^T 
{l[\eta(\tau),\varphi(\tau),h(\tau)]}\, d\tau
+mini_ker.texi(,2585) $$
+mini_ker.texi(,2586) @end tex
 mini_ker.texi(,2588) @noindent @math{J = psi(eta(T),phi(T),h(T)) + int_0^T 
l(eta(tau),phi(tau),h(tau)) d tau}
 mini_ker.texi(,2591) 
 mini_ker.texi(,2592) @cindex final cost
@@ -2493,6 +2561,13 @@
 mini_ker.texi(,2768) stochastic perturbation on the state, and discrete noisy 
observations.
 mini_ker.texi(,2769) In the @acronym{TEF} this leads to:
 mini_ker.texi(,2770) 
+mini_ker.texi(,2781) @tex
+mini_ker.texi(,2782) $$\eqalign{
+mini_ker.texi(,2783) \partial_t \eta (t) &=  g(\eta(t),\varphi(t)) + W(t) 
\mu\cr
+mini_ker.texi(,2784) \varphi(t) &= f(\eta(t),\varphi(t))\cr
+mini_ker.texi(,2785) \omega(t) &= h ( \eta(t) , \varphi(t)) + \nu\cr
+mini_ker.texi(,2786) }$$
+mini_ker.texi(,2787) @end tex
 mini_ker.texi(,2789) 
 mini_ker.texi(,2790) @noindent @math{d eta(t)/d t = g(eta(t),phi(t)) + W(t) 
address@hidden
 mini_ker.texi(,2791) phi(i) = f(eta(t),phi(t))@*
@@ -2515,6 +2590,23 @@
 mini_ker.texi(,2810) transfers (equal to the states), but the error on the 
state is of dimension 
 mini_ker.texi(,2811) 2. The 3 states are observed. The corresponding equations 
read:
 mini_ker.texi(,2812) 
+mini_ker.texi(,2845) @tex
+mini_ker.texi(,2846) $$\left\{\eqalign{
+mini_ker.texi(,2847) \partial_t \eta_1 &= a_{11} \eta_1 + a_{12} \varphi_2 + 
a_{13} \varphi_3 + W_{11} \mu_1 + W_{12} \mu_2\cr
+mini_ker.texi(,2848) \partial_t \eta_2 &= a_{21} \varphi_1 + a_{22} \eta_2 + 
a_{23} \varphi_3 + W_{21} \mu_1 + W_{22} \mu_2\cr
+mini_ker.texi(,2849) \partial_t \eta_3 &= a_{31} \varphi_1 + a_{32} \varphi_2 
+ a_{33} \eta_3 + W_{31} \mu_1 + W_{32} \mu_2
+mini_ker.texi(,2850) }\right.$$
+mini_ker.texi(,2851) $$\left\{\eqalign{
+mini_ker.texi(,2852) \varphi _1 &= \eta _1\cr
+mini_ker.texi(,2853) \varphi _2 &= \eta _2\cr
+mini_ker.texi(,2854) \varphi _3 &= \eta _3
+mini_ker.texi(,2855) }\right.$$
+mini_ker.texi(,2856) $$\left\{\eqalign{
+mini_ker.texi(,2857) \omega _1 &= \varphi _1 + \nu_1\cr
+mini_ker.texi(,2858) \omega _2 &= \eta _2 + \nu_2 \cr
+mini_ker.texi(,2859) \omega _3 &= \eta _3 + \nu_3
+mini_ker.texi(,2860) }\right.$$
+mini_ker.texi(,2861) @end tex
 mini_ker.texi(,2862) 
 mini_ker.texi(,2864) 
 mini_ker.texi(,2865) Cells:@*
@@ -2972,6 +3064,11 @@
 mini_ker.texi(,3326) 
 mini_ker.texi(,3327) The Singular value decomposition of a matrix is noted
 mini_ker.texi(,3328) 
+mini_ker.texi(,3329) @tex
+mini_ker.texi(,3330) $$
+mini_ker.texi(,3331)  U w V^\dagger
+mini_ker.texi(,3332) $$
+mini_ker.texi(,3333) @end tex
 mini_ker.texi(,3335) 
 mini_ker.texi(,3336) @noindent @math{U w V^t}
 mini_ker.texi(,3337) 

Index: test/manuals/res/texi_mini_ker/mini_ker.texi
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/manuals/res/texi_mini_ker/mini_ker.texi,v
retrieving revision 1.2
retrieving revision 1.3
diff -u -b -r1.2 -r1.3
--- test/manuals/res/texi_mini_ker/mini_ker.texi        2 Nov 2008 00:49:20 
-0000       1.2
+++ test/manuals/res/texi_mini_ker/mini_ker.texi        9 Jan 2009 21:20:48 
-0000       1.3
@@ -208,6 +208,9 @@
 @enumerate
 @item Cells which are elementary models and correspond to evolution equations
 such as:
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$
address@hidden tex
 
 @noindent @math{d eta(t)/d t = g(eta(t),phi(t))}
 
@@ -224,6 +227,11 @@
 
 
 @item Transfers which are determined by constraint equations such as:
address@hidden
+$$
+\varphi(t) = f(\eta(t),\varphi(t))
+$$
address@hidden tex
 
 @noindent @math{phi(t) = f(eta(t),phi(t))}
 
@@ -251,6 +259,12 @@
 
 
 
address@hidden
+$$\pmatrix{A & B\cr
+-C^+ & I-D\cr} \pmatrix{\delta \eta\cr
+\delta \varphi\cr} = \pmatrix{\Gamma\cr
+\Omega\cr}$$
address@hidden tex
 
 The blocks appearing in the Jacobian matrix are constructed with partial 
derivative
 of @math{f} and @math{g}, and with @math{\delta t}. From this system the
@@ -315,6 +329,11 @@
 @cindex TEF
 
 The general @acronym{TEF} system writes:
address@hidden
+$$\eqalign{\partial_t \eta (t) &= g(\eta(t),\varphi(t))\cr
+\varphi(t) &= f(\eta(t),\varphi(t))\cr
+}$$
address@hidden tex
 
 @noindent @math{d eta(t)/d t = g(eta(t),phi(t))@*
 phi(t) = f(eta(t),phi(t))}
@@ -324,6 +343,13 @@
 model of Lotka-Volterra is used.
 This model can be written in the following @acronym{TEF} form:
 
address@hidden
+$$\left\{\eqalign{\partial_t \eta _{prey} &=  a \eta _{prey} - a \varphi 
_{meet} \cr
+\partial_t \eta _{pred} &=  -c \eta _{pred} + c \varphi _{meet}\cr}\right.$$
address@hidden tex
address@hidden
+$$\varphi _{meet} = \eta _{prey}\eta _{pred}$$
address@hidden tex
 @noindent @math{d eta_prey(t)/d t = a * eta_prey - a * address@hidden
 d eta_pred(t)/d t = -c * eta_pred +c * phi_meet}
 
@@ -1036,15 +1062,31 @@
 The Jacobian matrix corresponding with:
 @c \varphi(t) &= f(\eta(t),\varphi(t))\cr
 @c \frac{\partial g(\eta(t),\varphi(t))}{\partial \eta(t)}
address@hidden
+$$\partial_{\eta} g(\eta(t),\varphi(t));
+$$
address@hidden tex
 g_1(eta,phi);
 @item Bb
 The Jacobian matrix corresponding with:
address@hidden
+$$\partial_{\varphi} g(\eta(t),\varphi(t));
+$$
address@hidden tex
 g_2(eta,phi);
 @item Bt
 The Jacobian matrix corresponding with:
address@hidden
+$$\partial_{\eta} f(\eta(t),\varphi(t));
+$$
address@hidden tex
 f_1(eta,phi);
 @item D
 The Jacobian matrix corresponding with:
address@hidden
+$$\partial_{\varphi} f(\eta(t),\varphi(t));
+$$
address@hidden tex
 f_2(eta,phi);
 
 @item aspha
@@ -1251,6 +1293,18 @@
 a chain of masselottes linked by springs and dumps is bounded to a wall on the 
left,
 and open at right. The @acronym{TEF} formulation of the problem is written in 
the phase space (position-shift, velocity)
 for node @math{k}, with bounding conditions:
address@hidden
+$$\left\{\eqalign{\partial_t \eta _{k} ^{pos}  &=  \eta _{k} ^{vel} \cr
+\partial_t \eta _{k} ^{vel}  &= ( \varphi_k ^{spr} -\varphi _{k+1} ^{spr} + 
\varphi _{k} ^{dmp}-\varphi _{k+1} ^{dmp})\,/m_k  \cr}\right.$$
+$$\left\{\eqalign{
+\varphi_k ^{spr} &= -k_k (\eta _{k} ^{pos}- \eta _{k-1} ^{pos})\cr
+\varphi_k ^{spr} &= -d_k (\eta _{k} ^{vel}- \eta _{k-1} ^{vel})
+\cr}\right.$$
+$$\left\{\eqalign{\eta ^{pos}_{0} &= 0\cr
+\eta ^{vel}_{0} &= 0\cr
+\varphi  ^{spr}_{N+1} &= 0\cr
+\varphi ^{dmp}_{N+1} &= 0\cr}\right.$$
address@hidden tex
 
 States:@*
 @noindent @math{d position(t,k)/d t = velocity(t,k)@* 
@@ -1624,6 +1678,10 @@
 Its derivative will have the following form:
 
 
address@hidden
+$$\eqalign{\partial_x f^g &= g f^{g-1}\partial_x f +  f^g \log f\partial_x g\cr
+ &= f^{g-1}(g\partial_x f + f\partial_x g)\cr}$$
address@hidden tex
 
 and is in the macros list already defined in: @file{DERIVE_MAC}.
 
@@ -1741,6 +1799,11 @@
 @c in this section ($\mu$ elsewhere,
 and the observation function is noted @math{h}:
 
address@hidden
+$$
+\omega = h ( \eta , \varphi) 
+$$
address@hidden tex
 
 @noindent @math{omega(t) = h(eta(t), phi(t))}
 
@@ -2313,6 +2376,11 @@
 
 The functionnal @math{J} to be optimised is defined as
 
address@hidden
+$$
+J = \psi[\eta(T),\varphi(T) ,h(T)] + \int_0 ^T 
{l[\eta(\tau),\varphi(\tau),h(\tau)]}\, d\tau
+$$
address@hidden tex
 @noindent @math{J = psi(eta(T),phi(T),h(T)) + int_0^T 
l(eta(tau),phi(tau),h(tau)) d tau}
 
 @cindex final cost
@@ -2494,6 +2562,13 @@
 stochastic perturbation on the state, and discrete noisy observations.
 In the @acronym{TEF} this leads to:
 
address@hidden
+$$\eqalign{
+\partial_t \eta (t) &=  g(\eta(t),\varphi(t)) + W(t) \mu\cr
+\varphi(t) &= f(\eta(t),\varphi(t))\cr
+\omega(t) &= h ( \eta(t) , \varphi(t)) + \nu\cr
+}$$
address@hidden tex
 
 @noindent @math{d eta(t)/d t = g(eta(t),phi(t)) + W(t) address@hidden
 phi(i) = f(eta(t),phi(t))@*
@@ -2516,6 +2591,23 @@
 transfers (equal to the states), but the error on the state is of dimension 
 2. The 3 states are observed. The corresponding equations read:
 
address@hidden
+$$\left\{\eqalign{
+\partial_t \eta_1 &= a_{11} \eta_1 + a_{12} \varphi_2 + a_{13} \varphi_3 + 
W_{11} \mu_1 + W_{12} \mu_2\cr
+\partial_t \eta_2 &= a_{21} \varphi_1 + a_{22} \eta_2 + a_{23} \varphi_3 + 
W_{21} \mu_1 + W_{22} \mu_2\cr
+\partial_t \eta_3 &= a_{31} \varphi_1 + a_{32} \varphi_2 + a_{33} \eta_3 + 
W_{31} \mu_1 + W_{32} \mu_2
+}\right.$$
+$$\left\{\eqalign{
+\varphi _1 &= \eta _1\cr
+\varphi _2 &= \eta _2\cr
+\varphi _3 &= \eta _3
+}\right.$$
+$$\left\{\eqalign{
+\omega _1 &= \varphi _1 + \nu_1\cr
+\omega _2 &= \eta _2 + \nu_2 \cr
+\omega _3 &= \eta _3 + \nu_3
+}\right.$$
address@hidden tex
 
 
 Cells:@*
@@ -2973,6 +3065,11 @@
 
 The Singular value decomposition of a matrix is noted
 
address@hidden
+$$
+ U w V^\dagger
+$$
address@hidden tex
 
 @noindent @math{U w V^t}
 

Index: test/manuals/res/texi_texinfo/texinfo.passfirst
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/manuals/res/texi_texinfo/texinfo.passfirst,v
retrieving revision 1.1
retrieving revision 1.2
diff -u -b -r1.1 -r1.2
--- test/manuals/res/texi_texinfo/texinfo.passfirst     18 Aug 2008 18:05:17 
-0000      1.1
+++ test/manuals/res/texi_texinfo/texinfo.passfirst     9 Jan 2009 21:20:48 
-0000       1.2
@@ -4058,6 +4058,9 @@
 texinfo.texi(,4127) 
 texinfo.texi(,4128) Here are the four groups of chapter structuring commands:
 texinfo.texi(,4129) 
+texinfo.texi(,4130) @tex
+texinfo.texi(,4131) {\globaldefs = 1 \smallfonts}
+texinfo.texi(,4132) @end tex
 texinfo.texi(,4133) 
 texinfo.texi(,4134) @multitable @columnfractions .19 .30 .29 .22
 texinfo.texi(,4135) @item                        @tab                          
    @tab                       @tab No new page
@@ -4069,6 +4072,9 @@
 texinfo.texi(,4141) @item @code{@@subsection}    @tab 
@code{@@unnumberedsubsec}    @tab @code{@@appendixsubsec} @tab 
@code{@@subheading}
 texinfo.texi(,4142) @item @code{@@subsubsection} @tab 
@code{@@unnumberedsubsubsec} @tab @code{@@appendixsubsubsec} @tab 
@code{@@subsubheading}
 texinfo.texi(,4143) @end multitable
+texinfo.texi(,4144) @tex
+texinfo.texi(,4145) {\globaldefs = 1 \textfonts}
+texinfo.texi(,4146) @end tex
 texinfo.texi(,4147) 
 texinfo.texi(,4148) 
 texinfo.texi(,4149) @node makeinfo top
@@ -7788,6 +7794,10 @@
 texinfo.texi(,7977) @example
 texinfo.texi(,7978) This is an example
 texinfo.texi(,7979) @end example
+texinfo.texi(,7980) @tex
+texinfo.texi(,7981) % Remove extra vskip; this is a kludge to counter the 
effect of display
+texinfo.texi(,7982) \vskip-3.5\baselineskip
+texinfo.texi(,7983) @end tex
 texinfo.texi(,7984) 
 texinfo.texi(,7985) @noindent
 texinfo.texi(,7986) This line is not indented.  As you can see, the
@@ -10477,6 +10487,9 @@
 texinfo.texi(,10873) @quotation
 texinfo.texi(,10874) @defspec foobar (@var{var} address@hidden @var{to} 
address@hidden) @address@hidden
 texinfo.texi(,10875) @end defspec
+texinfo.texi(,10876) @tex
+texinfo.texi(,10877) \vskip \parskip
+texinfo.texi(,10878) @end tex
 texinfo.texi(,10879) @end quotation
 texinfo.texi(,10880) 
 texinfo.texi(,10881) @noindent
@@ -11506,6 +11519,11 @@
 texinfo.texi(,11970) you are reading this in Info, you will not see the 
equation that appears
 texinfo.texi(,11971) in the printed manual.
 texinfo.texi(,11976) 
+texinfo.texi(,11977) @tex
+texinfo.texi(,11978) $$ \chi^2 = \sum_{i=1}^N
+texinfo.texi(,11979)           \left(y_i - (a + b x_i)
+texinfo.texi(,11980)           \over \sigma_i\right)^2 $$
+texinfo.texi(,11981) @end tex
 texinfo.texi(,11982) 
 texinfo.texi(,11983) @findex ifhtml
 texinfo.texi(,11984) @findex html

Index: test/manuals/res/texi_texinfo/texinfo.passtexi
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/manuals/res/texi_texinfo/texinfo.passtexi,v
retrieving revision 1.1
retrieving revision 1.2
diff -u -b -r1.1 -r1.2
--- test/manuals/res/texi_texinfo/texinfo.passtexi      18 Aug 2008 18:05:17 
-0000      1.1
+++ test/manuals/res/texi_texinfo/texinfo.passtexi      9 Jan 2009 21:20:49 
-0000       1.2
@@ -4105,6 +4105,9 @@
 texinfo.texi(,4127) 
 texinfo.texi(,4128) Here are the four groups of chapter structuring commands:
 texinfo.texi(,4129) 
+texinfo.texi(,4130) @tex
+texinfo.texi(,4131) {\globaldefs = 1 \smallfonts}
+texinfo.texi(,4132) @end tex
 texinfo.texi(,4133) 
 texinfo.texi(,4134) @multitable @columnfractions .19 .30 .29 .22
 texinfo.texi(,4135) @item                        @tab                          
    @tab                       @tab No new page
@@ -4116,6 +4119,9 @@
 texinfo.texi(,4141) @item @code{@@subsection}    @tab 
@code{@@unnumberedsubsec}    @tab @code{@@appendixsubsec} @tab 
@code{@@subheading}
 texinfo.texi(,4142) @item @code{@@subsubsection} @tab 
@code{@@unnumberedsubsubsec} @tab @code{@@appendixsubsubsec} @tab 
@code{@@subsubheading}
 texinfo.texi(,4143) @end multitable
+texinfo.texi(,4144) @tex
+texinfo.texi(,4145) {\globaldefs = 1 \textfonts}
+texinfo.texi(,4146) @end tex
 texinfo.texi(,4147) 
 texinfo.texi(,4148) 
 texinfo.texi(,4149) @node makeinfo top
@@ -7835,6 +7841,10 @@
 texinfo.texi(,7977) @example
 texinfo.texi(,7978) This is an example
 texinfo.texi(,7979) @end example
+texinfo.texi(,7980) @tex
+texinfo.texi(,7981) % Remove extra vskip; this is a kludge to counter the 
effect of display
+texinfo.texi(,7982) \vskip-3.5\baselineskip
+texinfo.texi(,7983) @end tex
 texinfo.texi(,7984) 
 texinfo.texi(,7985) @noindent
 texinfo.texi(,7986) This line is not indented.  As you can see, the
@@ -10524,6 +10534,9 @@
 texinfo.texi(,10873) @quotation
 texinfo.texi(,10874) @defspec foobar (@var{var} address@hidden @var{to} 
address@hidden) @address@hidden
 texinfo.texi(,10875) @end defspec
+texinfo.texi(,10876) @tex
+texinfo.texi(,10877) \vskip \parskip
+texinfo.texi(,10878) @end tex
 texinfo.texi(,10879) @end quotation
 texinfo.texi(,10880) 
 texinfo.texi(,10881) @noindent
@@ -11553,6 +11566,11 @@
 texinfo.texi(,11970) you are reading this in Info, you will not see the 
equation that appears
 texinfo.texi(,11971) in the printed manual.
 texinfo.texi(,11976) 
+texinfo.texi(,11977) @tex
+texinfo.texi(,11978) $$ \chi^2 = \sum_{i=1}^N
+texinfo.texi(,11979)           \left(y_i - (a + b x_i)
+texinfo.texi(,11980)           \over \sigma_i\right)^2 $$
+texinfo.texi(,11981) @end tex
 texinfo.texi(,11982) 
 texinfo.texi(,11983) @findex ifhtml
 texinfo.texi(,11984) @findex html

Index: test/manuals/res/texi_texinfo/texinfo.texi
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/manuals/res/texi_texinfo/texinfo.texi,v
retrieving revision 1.1
retrieving revision 1.2
diff -u -b -r1.1 -r1.2
--- test/manuals/res/texi_texinfo/texinfo.texi  18 Aug 2008 18:05:17 -0000      
1.1
+++ test/manuals/res/texi_texinfo/texinfo.texi  9 Jan 2009 21:20:50 -0000       
1.2
@@ -4106,6 +4106,9 @@
 
 Here are the four groups of chapter structuring commands:
 
address@hidden
+{\globaldefs = 1 \smallfonts}
address@hidden tex
 
 @multitable @columnfractions .19 .30 .29 .22
 @item                        @tab                              @tab            
           @tab No new page
@@ -4117,6 +4120,9 @@
 @item @code{@@subsection}    @tab @code{@@unnumberedsubsec}    @tab 
@code{@@appendixsubsec} @tab @code{@@subheading}
 @item @code{@@subsubsection} @tab @code{@@unnumberedsubsubsec} @tab 
@code{@@appendixsubsubsec} @tab @code{@@subsubheading}
 @end multitable
address@hidden
+{\globaldefs = 1 \textfonts}
address@hidden tex
 
 
 @node makeinfo top
@@ -7836,6 +7842,10 @@
 @example
 This is an example
 @end example
address@hidden
+% Remove extra vskip; this is a kludge to counter the effect of display
+\vskip-3.5\baselineskip
address@hidden tex
 
 @noindent
 This line is not indented.  As you can see, the
@@ -10525,6 +10535,9 @@
 @quotation
 @defspec foobar (@var{var} address@hidden @var{to} address@hidden) 
@address@hidden
 @end defspec
address@hidden
+\vskip \parskip
address@hidden tex
 @end quotation
 
 @noindent
@@ -11554,6 +11567,11 @@
 you are reading this in Info, you will not see the equation that appears
 in the printed manual.
 
address@hidden
+$$ \chi^2 = \sum_{i=1}^N
+          \left(y_i - (a + b x_i)
+          \over \sigma_i\right)^2 $$
address@hidden tex
 
 @findex ifhtml
 @findex html

Index: test/misc/res/formatting_html32/formatting.html
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/misc/res/formatting_html32/formatting.html,v
retrieving revision 1.17
retrieving revision 1.18
diff -u -b -r1.17 -r1.18
--- test/misc/res/formatting_html32/formatting.html     8 Jan 2009 00:21:41 
-0000       1.17
+++ test/misc/res/formatting_html32/formatting.html     9 Jan 2009 21:20:51 
-0000       1.18
@@ -534,12 +534,10 @@
 in verbatim ''
 
 
-
 html ''
 
 
 
-
  majorheading
 
  chapheading
@@ -1259,7 +1257,6 @@
 html ''
 
 
-
 <a name="t_h-copying_majorheading"></a>
 <h1> majorheading </h1>
 
@@ -1950,7 +1947,6 @@
 html ''
 
 
-
 <a name="majorheading"></a>
 <h1> majorheading </h1>
 
@@ -2644,7 +2640,6 @@
 html ''
 
 
-
 <a name="majorheading-1"></a>
 <h1> majorheading </h1>
 

Index: test/nested_formats/res/texi_nested_formats/nested_formats.passfirst
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/nested_formats/res/texi_nested_formats/nested_formats.passfirst,v
retrieving revision 1.1
retrieving revision 1.2
diff -u -b -r1.1 -r1.2
--- test/nested_formats/res/texi_nested_formats/nested_formats.passfirst        
18 Aug 2008 18:06:05 -0000      1.1
+++ test/nested_formats/res/texi_nested_formats/nested_formats.passfirst        
9 Jan 2009 21:20:52 -0000       1.2
@@ -70,11 +70,17 @@
 nested_formats.texi(mymacro,233) in verbatim
 nested_formats.texi(mymacro,233) @end verbatim
 nested_formats.texi(mymacro,233) 
+nested_formats.texi(mymacro,233) @xml
+nested_formats.texi(mymacro,233) <para> xml para </xml>
+nested_formats.texi(mymacro,233) @end xml
 nested_formats.texi(mymacro,233) 
 nested_formats.texi(mymacro,233) @html
 nested_formats.texi(mymacro,233) html
 nested_formats.texi(mymacro,233) @end html
 nested_formats.texi(mymacro,233) 
+nested_formats.texi(mymacro,233) @tex
+nested_formats.texi(mymacro,233) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,233) @end tex
 nested_formats.texi(mymacro,233) 
 nested_formats.texi(mymacro,233) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,233) @item i--tem 1
@@ -225,11 +231,17 @@
 nested_formats.texi(mymacro,237) in verbatim
 nested_formats.texi(mymacro,237) @end verbatim
 nested_formats.texi(mymacro,237) 
+nested_formats.texi(mymacro,237) @xml
+nested_formats.texi(mymacro,237) <para> xml para </xml>
+nested_formats.texi(mymacro,237) @end xml
 nested_formats.texi(mymacro,237) 
 nested_formats.texi(mymacro,237) @html
 nested_formats.texi(mymacro,237) html
 nested_formats.texi(mymacro,237) @end html
 nested_formats.texi(mymacro,237) 
+nested_formats.texi(mymacro,237) @tex
+nested_formats.texi(mymacro,237) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,237) @end tex
 nested_formats.texi(mymacro,237) 
 nested_formats.texi(mymacro,237) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,237) @item i--tem 1
@@ -381,11 +393,17 @@
 nested_formats.texi(mymacro,242) in verbatim
 nested_formats.texi(mymacro,242) @end verbatim
 nested_formats.texi(mymacro,242) 
+nested_formats.texi(mymacro,242) @xml
+nested_formats.texi(mymacro,242) <para> xml para </xml>
+nested_formats.texi(mymacro,242) @end xml
 nested_formats.texi(mymacro,242) 
 nested_formats.texi(mymacro,242) @html
 nested_formats.texi(mymacro,242) html
 nested_formats.texi(mymacro,242) @end html
 nested_formats.texi(mymacro,242) 
+nested_formats.texi(mymacro,242) @tex
+nested_formats.texi(mymacro,242) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,242) @end tex
 nested_formats.texi(mymacro,242) 
 nested_formats.texi(mymacro,242) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,242) @item i--tem 1
@@ -535,11 +553,17 @@
 nested_formats.texi(mymacro,245) in verbatim
 nested_formats.texi(mymacro,245) @end verbatim
 nested_formats.texi(mymacro,245) 
+nested_formats.texi(mymacro,245) @xml
+nested_formats.texi(mymacro,245) <para> xml para </xml>
+nested_formats.texi(mymacro,245) @end xml
 nested_formats.texi(mymacro,245) 
 nested_formats.texi(mymacro,245) @html
 nested_formats.texi(mymacro,245) html
 nested_formats.texi(mymacro,245) @end html
 nested_formats.texi(mymacro,245) 
+nested_formats.texi(mymacro,245) @tex
+nested_formats.texi(mymacro,245) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,245) @end tex
 nested_formats.texi(mymacro,245) 
 nested_formats.texi(mymacro,245) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,245) @item i--tem 1
@@ -690,11 +714,17 @@
 nested_formats.texi(mymacro,249) in verbatim
 nested_formats.texi(mymacro,249) @end verbatim
 nested_formats.texi(mymacro,249) 
+nested_formats.texi(mymacro,249) @xml
+nested_formats.texi(mymacro,249) <para> xml para </xml>
+nested_formats.texi(mymacro,249) @end xml
 nested_formats.texi(mymacro,249) 
 nested_formats.texi(mymacro,249) @html
 nested_formats.texi(mymacro,249) html
 nested_formats.texi(mymacro,249) @end html
 nested_formats.texi(mymacro,249) 
+nested_formats.texi(mymacro,249) @tex
+nested_formats.texi(mymacro,249) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,249) @end tex
 nested_formats.texi(mymacro,249) 
 nested_formats.texi(mymacro,249) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,249) @item i--tem 1
@@ -847,11 +877,17 @@
 nested_formats.texi(mymacro,255) in verbatim
 nested_formats.texi(mymacro,255) @end verbatim
 nested_formats.texi(mymacro,255) 
+nested_formats.texi(mymacro,255) @xml
+nested_formats.texi(mymacro,255) <para> xml para </xml>
+nested_formats.texi(mymacro,255) @end xml
 nested_formats.texi(mymacro,255) 
 nested_formats.texi(mymacro,255) @html
 nested_formats.texi(mymacro,255) html
 nested_formats.texi(mymacro,255) @end html
 nested_formats.texi(mymacro,255) 
+nested_formats.texi(mymacro,255) @tex
+nested_formats.texi(mymacro,255) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,255) @end tex
 nested_formats.texi(mymacro,255) 
 nested_formats.texi(mymacro,255) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,255) @item i--tem 1
@@ -1001,11 +1037,17 @@
 nested_formats.texi(mymacro,258) in verbatim
 nested_formats.texi(mymacro,258) @end verbatim
 nested_formats.texi(mymacro,258) 
+nested_formats.texi(mymacro,258) @xml
+nested_formats.texi(mymacro,258) <para> xml para </xml>
+nested_formats.texi(mymacro,258) @end xml
 nested_formats.texi(mymacro,258) 
 nested_formats.texi(mymacro,258) @html
 nested_formats.texi(mymacro,258) html
 nested_formats.texi(mymacro,258) @end html
 nested_formats.texi(mymacro,258) 
+nested_formats.texi(mymacro,258) @tex
+nested_formats.texi(mymacro,258) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,258) @end tex
 nested_formats.texi(mymacro,258) 
 nested_formats.texi(mymacro,258) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,258) @item i--tem 1
@@ -1156,11 +1198,17 @@
 nested_formats.texi(mymacro,262) in verbatim
 nested_formats.texi(mymacro,262) @end verbatim
 nested_formats.texi(mymacro,262) 
+nested_formats.texi(mymacro,262) @xml
+nested_formats.texi(mymacro,262) <para> xml para </xml>
+nested_formats.texi(mymacro,262) @end xml
 nested_formats.texi(mymacro,262) 
 nested_formats.texi(mymacro,262) @html
 nested_formats.texi(mymacro,262) html
 nested_formats.texi(mymacro,262) @end html
 nested_formats.texi(mymacro,262) 
+nested_formats.texi(mymacro,262) @tex
+nested_formats.texi(mymacro,262) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,262) @end tex
 nested_formats.texi(mymacro,262) 
 nested_formats.texi(mymacro,262) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,262) @item i--tem 1
@@ -1315,11 +1363,17 @@
 nested_formats.texi(mymacro,270) in verbatim
 nested_formats.texi(mymacro,270) @end verbatim
 nested_formats.texi(mymacro,270) 
+nested_formats.texi(mymacro,270) @xml
+nested_formats.texi(mymacro,270) <para> xml para </xml>
+nested_formats.texi(mymacro,270) @end xml
 nested_formats.texi(mymacro,270) 
 nested_formats.texi(mymacro,270) @html
 nested_formats.texi(mymacro,270) html
 nested_formats.texi(mymacro,270) @end html
 nested_formats.texi(mymacro,270) 
+nested_formats.texi(mymacro,270) @tex
+nested_formats.texi(mymacro,270) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,270) @end tex
 nested_formats.texi(mymacro,270) 
 nested_formats.texi(mymacro,270) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,270) @item i--tem 1
@@ -1469,11 +1523,17 @@
 nested_formats.texi(mymacro,273) in verbatim
 nested_formats.texi(mymacro,273) @end verbatim
 nested_formats.texi(mymacro,273) 
+nested_formats.texi(mymacro,273) @xml
+nested_formats.texi(mymacro,273) <para> xml para </xml>
+nested_formats.texi(mymacro,273) @end xml
 nested_formats.texi(mymacro,273) 
 nested_formats.texi(mymacro,273) @html
 nested_formats.texi(mymacro,273) html
 nested_formats.texi(mymacro,273) @end html
 nested_formats.texi(mymacro,273) 
+nested_formats.texi(mymacro,273) @tex
+nested_formats.texi(mymacro,273) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,273) @end tex
 nested_formats.texi(mymacro,273) 
 nested_formats.texi(mymacro,273) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,273) @item i--tem 1
@@ -1624,11 +1684,17 @@
 nested_formats.texi(mymacro,277) in verbatim
 nested_formats.texi(mymacro,277) @end verbatim
 nested_formats.texi(mymacro,277) 
+nested_formats.texi(mymacro,277) @xml
+nested_formats.texi(mymacro,277) <para> xml para </xml>
+nested_formats.texi(mymacro,277) @end xml
 nested_formats.texi(mymacro,277) 
 nested_formats.texi(mymacro,277) @html
 nested_formats.texi(mymacro,277) html
 nested_formats.texi(mymacro,277) @end html
 nested_formats.texi(mymacro,277) 
+nested_formats.texi(mymacro,277) @tex
+nested_formats.texi(mymacro,277) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,277) @end tex
 nested_formats.texi(mymacro,277) 
 nested_formats.texi(mymacro,277) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,277) @item i--tem 1
@@ -1781,11 +1847,17 @@
 nested_formats.texi(mymacro,283) in verbatim
 nested_formats.texi(mymacro,283) @end verbatim
 nested_formats.texi(mymacro,283) 
+nested_formats.texi(mymacro,283) @xml
+nested_formats.texi(mymacro,283) <para> xml para </xml>
+nested_formats.texi(mymacro,283) @end xml
 nested_formats.texi(mymacro,283) 
 nested_formats.texi(mymacro,283) @html
 nested_formats.texi(mymacro,283) html
 nested_formats.texi(mymacro,283) @end html
 nested_formats.texi(mymacro,283) 
+nested_formats.texi(mymacro,283) @tex
+nested_formats.texi(mymacro,283) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,283) @end tex
 nested_formats.texi(mymacro,283) 
 nested_formats.texi(mymacro,283) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,283) @item i--tem 1
@@ -1936,11 +2008,17 @@
 nested_formats.texi(mymacro,287) in verbatim
 nested_formats.texi(mymacro,287) @end verbatim
 nested_formats.texi(mymacro,287) 
+nested_formats.texi(mymacro,287) @xml
+nested_formats.texi(mymacro,287) <para> xml para </xml>
+nested_formats.texi(mymacro,287) @end xml
 nested_formats.texi(mymacro,287) 
 nested_formats.texi(mymacro,287) @html
 nested_formats.texi(mymacro,287) html
 nested_formats.texi(mymacro,287) @end html
 nested_formats.texi(mymacro,287) 
+nested_formats.texi(mymacro,287) @tex
+nested_formats.texi(mymacro,287) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,287) @end tex
 nested_formats.texi(mymacro,287) 
 nested_formats.texi(mymacro,287) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,287) @item i--tem 1
@@ -2092,11 +2170,17 @@
 nested_formats.texi(mymacro,292) in verbatim
 nested_formats.texi(mymacro,292) @end verbatim
 nested_formats.texi(mymacro,292) 
+nested_formats.texi(mymacro,292) @xml
+nested_formats.texi(mymacro,292) <para> xml para </xml>
+nested_formats.texi(mymacro,292) @end xml
 nested_formats.texi(mymacro,292) 
 nested_formats.texi(mymacro,292) @html
 nested_formats.texi(mymacro,292) html
 nested_formats.texi(mymacro,292) @end html
 nested_formats.texi(mymacro,292) 
+nested_formats.texi(mymacro,292) @tex
+nested_formats.texi(mymacro,292) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,292) @end tex
 nested_formats.texi(mymacro,292) 
 nested_formats.texi(mymacro,292) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,292) @item i--tem 1
@@ -2254,11 +2338,17 @@
 nested_formats.texi(mymacro,303) in verbatim
 nested_formats.texi(mymacro,303) @end verbatim
 nested_formats.texi(mymacro,303) 
+nested_formats.texi(mymacro,303) @xml
+nested_formats.texi(mymacro,303) <para> xml para </xml>
+nested_formats.texi(mymacro,303) @end xml
 nested_formats.texi(mymacro,303) 
 nested_formats.texi(mymacro,303) @html
 nested_formats.texi(mymacro,303) html
 nested_formats.texi(mymacro,303) @end html
 nested_formats.texi(mymacro,303) 
+nested_formats.texi(mymacro,303) @tex
+nested_formats.texi(mymacro,303) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,303) @end tex
 nested_formats.texi(mymacro,303) 
 nested_formats.texi(mymacro,303) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,303) @item i--tem 1
@@ -2409,11 +2499,17 @@
 nested_formats.texi(mymacro,307) in verbatim
 nested_formats.texi(mymacro,307) @end verbatim
 nested_formats.texi(mymacro,307) 
+nested_formats.texi(mymacro,307) @xml
+nested_formats.texi(mymacro,307) <para> xml para </xml>
+nested_formats.texi(mymacro,307) @end xml
 nested_formats.texi(mymacro,307) 
 nested_formats.texi(mymacro,307) @html
 nested_formats.texi(mymacro,307) html
 nested_formats.texi(mymacro,307) @end html
 nested_formats.texi(mymacro,307) 
+nested_formats.texi(mymacro,307) @tex
+nested_formats.texi(mymacro,307) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,307) @end tex
 nested_formats.texi(mymacro,307) 
 nested_formats.texi(mymacro,307) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,307) @item i--tem 1
@@ -2566,11 +2662,17 @@
 nested_formats.texi(mymacro,313) in verbatim
 nested_formats.texi(mymacro,313) @end verbatim
 nested_formats.texi(mymacro,313) 
+nested_formats.texi(mymacro,313) @xml
+nested_formats.texi(mymacro,313) <para> xml para </xml>
+nested_formats.texi(mymacro,313) @end xml
 nested_formats.texi(mymacro,313) 
 nested_formats.texi(mymacro,313) @html
 nested_formats.texi(mymacro,313) html
 nested_formats.texi(mymacro,313) @end html
 nested_formats.texi(mymacro,313) 
+nested_formats.texi(mymacro,313) @tex
+nested_formats.texi(mymacro,313) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,313) @end tex
 nested_formats.texi(mymacro,313) 
 nested_formats.texi(mymacro,313) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,313) @item i--tem 1
@@ -2723,11 +2825,17 @@
 nested_formats.texi(mymacro,319) in verbatim
 nested_formats.texi(mymacro,319) @end verbatim
 nested_formats.texi(mymacro,319) 
+nested_formats.texi(mymacro,319) @xml
+nested_formats.texi(mymacro,319) <para> xml para </xml>
+nested_formats.texi(mymacro,319) @end xml
 nested_formats.texi(mymacro,319) 
 nested_formats.texi(mymacro,319) @html
 nested_formats.texi(mymacro,319) html
 nested_formats.texi(mymacro,319) @end html
 nested_formats.texi(mymacro,319) 
+nested_formats.texi(mymacro,319) @tex
+nested_formats.texi(mymacro,319) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,319) @end tex
 nested_formats.texi(mymacro,319) 
 nested_formats.texi(mymacro,319) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,319) @item i--tem 1
@@ -2877,11 +2985,17 @@
 nested_formats.texi(mymacro,322) in verbatim
 nested_formats.texi(mymacro,322) @end verbatim
 nested_formats.texi(mymacro,322) 
+nested_formats.texi(mymacro,322) @xml
+nested_formats.texi(mymacro,322) <para> xml para </xml>
+nested_formats.texi(mymacro,322) @end xml
 nested_formats.texi(mymacro,322) 
 nested_formats.texi(mymacro,322) @html
 nested_formats.texi(mymacro,322) html
 nested_formats.texi(mymacro,322) @end html
 nested_formats.texi(mymacro,322) 
+nested_formats.texi(mymacro,322) @tex
+nested_formats.texi(mymacro,322) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,322) @end tex
 nested_formats.texi(mymacro,322) 
 nested_formats.texi(mymacro,322) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,322) @item i--tem 1
@@ -3032,11 +3146,17 @@
 nested_formats.texi(mymacro,326) in verbatim
 nested_formats.texi(mymacro,326) @end verbatim
 nested_formats.texi(mymacro,326) 
+nested_formats.texi(mymacro,326) @xml
+nested_formats.texi(mymacro,326) <para> xml para </xml>
+nested_formats.texi(mymacro,326) @end xml
 nested_formats.texi(mymacro,326) 
 nested_formats.texi(mymacro,326) @html
 nested_formats.texi(mymacro,326) html
 nested_formats.texi(mymacro,326) @end html
 nested_formats.texi(mymacro,326) 
+nested_formats.texi(mymacro,326) @tex
+nested_formats.texi(mymacro,326) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,326) @end tex
 nested_formats.texi(mymacro,326) 
 nested_formats.texi(mymacro,326) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,326) @item i--tem 1
@@ -3189,11 +3309,17 @@
 nested_formats.texi(mymacro,332) in verbatim
 nested_formats.texi(mymacro,332) @end verbatim
 nested_formats.texi(mymacro,332) 
+nested_formats.texi(mymacro,332) @xml
+nested_formats.texi(mymacro,332) <para> xml para </xml>
+nested_formats.texi(mymacro,332) @end xml
 nested_formats.texi(mymacro,332) 
 nested_formats.texi(mymacro,332) @html
 nested_formats.texi(mymacro,332) html
 nested_formats.texi(mymacro,332) @end html
 nested_formats.texi(mymacro,332) 
+nested_formats.texi(mymacro,332) @tex
+nested_formats.texi(mymacro,332) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,332) @end tex
 nested_formats.texi(mymacro,332) 
 nested_formats.texi(mymacro,332) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,332) @item i--tem 1
@@ -3343,11 +3469,17 @@
 nested_formats.texi(mymacro,335) in verbatim
 nested_formats.texi(mymacro,335) @end verbatim
 nested_formats.texi(mymacro,335) 
+nested_formats.texi(mymacro,335) @xml
+nested_formats.texi(mymacro,335) <para> xml para </xml>
+nested_formats.texi(mymacro,335) @end xml
 nested_formats.texi(mymacro,335) 
 nested_formats.texi(mymacro,335) @html
 nested_formats.texi(mymacro,335) html
 nested_formats.texi(mymacro,335) @end html
 nested_formats.texi(mymacro,335) 
+nested_formats.texi(mymacro,335) @tex
+nested_formats.texi(mymacro,335) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,335) @end tex
 nested_formats.texi(mymacro,335) 
 nested_formats.texi(mymacro,335) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,335) @item i--tem 1
@@ -3497,11 +3629,17 @@
 nested_formats.texi(mymacro,338) in verbatim
 nested_formats.texi(mymacro,338) @end verbatim
 nested_formats.texi(mymacro,338) 
+nested_formats.texi(mymacro,338) @xml
+nested_formats.texi(mymacro,338) <para> xml para </xml>
+nested_formats.texi(mymacro,338) @end xml
 nested_formats.texi(mymacro,338) 
 nested_formats.texi(mymacro,338) @html
 nested_formats.texi(mymacro,338) html
 nested_formats.texi(mymacro,338) @end html
 nested_formats.texi(mymacro,338) 
+nested_formats.texi(mymacro,338) @tex
+nested_formats.texi(mymacro,338) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,338) @end tex
 nested_formats.texi(mymacro,338) 
 nested_formats.texi(mymacro,338) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,338) @item i--tem 1
@@ -3654,11 +3792,17 @@
 nested_formats.texi(mymacro,344) in verbatim
 nested_formats.texi(mymacro,344) @end verbatim
 nested_formats.texi(mymacro,344) 
+nested_formats.texi(mymacro,344) @xml
+nested_formats.texi(mymacro,344) <para> xml para </xml>
+nested_formats.texi(mymacro,344) @end xml
 nested_formats.texi(mymacro,344) 
 nested_formats.texi(mymacro,344) @html
 nested_formats.texi(mymacro,344) html
 nested_formats.texi(mymacro,344) @end html
 nested_formats.texi(mymacro,344) 
+nested_formats.texi(mymacro,344) @tex
+nested_formats.texi(mymacro,344) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,344) @end tex
 nested_formats.texi(mymacro,344) 
 nested_formats.texi(mymacro,344) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,344) @item i--tem 1
@@ -3809,11 +3953,17 @@
 nested_formats.texi(mymacro,348) in verbatim
 nested_formats.texi(mymacro,348) @end verbatim
 nested_formats.texi(mymacro,348) 
+nested_formats.texi(mymacro,348) @xml
+nested_formats.texi(mymacro,348) <para> xml para </xml>
+nested_formats.texi(mymacro,348) @end xml
 nested_formats.texi(mymacro,348) 
 nested_formats.texi(mymacro,348) @html
 nested_formats.texi(mymacro,348) html
 nested_formats.texi(mymacro,348) @end html
 nested_formats.texi(mymacro,348) 
+nested_formats.texi(mymacro,348) @tex
+nested_formats.texi(mymacro,348) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,348) @end tex
 nested_formats.texi(mymacro,348) 
 nested_formats.texi(mymacro,348) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,348) @item i--tem 1
@@ -3965,11 +4115,17 @@
 nested_formats.texi(mymacro,353) in verbatim
 nested_formats.texi(mymacro,353) @end verbatim
 nested_formats.texi(mymacro,353) 
+nested_formats.texi(mymacro,353) @xml
+nested_formats.texi(mymacro,353) <para> xml para </xml>
+nested_formats.texi(mymacro,353) @end xml
 nested_formats.texi(mymacro,353) 
 nested_formats.texi(mymacro,353) @html
 nested_formats.texi(mymacro,353) html
 nested_formats.texi(mymacro,353) @end html
 nested_formats.texi(mymacro,353) 
+nested_formats.texi(mymacro,353) @tex
+nested_formats.texi(mymacro,353) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,353) @end tex
 nested_formats.texi(mymacro,353) 
 nested_formats.texi(mymacro,353) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,353) @item i--tem 1
@@ -4119,11 +4275,17 @@
 nested_formats.texi(mymacro,356) in verbatim
 nested_formats.texi(mymacro,356) @end verbatim
 nested_formats.texi(mymacro,356) 
+nested_formats.texi(mymacro,356) @xml
+nested_formats.texi(mymacro,356) <para> xml para </xml>
+nested_formats.texi(mymacro,356) @end xml
 nested_formats.texi(mymacro,356) 
 nested_formats.texi(mymacro,356) @html
 nested_formats.texi(mymacro,356) html
 nested_formats.texi(mymacro,356) @end html
 nested_formats.texi(mymacro,356) 
+nested_formats.texi(mymacro,356) @tex
+nested_formats.texi(mymacro,356) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,356) @end tex
 nested_formats.texi(mymacro,356) 
 nested_formats.texi(mymacro,356) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,356) @item i--tem 1

Index: test/nested_formats/res/texi_nested_formats/nested_formats.passtexi
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/nested_formats/res/texi_nested_formats/nested_formats.passtexi,v
retrieving revision 1.1
retrieving revision 1.2
diff -u -b -r1.1 -r1.2
--- test/nested_formats/res/texi_nested_formats/nested_formats.passtexi 18 Aug 
2008 18:06:05 -0000      1.1
+++ test/nested_formats/res/texi_nested_formats/nested_formats.passtexi 9 Jan 
2009 21:20:54 -0000       1.2
@@ -70,11 +70,17 @@
 nested_formats.texi(mymacro,233) in verbatim
 nested_formats.texi(mymacro,233) @end verbatim
 nested_formats.texi(mymacro,233) 
+nested_formats.texi(mymacro,233) @xml
+nested_formats.texi(mymacro,233) <para> xml para </xml>
+nested_formats.texi(mymacro,233) @end xml
 nested_formats.texi(mymacro,233) 
 nested_formats.texi(mymacro,233) @html
 nested_formats.texi(mymacro,233) html
 nested_formats.texi(mymacro,233) @end html
 nested_formats.texi(mymacro,233) 
+nested_formats.texi(mymacro,233) @tex
+nested_formats.texi(mymacro,233) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,233) @end tex
 nested_formats.texi(mymacro,233) 
 nested_formats.texi(mymacro,233) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,233) @item i--tem 1
@@ -225,11 +231,17 @@
 nested_formats.texi(mymacro,237) in verbatim
 nested_formats.texi(mymacro,237) @end verbatim
 nested_formats.texi(mymacro,237) 
+nested_formats.texi(mymacro,237) @xml
+nested_formats.texi(mymacro,237) <para> xml para </xml>
+nested_formats.texi(mymacro,237) @end xml
 nested_formats.texi(mymacro,237) 
 nested_formats.texi(mymacro,237) @html
 nested_formats.texi(mymacro,237) html
 nested_formats.texi(mymacro,237) @end html
 nested_formats.texi(mymacro,237) 
+nested_formats.texi(mymacro,237) @tex
+nested_formats.texi(mymacro,237) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,237) @end tex
 nested_formats.texi(mymacro,237) 
 nested_formats.texi(mymacro,237) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,237) @item i--tem 1
@@ -381,11 +393,17 @@
 nested_formats.texi(mymacro,242) in verbatim
 nested_formats.texi(mymacro,242) @end verbatim
 nested_formats.texi(mymacro,242) 
+nested_formats.texi(mymacro,242) @xml
+nested_formats.texi(mymacro,242) <para> xml para </xml>
+nested_formats.texi(mymacro,242) @end xml
 nested_formats.texi(mymacro,242) 
 nested_formats.texi(mymacro,242) @html
 nested_formats.texi(mymacro,242) html
 nested_formats.texi(mymacro,242) @end html
 nested_formats.texi(mymacro,242) 
+nested_formats.texi(mymacro,242) @tex
+nested_formats.texi(mymacro,242) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,242) @end tex
 nested_formats.texi(mymacro,242) 
 nested_formats.texi(mymacro,242) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,242) @item i--tem 1
@@ -535,11 +553,17 @@
 nested_formats.texi(mymacro,245) in verbatim
 nested_formats.texi(mymacro,245) @end verbatim
 nested_formats.texi(mymacro,245) 
+nested_formats.texi(mymacro,245) @xml
+nested_formats.texi(mymacro,245) <para> xml para </xml>
+nested_formats.texi(mymacro,245) @end xml
 nested_formats.texi(mymacro,245) 
 nested_formats.texi(mymacro,245) @html
 nested_formats.texi(mymacro,245) html
 nested_formats.texi(mymacro,245) @end html
 nested_formats.texi(mymacro,245) 
+nested_formats.texi(mymacro,245) @tex
+nested_formats.texi(mymacro,245) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,245) @end tex
 nested_formats.texi(mymacro,245) 
 nested_formats.texi(mymacro,245) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,245) @item i--tem 1
@@ -690,11 +714,17 @@
 nested_formats.texi(mymacro,249) in verbatim
 nested_formats.texi(mymacro,249) @end verbatim
 nested_formats.texi(mymacro,249) 
+nested_formats.texi(mymacro,249) @xml
+nested_formats.texi(mymacro,249) <para> xml para </xml>
+nested_formats.texi(mymacro,249) @end xml
 nested_formats.texi(mymacro,249) 
 nested_formats.texi(mymacro,249) @html
 nested_formats.texi(mymacro,249) html
 nested_formats.texi(mymacro,249) @end html
 nested_formats.texi(mymacro,249) 
+nested_formats.texi(mymacro,249) @tex
+nested_formats.texi(mymacro,249) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,249) @end tex
 nested_formats.texi(mymacro,249) 
 nested_formats.texi(mymacro,249) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,249) @item i--tem 1
@@ -847,11 +877,17 @@
 nested_formats.texi(mymacro,255) in verbatim
 nested_formats.texi(mymacro,255) @end verbatim
 nested_formats.texi(mymacro,255) 
+nested_formats.texi(mymacro,255) @xml
+nested_formats.texi(mymacro,255) <para> xml para </xml>
+nested_formats.texi(mymacro,255) @end xml
 nested_formats.texi(mymacro,255) 
 nested_formats.texi(mymacro,255) @html
 nested_formats.texi(mymacro,255) html
 nested_formats.texi(mymacro,255) @end html
 nested_formats.texi(mymacro,255) 
+nested_formats.texi(mymacro,255) @tex
+nested_formats.texi(mymacro,255) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,255) @end tex
 nested_formats.texi(mymacro,255) 
 nested_formats.texi(mymacro,255) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,255) @item i--tem 1
@@ -1001,11 +1037,17 @@
 nested_formats.texi(mymacro,258) in verbatim
 nested_formats.texi(mymacro,258) @end verbatim
 nested_formats.texi(mymacro,258) 
+nested_formats.texi(mymacro,258) @xml
+nested_formats.texi(mymacro,258) <para> xml para </xml>
+nested_formats.texi(mymacro,258) @end xml
 nested_formats.texi(mymacro,258) 
 nested_formats.texi(mymacro,258) @html
 nested_formats.texi(mymacro,258) html
 nested_formats.texi(mymacro,258) @end html
 nested_formats.texi(mymacro,258) 
+nested_formats.texi(mymacro,258) @tex
+nested_formats.texi(mymacro,258) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,258) @end tex
 nested_formats.texi(mymacro,258) 
 nested_formats.texi(mymacro,258) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,258) @item i--tem 1
@@ -1156,11 +1198,17 @@
 nested_formats.texi(mymacro,262) in verbatim
 nested_formats.texi(mymacro,262) @end verbatim
 nested_formats.texi(mymacro,262) 
+nested_formats.texi(mymacro,262) @xml
+nested_formats.texi(mymacro,262) <para> xml para </xml>
+nested_formats.texi(mymacro,262) @end xml
 nested_formats.texi(mymacro,262) 
 nested_formats.texi(mymacro,262) @html
 nested_formats.texi(mymacro,262) html
 nested_formats.texi(mymacro,262) @end html
 nested_formats.texi(mymacro,262) 
+nested_formats.texi(mymacro,262) @tex
+nested_formats.texi(mymacro,262) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,262) @end tex
 nested_formats.texi(mymacro,262) 
 nested_formats.texi(mymacro,262) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,262) @item i--tem 1
@@ -1315,11 +1363,17 @@
 nested_formats.texi(mymacro,270) in verbatim
 nested_formats.texi(mymacro,270) @end verbatim
 nested_formats.texi(mymacro,270) 
+nested_formats.texi(mymacro,270) @xml
+nested_formats.texi(mymacro,270) <para> xml para </xml>
+nested_formats.texi(mymacro,270) @end xml
 nested_formats.texi(mymacro,270) 
 nested_formats.texi(mymacro,270) @html
 nested_formats.texi(mymacro,270) html
 nested_formats.texi(mymacro,270) @end html
 nested_formats.texi(mymacro,270) 
+nested_formats.texi(mymacro,270) @tex
+nested_formats.texi(mymacro,270) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,270) @end tex
 nested_formats.texi(mymacro,270) 
 nested_formats.texi(mymacro,270) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,270) @item i--tem 1
@@ -1469,11 +1523,17 @@
 nested_formats.texi(mymacro,273) in verbatim
 nested_formats.texi(mymacro,273) @end verbatim
 nested_formats.texi(mymacro,273) 
+nested_formats.texi(mymacro,273) @xml
+nested_formats.texi(mymacro,273) <para> xml para </xml>
+nested_formats.texi(mymacro,273) @end xml
 nested_formats.texi(mymacro,273) 
 nested_formats.texi(mymacro,273) @html
 nested_formats.texi(mymacro,273) html
 nested_formats.texi(mymacro,273) @end html
 nested_formats.texi(mymacro,273) 
+nested_formats.texi(mymacro,273) @tex
+nested_formats.texi(mymacro,273) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,273) @end tex
 nested_formats.texi(mymacro,273) 
 nested_formats.texi(mymacro,273) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,273) @item i--tem 1
@@ -1624,11 +1684,17 @@
 nested_formats.texi(mymacro,277) in verbatim
 nested_formats.texi(mymacro,277) @end verbatim
 nested_formats.texi(mymacro,277) 
+nested_formats.texi(mymacro,277) @xml
+nested_formats.texi(mymacro,277) <para> xml para </xml>
+nested_formats.texi(mymacro,277) @end xml
 nested_formats.texi(mymacro,277) 
 nested_formats.texi(mymacro,277) @html
 nested_formats.texi(mymacro,277) html
 nested_formats.texi(mymacro,277) @end html
 nested_formats.texi(mymacro,277) 
+nested_formats.texi(mymacro,277) @tex
+nested_formats.texi(mymacro,277) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,277) @end tex
 nested_formats.texi(mymacro,277) 
 nested_formats.texi(mymacro,277) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,277) @item i--tem 1
@@ -1781,11 +1847,17 @@
 nested_formats.texi(mymacro,283) in verbatim
 nested_formats.texi(mymacro,283) @end verbatim
 nested_formats.texi(mymacro,283) 
+nested_formats.texi(mymacro,283) @xml
+nested_formats.texi(mymacro,283) <para> xml para </xml>
+nested_formats.texi(mymacro,283) @end xml
 nested_formats.texi(mymacro,283) 
 nested_formats.texi(mymacro,283) @html
 nested_formats.texi(mymacro,283) html
 nested_formats.texi(mymacro,283) @end html
 nested_formats.texi(mymacro,283) 
+nested_formats.texi(mymacro,283) @tex
+nested_formats.texi(mymacro,283) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,283) @end tex
 nested_formats.texi(mymacro,283) 
 nested_formats.texi(mymacro,283) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,283) @item i--tem 1
@@ -1936,11 +2008,17 @@
 nested_formats.texi(mymacro,287) in verbatim
 nested_formats.texi(mymacro,287) @end verbatim
 nested_formats.texi(mymacro,287) 
+nested_formats.texi(mymacro,287) @xml
+nested_formats.texi(mymacro,287) <para> xml para </xml>
+nested_formats.texi(mymacro,287) @end xml
 nested_formats.texi(mymacro,287) 
 nested_formats.texi(mymacro,287) @html
 nested_formats.texi(mymacro,287) html
 nested_formats.texi(mymacro,287) @end html
 nested_formats.texi(mymacro,287) 
+nested_formats.texi(mymacro,287) @tex
+nested_formats.texi(mymacro,287) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,287) @end tex
 nested_formats.texi(mymacro,287) 
 nested_formats.texi(mymacro,287) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,287) @item i--tem 1
@@ -2092,11 +2170,17 @@
 nested_formats.texi(mymacro,292) in verbatim
 nested_formats.texi(mymacro,292) @end verbatim
 nested_formats.texi(mymacro,292) 
+nested_formats.texi(mymacro,292) @xml
+nested_formats.texi(mymacro,292) <para> xml para </xml>
+nested_formats.texi(mymacro,292) @end xml
 nested_formats.texi(mymacro,292) 
 nested_formats.texi(mymacro,292) @html
 nested_formats.texi(mymacro,292) html
 nested_formats.texi(mymacro,292) @end html
 nested_formats.texi(mymacro,292) 
+nested_formats.texi(mymacro,292) @tex
+nested_formats.texi(mymacro,292) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,292) @end tex
 nested_formats.texi(mymacro,292) 
 nested_formats.texi(mymacro,292) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,292) @item i--tem 1
@@ -2254,11 +2338,17 @@
 nested_formats.texi(mymacro,303) in verbatim
 nested_formats.texi(mymacro,303) @end verbatim
 nested_formats.texi(mymacro,303) 
+nested_formats.texi(mymacro,303) @xml
+nested_formats.texi(mymacro,303) <para> xml para </xml>
+nested_formats.texi(mymacro,303) @end xml
 nested_formats.texi(mymacro,303) 
 nested_formats.texi(mymacro,303) @html
 nested_formats.texi(mymacro,303) html
 nested_formats.texi(mymacro,303) @end html
 nested_formats.texi(mymacro,303) 
+nested_formats.texi(mymacro,303) @tex
+nested_formats.texi(mymacro,303) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,303) @end tex
 nested_formats.texi(mymacro,303) 
 nested_formats.texi(mymacro,303) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,303) @item i--tem 1
@@ -2409,11 +2499,17 @@
 nested_formats.texi(mymacro,307) in verbatim
 nested_formats.texi(mymacro,307) @end verbatim
 nested_formats.texi(mymacro,307) 
+nested_formats.texi(mymacro,307) @xml
+nested_formats.texi(mymacro,307) <para> xml para </xml>
+nested_formats.texi(mymacro,307) @end xml
 nested_formats.texi(mymacro,307) 
 nested_formats.texi(mymacro,307) @html
 nested_formats.texi(mymacro,307) html
 nested_formats.texi(mymacro,307) @end html
 nested_formats.texi(mymacro,307) 
+nested_formats.texi(mymacro,307) @tex
+nested_formats.texi(mymacro,307) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,307) @end tex
 nested_formats.texi(mymacro,307) 
 nested_formats.texi(mymacro,307) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,307) @item i--tem 1
@@ -2566,11 +2662,17 @@
 nested_formats.texi(mymacro,313) in verbatim
 nested_formats.texi(mymacro,313) @end verbatim
 nested_formats.texi(mymacro,313) 
+nested_formats.texi(mymacro,313) @xml
+nested_formats.texi(mymacro,313) <para> xml para </xml>
+nested_formats.texi(mymacro,313) @end xml
 nested_formats.texi(mymacro,313) 
 nested_formats.texi(mymacro,313) @html
 nested_formats.texi(mymacro,313) html
 nested_formats.texi(mymacro,313) @end html
 nested_formats.texi(mymacro,313) 
+nested_formats.texi(mymacro,313) @tex
+nested_formats.texi(mymacro,313) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,313) @end tex
 nested_formats.texi(mymacro,313) 
 nested_formats.texi(mymacro,313) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,313) @item i--tem 1
@@ -2723,11 +2825,17 @@
 nested_formats.texi(mymacro,319) in verbatim
 nested_formats.texi(mymacro,319) @end verbatim
 nested_formats.texi(mymacro,319) 
+nested_formats.texi(mymacro,319) @xml
+nested_formats.texi(mymacro,319) <para> xml para </xml>
+nested_formats.texi(mymacro,319) @end xml
 nested_formats.texi(mymacro,319) 
 nested_formats.texi(mymacro,319) @html
 nested_formats.texi(mymacro,319) html
 nested_formats.texi(mymacro,319) @end html
 nested_formats.texi(mymacro,319) 
+nested_formats.texi(mymacro,319) @tex
+nested_formats.texi(mymacro,319) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,319) @end tex
 nested_formats.texi(mymacro,319) 
 nested_formats.texi(mymacro,319) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,319) @item i--tem 1
@@ -2877,11 +2985,17 @@
 nested_formats.texi(mymacro,322) in verbatim
 nested_formats.texi(mymacro,322) @end verbatim
 nested_formats.texi(mymacro,322) 
+nested_formats.texi(mymacro,322) @xml
+nested_formats.texi(mymacro,322) <para> xml para </xml>
+nested_formats.texi(mymacro,322) @end xml
 nested_formats.texi(mymacro,322) 
 nested_formats.texi(mymacro,322) @html
 nested_formats.texi(mymacro,322) html
 nested_formats.texi(mymacro,322) @end html
 nested_formats.texi(mymacro,322) 
+nested_formats.texi(mymacro,322) @tex
+nested_formats.texi(mymacro,322) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,322) @end tex
 nested_formats.texi(mymacro,322) 
 nested_formats.texi(mymacro,322) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,322) @item i--tem 1
@@ -3032,11 +3146,17 @@
 nested_formats.texi(mymacro,326) in verbatim
 nested_formats.texi(mymacro,326) @end verbatim
 nested_formats.texi(mymacro,326) 
+nested_formats.texi(mymacro,326) @xml
+nested_formats.texi(mymacro,326) <para> xml para </xml>
+nested_formats.texi(mymacro,326) @end xml
 nested_formats.texi(mymacro,326) 
 nested_formats.texi(mymacro,326) @html
 nested_formats.texi(mymacro,326) html
 nested_formats.texi(mymacro,326) @end html
 nested_formats.texi(mymacro,326) 
+nested_formats.texi(mymacro,326) @tex
+nested_formats.texi(mymacro,326) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,326) @end tex
 nested_formats.texi(mymacro,326) 
 nested_formats.texi(mymacro,326) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,326) @item i--tem 1
@@ -3189,11 +3309,17 @@
 nested_formats.texi(mymacro,332) in verbatim
 nested_formats.texi(mymacro,332) @end verbatim
 nested_formats.texi(mymacro,332) 
+nested_formats.texi(mymacro,332) @xml
+nested_formats.texi(mymacro,332) <para> xml para </xml>
+nested_formats.texi(mymacro,332) @end xml
 nested_formats.texi(mymacro,332) 
 nested_formats.texi(mymacro,332) @html
 nested_formats.texi(mymacro,332) html
 nested_formats.texi(mymacro,332) @end html
 nested_formats.texi(mymacro,332) 
+nested_formats.texi(mymacro,332) @tex
+nested_formats.texi(mymacro,332) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,332) @end tex
 nested_formats.texi(mymacro,332) 
 nested_formats.texi(mymacro,332) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,332) @item i--tem 1
@@ -3343,11 +3469,17 @@
 nested_formats.texi(mymacro,335) in verbatim
 nested_formats.texi(mymacro,335) @end verbatim
 nested_formats.texi(mymacro,335) 
+nested_formats.texi(mymacro,335) @xml
+nested_formats.texi(mymacro,335) <para> xml para </xml>
+nested_formats.texi(mymacro,335) @end xml
 nested_formats.texi(mymacro,335) 
 nested_formats.texi(mymacro,335) @html
 nested_formats.texi(mymacro,335) html
 nested_formats.texi(mymacro,335) @end html
 nested_formats.texi(mymacro,335) 
+nested_formats.texi(mymacro,335) @tex
+nested_formats.texi(mymacro,335) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,335) @end tex
 nested_formats.texi(mymacro,335) 
 nested_formats.texi(mymacro,335) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,335) @item i--tem 1
@@ -3497,11 +3629,17 @@
 nested_formats.texi(mymacro,338) in verbatim
 nested_formats.texi(mymacro,338) @end verbatim
 nested_formats.texi(mymacro,338) 
+nested_formats.texi(mymacro,338) @xml
+nested_formats.texi(mymacro,338) <para> xml para </xml>
+nested_formats.texi(mymacro,338) @end xml
 nested_formats.texi(mymacro,338) 
 nested_formats.texi(mymacro,338) @html
 nested_formats.texi(mymacro,338) html
 nested_formats.texi(mymacro,338) @end html
 nested_formats.texi(mymacro,338) 
+nested_formats.texi(mymacro,338) @tex
+nested_formats.texi(mymacro,338) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,338) @end tex
 nested_formats.texi(mymacro,338) 
 nested_formats.texi(mymacro,338) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,338) @item i--tem 1
@@ -3654,11 +3792,17 @@
 nested_formats.texi(mymacro,344) in verbatim
 nested_formats.texi(mymacro,344) @end verbatim
 nested_formats.texi(mymacro,344) 
+nested_formats.texi(mymacro,344) @xml
+nested_formats.texi(mymacro,344) <para> xml para </xml>
+nested_formats.texi(mymacro,344) @end xml
 nested_formats.texi(mymacro,344) 
 nested_formats.texi(mymacro,344) @html
 nested_formats.texi(mymacro,344) html
 nested_formats.texi(mymacro,344) @end html
 nested_formats.texi(mymacro,344) 
+nested_formats.texi(mymacro,344) @tex
+nested_formats.texi(mymacro,344) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,344) @end tex
 nested_formats.texi(mymacro,344) 
 nested_formats.texi(mymacro,344) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,344) @item i--tem 1
@@ -3809,11 +3953,17 @@
 nested_formats.texi(mymacro,348) in verbatim
 nested_formats.texi(mymacro,348) @end verbatim
 nested_formats.texi(mymacro,348) 
+nested_formats.texi(mymacro,348) @xml
+nested_formats.texi(mymacro,348) <para> xml para </xml>
+nested_formats.texi(mymacro,348) @end xml
 nested_formats.texi(mymacro,348) 
 nested_formats.texi(mymacro,348) @html
 nested_formats.texi(mymacro,348) html
 nested_formats.texi(mymacro,348) @end html
 nested_formats.texi(mymacro,348) 
+nested_formats.texi(mymacro,348) @tex
+nested_formats.texi(mymacro,348) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,348) @end tex
 nested_formats.texi(mymacro,348) 
 nested_formats.texi(mymacro,348) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,348) @item i--tem 1
@@ -3965,11 +4115,17 @@
 nested_formats.texi(mymacro,353) in verbatim
 nested_formats.texi(mymacro,353) @end verbatim
 nested_formats.texi(mymacro,353) 
+nested_formats.texi(mymacro,353) @xml
+nested_formats.texi(mymacro,353) <para> xml para </xml>
+nested_formats.texi(mymacro,353) @end xml
 nested_formats.texi(mymacro,353) 
 nested_formats.texi(mymacro,353) @html
 nested_formats.texi(mymacro,353) html
 nested_formats.texi(mymacro,353) @end html
 nested_formats.texi(mymacro,353) 
+nested_formats.texi(mymacro,353) @tex
+nested_formats.texi(mymacro,353) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,353) @end tex
 nested_formats.texi(mymacro,353) 
 nested_formats.texi(mymacro,353) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,353) @item i--tem 1
@@ -4119,11 +4275,17 @@
 nested_formats.texi(mymacro,356) in verbatim
 nested_formats.texi(mymacro,356) @end verbatim
 nested_formats.texi(mymacro,356) 
+nested_formats.texi(mymacro,356) @xml
+nested_formats.texi(mymacro,356) <para> xml para </xml>
+nested_formats.texi(mymacro,356) @end xml
 nested_formats.texi(mymacro,356) 
 nested_formats.texi(mymacro,356) @html
 nested_formats.texi(mymacro,356) html
 nested_formats.texi(mymacro,356) @end html
 nested_formats.texi(mymacro,356) 
+nested_formats.texi(mymacro,356) @tex
+nested_formats.texi(mymacro,356) $$\partial_t \eta (t) = 
g(\eta(t),\varphi(t))$$
+nested_formats.texi(mymacro,356) @end tex
 nested_formats.texi(mymacro,356) 
 nested_formats.texi(mymacro,356) @itemize @bullet{} a--n itemize line
 nested_formats.texi(mymacro,356) @item i--tem 1

Index: test/nested_formats/res/texi_nested_formats/nested_formats.texi
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/nested_formats/res/texi_nested_formats/nested_formats.texi,v
retrieving revision 1.1
retrieving revision 1.2
diff -u -b -r1.1 -r1.2
--- test/nested_formats/res/texi_nested_formats/nested_formats.texi     18 Aug 
2008 18:06:05 -0000      1.1
+++ test/nested_formats/res/texi_nested_formats/nested_formats.texi     9 Jan 
2009 21:20:55 -0000       1.2
@@ -71,11 +71,17 @@
 in verbatim
 @end verbatim
 
address@hidden
+<para> xml para </xml>
address@hidden xml
 
 @html
 html
 @end html
 
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$
address@hidden tex
 
 @itemize @bullet{} a--n itemize line
 @item i--tem 1
@@ -226,11 +232,17 @@
 in verbatim
 @end verbatim
 
address@hidden
+<para> xml para </xml>
address@hidden xml
 
 @html
 html
 @end html
 
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$
address@hidden tex
 
 @itemize @bullet{} a--n itemize line
 @item i--tem 1
@@ -382,11 +394,17 @@
 in verbatim
 @end verbatim
 
address@hidden
+<para> xml para </xml>
address@hidden xml
 
 @html
 html
 @end html
 
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$
address@hidden tex
 
 @itemize @bullet{} a--n itemize line
 @item i--tem 1
@@ -536,11 +554,17 @@
 in verbatim
 @end verbatim
 
address@hidden
+<para> xml para </xml>
address@hidden xml
 
 @html
 html
 @end html
 
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$
address@hidden tex
 
 @itemize @bullet{} a--n itemize line
 @item i--tem 1
@@ -691,11 +715,17 @@
 in verbatim
 @end verbatim
 
address@hidden
+<para> xml para </xml>
address@hidden xml
 
 @html
 html
 @end html
 
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$
address@hidden tex
 
 @itemize @bullet{} a--n itemize line
 @item i--tem 1
@@ -848,11 +878,17 @@
 in verbatim
 @end verbatim
 
address@hidden
+<para> xml para </xml>
address@hidden xml
 
 @html
 html
 @end html
 
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$
address@hidden tex
 
 @itemize @bullet{} a--n itemize line
 @item i--tem 1
@@ -1002,11 +1038,17 @@
 in verbatim
 @end verbatim
 
address@hidden
+<para> xml para </xml>
address@hidden xml
 
 @html
 html
 @end html
 
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$
address@hidden tex
 
 @itemize @bullet{} a--n itemize line
 @item i--tem 1
@@ -1157,11 +1199,17 @@
 in verbatim
 @end verbatim
 
address@hidden
+<para> xml para </xml>
address@hidden xml
 
 @html
 html
 @end html
 
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$
address@hidden tex
 
 @itemize @bullet{} a--n itemize line
 @item i--tem 1
@@ -1316,11 +1364,17 @@
 in verbatim
 @end verbatim
 
address@hidden
+<para> xml para </xml>
address@hidden xml
 
 @html
 html
 @end html
 
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$
address@hidden tex
 
 @itemize @bullet{} a--n itemize line
 @item i--tem 1
@@ -1470,11 +1524,17 @@
 in verbatim
 @end verbatim
 
address@hidden
+<para> xml para </xml>
address@hidden xml
 
 @html
 html
 @end html
 
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$
address@hidden tex
 
 @itemize @bullet{} a--n itemize line
 @item i--tem 1
@@ -1625,11 +1685,17 @@
 in verbatim
 @end verbatim
 
address@hidden
+<para> xml para </xml>
address@hidden xml
 
 @html
 html
 @end html
 
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$
address@hidden tex
 
 @itemize @bullet{} a--n itemize line
 @item i--tem 1
@@ -1782,11 +1848,17 @@
 in verbatim
 @end verbatim
 
address@hidden
+<para> xml para </xml>
address@hidden xml
 
 @html
 html
 @end html
 
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$
address@hidden tex
 
 @itemize @bullet{} a--n itemize line
 @item i--tem 1
@@ -1937,11 +2009,17 @@
 in verbatim
 @end verbatim
 
address@hidden
+<para> xml para </xml>
address@hidden xml
 
 @html
 html
 @end html
 
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$
address@hidden tex
 
 @itemize @bullet{} a--n itemize line
 @item i--tem 1
@@ -2093,11 +2171,17 @@
 in verbatim
 @end verbatim
 
address@hidden
+<para> xml para </xml>
address@hidden xml
 
 @html
 html
 @end html
 
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$
address@hidden tex
 
 @itemize @bullet{} a--n itemize line
 @item i--tem 1
@@ -2255,11 +2339,17 @@
 in verbatim
 @end verbatim
 
address@hidden
+<para> xml para </xml>
address@hidden xml
 
 @html
 html
 @end html
 
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$
address@hidden tex
 
 @itemize @bullet{} a--n itemize line
 @item i--tem 1
@@ -2410,11 +2500,17 @@
 in verbatim
 @end verbatim
 
address@hidden
+<para> xml para </xml>
address@hidden xml
 
 @html
 html
 @end html
 
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$
address@hidden tex
 
 @itemize @bullet{} a--n itemize line
 @item i--tem 1
@@ -2567,11 +2663,17 @@
 in verbatim
 @end verbatim
 
address@hidden
+<para> xml para </xml>
address@hidden xml
 
 @html
 html
 @end html
 
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$
address@hidden tex
 
 @itemize @bullet{} a--n itemize line
 @item i--tem 1
@@ -2724,11 +2826,17 @@
 in verbatim
 @end verbatim
 
address@hidden
+<para> xml para </xml>
address@hidden xml
 
 @html
 html
 @end html
 
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$
address@hidden tex
 
 @itemize @bullet{} a--n itemize line
 @item i--tem 1
@@ -2878,11 +2986,17 @@
 in verbatim
 @end verbatim
 
address@hidden
+<para> xml para </xml>
address@hidden xml
 
 @html
 html
 @end html
 
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$
address@hidden tex
 
 @itemize @bullet{} a--n itemize line
 @item i--tem 1
@@ -3033,11 +3147,17 @@
 in verbatim
 @end verbatim
 
address@hidden
+<para> xml para </xml>
address@hidden xml
 
 @html
 html
 @end html
 
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$
address@hidden tex
 
 @itemize @bullet{} a--n itemize line
 @item i--tem 1
@@ -3190,11 +3310,17 @@
 in verbatim
 @end verbatim
 
address@hidden
+<para> xml para </xml>
address@hidden xml
 
 @html
 html
 @end html
 
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$
address@hidden tex
 
 @itemize @bullet{} a--n itemize line
 @item i--tem 1
@@ -3344,11 +3470,17 @@
 in verbatim
 @end verbatim
 
address@hidden
+<para> xml para </xml>
address@hidden xml
 
 @html
 html
 @end html
 
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$
address@hidden tex
 
 @itemize @bullet{} a--n itemize line
 @item i--tem 1
@@ -3498,11 +3630,17 @@
 in verbatim
 @end verbatim
 
address@hidden
+<para> xml para </xml>
address@hidden xml
 
 @html
 html
 @end html
 
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$
address@hidden tex
 
 @itemize @bullet{} a--n itemize line
 @item i--tem 1
@@ -3655,11 +3793,17 @@
 in verbatim
 @end verbatim
 
address@hidden
+<para> xml para </xml>
address@hidden xml
 
 @html
 html
 @end html
 
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$
address@hidden tex
 
 @itemize @bullet{} a--n itemize line
 @item i--tem 1
@@ -3810,11 +3954,17 @@
 in verbatim
 @end verbatim
 
address@hidden
+<para> xml para </xml>
address@hidden xml
 
 @html
 html
 @end html
 
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$
address@hidden tex
 
 @itemize @bullet{} a--n itemize line
 @item i--tem 1
@@ -3966,11 +4116,17 @@
 in verbatim
 @end verbatim
 
address@hidden
+<para> xml para </xml>
address@hidden xml
 
 @html
 html
 @end html
 
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$
address@hidden tex
 
 @itemize @bullet{} a--n itemize line
 @item i--tem 1
@@ -4120,11 +4276,17 @@
 in verbatim
 @end verbatim
 
address@hidden
+<para> xml para </xml>
address@hidden xml
 
 @html
 html
 @end html
 
address@hidden
+$$\partial_t \eta (t) = g(\eta(t),\varphi(t))$$
address@hidden tex
 
 @itemize @bullet{} a--n itemize line
 @item i--tem 1

Index: test/singular_manual/res/texi_singular/singular.passfirst
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/singular_manual/res/texi_singular/singular.passfirst,v
retrieving revision 1.2
retrieving revision 1.3
diff -u -b -r1.2 -r1.3
--- test/singular_manual/res/texi_singular/singular.passfirst   19 Aug 2008 
16:53:00 -0000      1.2
+++ test/singular_manual/res/texi_singular/singular.passfirst   9 Jan 2009 
21:20:57 -0000       1.3
@@ -309,6 +309,9 @@
 start.tex(,78) @sc{Singular}'s development started in 1984 with an 
implementation of
 start.tex(,79) Mora's Tangent Cone algorithm in Modula-2 on an Atari computer 
(K.P.
 start.tex(,80) Neuendorf, G. Pfister,
+start.tex(,84) @tex
+start.tex(,85) H.\ Sch\"onemann; Humboldt-Universit\"at
+start.tex(,86) @end tex
 start.tex(,87)  zu Berlin).  The need for a new system arose from the 
investigation of
 start.tex(,88) mathematical problems coming from singularity theory which none 
of the
 start.tex(,89) existing systems was able to compute.
@@ -551,6 +554,9 @@
 start.tex(,351) @noindent This shows the text of @ref{intmat}, in the printed 
manual.
 start.tex(,356) 
 start.tex(,357) Next, we define a
+start.tex(,358) @tex
+start.tex(,359) $3 \times 3$
+start.tex(,360) @end tex
 start.tex(,364)  matrix of integers and initialize it with some values, row by 
row
 start.tex(,365) from left to right:
 start.tex(,366) 
@@ -627,6 +633,9 @@
 start.tex(,442) ring variables, and the third part determines the monomial 
ordering to
 start.tex(,443) be used. So the example above declares a polynomial ring 
called @code{r}
 start.tex(,444) with a ground field of characteristic 
+start.tex(,448) @tex
+start.tex(,449) $0$
+start.tex(,450) @end tex
 start.tex(,451)  (i.e., the rational
 start.tex(,452) numbers) and ring variables called @code{x}, @code{y}, and 
@code{z}. The
 start.tex(,453) @code{dp} at the end means that the degree reverse 
lexicographical
@@ -649,7 +658,13 @@
 start.tex(,470) 
 start.tex(,471) @item ring r4=(0,a),(mu,nu),lp;
 start.tex(,472) transcendental extension of 
+start.tex(,476) @tex
+start.tex(,477) $Q$
+start.tex(,478) @end tex
 start.tex(,479)  by 
+start.tex(,483) @tex
+start.tex(,484) $a$
+start.tex(,485) @end tex
 start.tex(,486) , variable names
 start.tex(,487) @code{mu} and @code{nu}.
 start.tex(,488) 
@@ -678,6 +693,9 @@
 start.tex(,511) @c
 start.tex(,512) Typing the name of a ring prints its definition. The example 
below
 start.tex(,513) shows that the default ring in @sc{Singular} is 
+start.tex(,517) @tex
+start.tex(,518) $Z/32003[x,y,z]$
+start.tex(,519) @end tex
 start.tex(,520) 
 start.tex(,521) with degree reverse lexicographical ordering:
 start.tex(,522) 
@@ -707,6 +725,9 @@
 start.tex(,551) @end smallexample
 start.tex(,552) 
 start.tex(,553) Once a ring is active, we can define polynomials. A monomial, 
say
+start.tex(,554) @tex
+start.tex(,555) $x^3$
+start.tex(,556) @end tex
 start.tex(,560) may be entered in two ways: either using the power operator 
@code{^},
 start.tex(,561) saying @code{x^3}, or in short-hand notation without operator, 
saying
 start.tex(,562) @code{x3}. Note that the short-hand notation is forbidden if 
the name
@@ -825,6 +846,9 @@
 start.tex(,677) @end smallexample
 start.tex(,678) 
 start.tex(,679) @noindent gives the desired vector space dimension
+start.tex(,680) @tex
+start.tex(,681) $K[x,y,z]/\hbox{\rm jacob}(f)$.
+start.tex(,682) @end tex
 start.tex(,686) As in @sc{Singular} the functions may take the input directly 
from
 start.tex(,687) earlier calculations, the whole sequence of commands may be 
written
 start.tex(,688) in one single statement.
@@ -998,6 +1022,9 @@
 start.tex(,876) 
 start.tex(,877) This shows that @code{f} has outside the origin in affine 
3-space
 start.tex(,878) singularities with local Milnor number adding up to
+start.tex(,879) @tex
+start.tex(,880) $12-4=8$.
+start.tex(,881) @end tex
 start.tex(,885) Using global and local orderings as above is a convenient way 
to check
 start.tex(,886) whether a variety has singularities outside the origin.
 start.tex(,887) 
@@ -1044,6 +1071,9 @@
 start.tex(,928) The algorithm of the standard basis computations may be
 start.tex(,929) affected by the command @code{option}. For example, a reduced 
standard
 start.tex(,930) basis of the ideal generated by the
+start.tex(,931) @tex
+start.tex(,932) $1 \times 1$-minors
+start.tex(,933) @end tex
 start.tex(,937)  of H  is obtained in the following way:
 start.tex(,938) @smallexample
 start.tex(,939) option(redSB);
@@ -1052,6 +1082,9 @@
 start.tex(,942) @end smallexample
 start.tex(,943) 
 start.tex(,944) This shows that 1 is contained in the ideal of the
+start.tex(,945) @tex
+start.tex(,946) $1 \times 1$-minors,
+start.tex(,947) @end tex
 start.tex(,951) hence the corresponding variety is empty.
 start.tex(,952) @c Coming back to some mathematical considerations, we study 
the problem how
 start.tex(,953) @c to calculate some ....
@@ -1107,13 +1140,22 @@
 start.tex(,1008) @end smallexample
 start.tex(,1009) 
 start.tex(,1010) However the submodule 
+start.tex(,1014) @tex
+start.tex(,1015) $MD$
+start.tex(,1016) @end tex
 start.tex(,1017)  may also be considered as the module
 start.tex(,1018) of relations of the factor module
+start.tex(,1019) @tex
+start.tex(,1020) $r^3/MD$.
+start.tex(,1021) @end tex
 start.tex(,1025) In this way, @sc{Singular} can treat arbitrary finitely 
generated modules
 start.tex(,1026) over the
 start.tex(,1028) basering (@pxref{Representation of mathematical objects}).
 start.tex(,1033) 
 start.tex(,1034) In order to get the module of relations of 
+start.tex(,1038) @tex
+start.tex(,1039) $MD$
+start.tex(,1040) @end tex
 start.tex(,1041) ,
 start.tex(,1042) we use the command @code{syz}.
 start.tex(,1043) 
@@ -1124,15 +1166,30 @@
 start.tex(,1048) 
 start.tex(,1049) We want to calculate, as an application, the annihilator of a 
given module.
 start.tex(,1050) Let
+start.tex(,1051) @tex
+start.tex(,1052) $M = r^3/U$,
+start.tex(,1053) @end tex
 start.tex(,1057) where U is our defining module of relations for the module
+start.tex(,1058) @tex
+start.tex(,1059) $M$.
+start.tex(,1060) @end tex
 start.tex(,1064) 
 start.tex(,1065) @smallexample
 start.tex(,1066) module U = 
[z3,xy2,x3],[yz2,1,xy5z+z3],[y2z,0,x3],[xyz+x2,y2,0],[xyz,x2y,1];
 start.tex(,1067) @end smallexample
 start.tex(,1068) 
 start.tex(,1069) Then, by definition, the annihilator of M is the ideal
+start.tex(,1070) @tex
+start.tex(,1071) $\hbox{ann}(M) = \{a \mid aM = 0 \}$
+start.tex(,1072) @end tex
 start.tex(,1076) which is by the description of M the same as
+start.tex(,1077) @tex
+start.tex(,1078) $\{ a \mid ar^3 \in U \}$.
+start.tex(,1079) @end tex
 start.tex(,1083) Hence we have to calculate the quotient
+start.tex(,1084) @tex
+start.tex(,1085) $U \colon r^3 $.
+start.tex(,1086) @end tex
 start.tex(,1090) The rank of the free module is determined by the choice of U 
and is the
 start.tex(,1091) number of rows of the corresponding matrix. This may be 
determined by
 start.tex(,1092) the function @code{nrows}. All we have to do now is the 
following:
@@ -1152,7 +1209,13 @@
 start.tex(,1111) The most general command is @code{res(... ,n)} which 
determines heuristically
 start.tex(,1112) what method to use for the given problem. It computes the 
free resolution
 start.tex(,1113) up to the length 
+start.tex(,1117) @tex
+start.tex(,1118) $n$
+start.tex(,1119) @end tex
 start.tex(,1120) , where 
+start.tex(,1124) @tex
+start.tex(,1125) $n=0$
+start.tex(,1126) @end tex
 start.tex(,1127)  corresponds to the full resolution.
 start.tex(,1128) 
 start.tex(,1129) Here we use the possibility to inspect the calculation 
process using the
@@ -1224,7 +1287,13 @@
 start.tex(,1195) 
 start.tex(,1196) In this case, the output is to be interpreted as follows: the 
3rd syzygy
 start.tex(,1197) module of R/I, @code{rs[3]}, is the rank-2-submodule of
+start.tex(,1198) @tex
+start.tex(,1199) $R^5$
+start.tex(,1200) @end tex
 start.tex(,1204) generated by the vectors
+start.tex(,1205) @tex
+start.tex(,1206) $(z^3,0,-y+4z,x+2z,0)$ and 
$(-xyz-y^2z-4xz^2+16z^3,-y^2,48z,48z,x+y-z)$.
+start.tex(,1207) @end tex
 start.tex(,1211) 
 singular.texi(,128) @c 
----------------------------------------------------------------------------
 singular.texi(,129) @node General concepts, Data types, Introduction, Top
@@ -2639,16 +2708,37 @@
 general.tex(,1435) @enumerate
 general.tex(,1436) @item
 general.tex(,1437) the field of rational numbers 
+general.tex(,1441) @tex
+general.tex(,1442) $Q$
+general.tex(,1443) @end tex
 general.tex(,1444) ,
 general.tex(,1445) @item
+general.tex(,1446) @tex
+general.tex(,1447) finite fields $Z/p$, $p$ a prime $\le 2147483629$,
+general.tex(,1448) @end tex
 general.tex(,1452) @item
+general.tex(,1453) @tex
+general.tex(,1454) finite fields $\hbox{GF}(p^n)$ with $p^n$ elements, $p$ a 
prime, $p^n \le 2^{15}$,
+general.tex(,1455) @end tex
 general.tex(,1459) @item
 general.tex(,1460) transcendental extension of 
+general.tex(,1464) @tex
+general.tex(,1465) $Q$
+general.tex(,1466) @end tex
 general.tex(,1467)  or 
+general.tex(,1471) @tex
+general.tex(,1472) $Z/p$
+general.tex(,1473) @end tex
 general.tex(,1474) ,
 general.tex(,1475) @item
 general.tex(,1476) simple algebraic extension of 
+general.tex(,1480) @tex
+general.tex(,1481) $Q$
+general.tex(,1482) @end tex
 general.tex(,1483)  or 
+general.tex(,1487) @tex
+general.tex(,1488) $Z/p$
+general.tex(,1489) @end tex
 general.tex(,1490) ,
 general.tex(,1491) @item
 general.tex(,1492) the field of real numbers represented by floating point
@@ -2699,6 +2789,9 @@
 general.tex(,1537) @itemize @bullet
 general.tex(,1538) @item
 general.tex(,1539) the ring 
+general.tex(,1543) @tex
+general.tex(,1544) $Z/32003[x,y,z]$
+general.tex(,1545) @end tex
 general.tex(,1546)  with degree reverse lexicographical
 general.tex(,1547) ordering.  The exact ring declaration may be omitted in the 
first
 general.tex(,1548) example since this is the default ring:
@@ -2710,6 +2803,9 @@
 general.tex(,1554) 
 general.tex(,1555) @item
 general.tex(,1556) the ring 
+general.tex(,1560) @tex
+general.tex(,1561) $Q[a,b,c,d]$
+general.tex(,1562) @end tex
 general.tex(,1563)  with lexicographical ordering:
 general.tex(,1564) 
 general.tex(,1565) @smallexample
@@ -2718,6 +2814,9 @@
 general.tex(,1568) 
 general.tex(,1569) @item
 general.tex(,1570) the ring 
+general.tex(,1574) @tex
+general.tex(,1575) $Z/7[x,y,z]$
+general.tex(,1576) @end tex
 general.tex(,1577)  with local degree reverse lexicographical
 general.tex(,1578) ordering.  The non-prime 10 is converted to the next lower 
prime in the
 general.tex(,1579) second example:
@@ -2729,8 +2828,17 @@
 general.tex(,1585) 
 general.tex(,1586) @item
 general.tex(,1587) the ring
+general.tex(,1588) @tex
+general.tex(,1589) $Z/7[x_1,\ldots,x_6]$
+general.tex(,1590) @end tex
 general.tex(,1594) with lexicographical ordering for
+general.tex(,1595) @tex
+general.tex(,1596) $x_1,x_2,x_3$
+general.tex(,1597) @end tex
 general.tex(,1601) and degree reverse lexicographical ordering for
+general.tex(,1602) @tex
+general.tex(,1603) $x_4,x_5,x_6$:
+general.tex(,1604) @end tex
 general.tex(,1608) 
 general.tex(,1609) @smallexample
 general.tex(,1610) ring r = 7,(x(1..6)),(lp(3),dp);
@@ -2738,8 +2846,14 @@
 general.tex(,1612) 
 general.tex(,1613) @item
 general.tex(,1614) the localization of 
+general.tex(,1618) @tex
+general.tex(,1619) $(Q[a,b,c])[x,y,z]$
+general.tex(,1620) @end tex
 general.tex(,1621)  at the maximal ideal
 general.tex(,1622) 
+general.tex(,1626) @tex
+general.tex(,1627) $(x,y,z)$
+general.tex(,1628) @end tex
 general.tex(,1629) :
 general.tex(,1630) 
 general.tex(,1631) @smallexample
@@ -2748,10 +2862,22 @@
 general.tex(,1634) 
 general.tex(,1635) @item
 general.tex(,1636) the ring 
+general.tex(,1640) @tex
+general.tex(,1641) $Q[x,y,z]$
+general.tex(,1642) @end tex
 general.tex(,1643)  with weighted reverse lexicographical ordering.
 general.tex(,1644) The variables 
+general.tex(,1648) @tex
+general.tex(,1649) $x$
+general.tex(,1650) @end tex
 general.tex(,1651) , 
+general.tex(,1655) @tex
+general.tex(,1656) $y$
+general.tex(,1657) @end tex
 general.tex(,1658) , and 
+general.tex(,1662) @tex
+general.tex(,1663) $z$
+general.tex(,1664) @end tex
 general.tex(,1665)  have the weights 2, 1,
 general.tex(,1666) and 3, respectively, and  vectors are first ordered by 
components (in
 general.tex(,1667) descending order) and then by monomials:
@@ -2763,12 +2889,30 @@
 general.tex(,1673) 
 general.tex(,1674) @item
 general.tex(,1675) the ring 
+general.tex(,1679) @tex
+general.tex(,1680) $K[x,y,z]$
+general.tex(,1681) @end tex
 general.tex(,1682) , where 
+general.tex(,1686) @tex
+general.tex(,1687) $K=Z/7(a,b,c)$
+general.tex(,1688) @end tex
 general.tex(,1689)  denotes the transcendental
 general.tex(,1690) extension of 
+general.tex(,1694) @tex
+general.tex(,1695) $Z/7$
+general.tex(,1696) @end tex
 general.tex(,1697)  by 
+general.tex(,1701) @tex
+general.tex(,1702) $a$
+general.tex(,1703) @end tex
 general.tex(,1704) , 
+general.tex(,1708) @tex
+general.tex(,1709) $b$
+general.tex(,1710) @end tex
 general.tex(,1711)  and 
+general.tex(,1715) @tex
+general.tex(,1716) $c$
+general.tex(,1717) @end tex
 general.tex(,1718)  with degree
 general.tex(,1719) lexicographical ordering:
 general.tex(,1720) 
@@ -2778,19 +2922,49 @@
 general.tex(,1724) 
 general.tex(,1725) @item
 general.tex(,1726) the ring 
+general.tex(,1730) @tex
+general.tex(,1731) $K[x,y,z]$
+general.tex(,1732) @end tex
 general.tex(,1733) , where 
+general.tex(,1737) @tex
+general.tex(,1738) $K=Z/7[a]$
+general.tex(,1739) @end tex
 general.tex(,1740)  denotes the algebraic extension of
 general.tex(,1741) degree 2 of 
+general.tex(,1745) @tex
+general.tex(,1746) $Z/7$
+general.tex(,1747) @end tex
 general.tex(,1748)  by 
+general.tex(,1752) @tex
+general.tex(,1753) $a.$
+general.tex(,1754) @end tex
 general.tex(,1755)  In other words, 
+general.tex(,1759) @tex
+general.tex(,1760) $K$
+general.tex(,1761) @end tex
 general.tex(,1762)  is the finite field with
 general.tex(,1763) 49 elements.  In the first case, 
+general.tex(,1767) @tex
+general.tex(,1768) $a$
+general.tex(,1769) @end tex
 general.tex(,1770)  denotes an algebraic
 general.tex(,1771) element over 
+general.tex(,1775) @tex
+general.tex(,1776) $Z/7$
+general.tex(,1777) @end tex
 general.tex(,1778)  with minimal polynomial
+general.tex(,1779) @tex
+general.tex(,1780) $\mu_a=a^2+a+3$,
+general.tex(,1781) @end tex
 general.tex(,1785) in the second case, 
+general.tex(,1789) @tex
+general.tex(,1790) $a$
+general.tex(,1791) @end tex
 general.tex(,1792) 
 general.tex(,1793) refers to some generator of the cyclic group of units of 
+general.tex(,1797) @tex
+general.tex(,1798) $K$
+general.tex(,1799) @end tex
 general.tex(,1800) :
 general.tex(,1801) 
 general.tex(,1802) @smallexample
@@ -2800,7 +2974,13 @@
 general.tex(,1806) 
 general.tex(,1807) @item
 general.tex(,1808) the ring 
+general.tex(,1812) @tex
+general.tex(,1813) $R[x,y,z]$
+general.tex(,1814) @end tex
 general.tex(,1815) , where 
+general.tex(,1819) @tex
+general.tex(,1820) $R$
+general.tex(,1821) @end tex
 general.tex(,1822)  denotes the field of real
 general.tex(,1823) numbers represented by simple precision floating point 
numbers. This is
 general.tex(,1824) a special case:
@@ -2811,7 +2991,13 @@
 general.tex(,1829) 
 general.tex(,1830) @item
 general.tex(,1831) the ring 
+general.tex(,1835) @tex
+general.tex(,1836) $R[x,y,z]$
+general.tex(,1837) @end tex
 general.tex(,1838) , where 
+general.tex(,1842) @tex
+general.tex(,1843) $R$
+general.tex(,1844) @end tex
 general.tex(,1845)  denotes the field of real
 general.tex(,1846) numbers represented by floating point numbers of 50 valid 
decimal digits
 general.tex(,1847) and the same number of digits for the rest:
@@ -2822,7 +3008,13 @@
 general.tex(,1852) 
 general.tex(,1853) @item
 general.tex(,1854) the ring 
+general.tex(,1858) @tex
+general.tex(,1859) $R[x,y,z]$
+general.tex(,1860) @end tex
 general.tex(,1861) , where 
+general.tex(,1865) @tex
+general.tex(,1866) $R$
+general.tex(,1867) @end tex
 general.tex(,1868)  denotes the field of real
 general.tex(,1869) numbers represented by floating point numbers of 10 valid 
decimal digits
 general.tex(,1870) and with 50 digits for the rest:
@@ -2833,10 +3025,19 @@
 general.tex(,1875) 
 general.tex(,1876) @item
 general.tex(,1877) the ring 
+general.tex(,1881) @tex
+general.tex(,1882) $R(j)[x,y,z]$
+general.tex(,1883) @end tex
 general.tex(,1884) , where 
+general.tex(,1888) @tex
+general.tex(,1889) $R$
+general.tex(,1890) @end tex
 general.tex(,1891)  denotes the field of real
 general.tex(,1892) numbers represented by floating point numbers of 30 valid 
decimal digits
 general.tex(,1893) and the same number for the rest. 
+general.tex(,1897) @tex
+general.tex(,1898) $j$
+general.tex(,1899) @end tex
 general.tex(,1900)  denotes the imaginary unit.
 general.tex(,1901) 
 general.tex(,1902) @smallexample
@@ -2845,10 +3046,19 @@
 general.tex(,1905) 
 general.tex(,1906) @item
 general.tex(,1907) the ring 
+general.tex(,1911) @tex
+general.tex(,1912) $R(i)[x,y,z]$
+general.tex(,1913) @end tex
 general.tex(,1914) , where 
+general.tex(,1918) @tex
+general.tex(,1919) $R$
+general.tex(,1920) @end tex
 general.tex(,1921)  denotes the field of real
 general.tex(,1922) numbers represented by floating point numbers of 6 valid 
decimal digits
 general.tex(,1923) and the same number for the rest. 
+general.tex(,1927) @tex
+general.tex(,1928) $i$
+general.tex(,1929) @end tex
 general.tex(,1930)  is the default for the imaginary unit.
 general.tex(,1931) 
 general.tex(,1932) @smallexample
@@ -2857,8 +3067,14 @@
 general.tex(,1935) 
 general.tex(,1936) @item
 general.tex(,1937) the quotient ring 
+general.tex(,1941) @tex
+general.tex(,1942) $Z/7[x,y,z]$
+general.tex(,1943) @end tex
 general.tex(,1944)  modulo the square of the maximal
 general.tex(,1945) ideal 
+general.tex(,1949) @tex
+general.tex(,1950) $(x,y,z)$
+general.tex(,1951) @end tex
 general.tex(,1952) :
 general.tex(,1953) 
 general.tex(,1954) @smallexample
@@ -2911,7 +3127,13 @@
 general.tex(,2001) an expression_list of an int_expression and a name.
 general.tex(,2002) @* The int_expression has to be a prime number p to the 
power of a
 general.tex(,2003) positive integer n. This defines the Galois field
+general.tex(,2004) @tex
+general.tex(,2005) $\hbox{GF}(p^n)$ with $p^n$ elements, where $p^n$ has to be 
smaller or equal $2^{15}$.
+general.tex(,2006) @end tex
 general.tex(,2010) The given name refers to a primitive element of
+general.tex(,2011) @tex
+general.tex(,2012) $\hbox{GF}(p^n)$
+general.tex(,2013) @end tex
 general.tex(,2017) generating the multiplicative group.  Due to a different 
internal
 general.tex(,2018) representation, the arithmetic operations in these 
coefficient fields
 general.tex(,2019) are faster than arithmetic operations in algebraic 
extensions as
@@ -3037,7 +3259,13 @@
 general.tex(,2139) 
 general.tex(,2140) @strong{Remark:} The novice user should generally use the 
ordering
 general.tex(,2141) @code{dp} for computations in the polynomial ring
+general.tex(,2142) @tex
+general.tex(,2143) $K[x_1,\ldots,x_n]$,
+general.tex(,2144) @end tex
 general.tex(,2148) resp.@:  @code{ds} for computations in the localization
+general.tex(,2149) @tex
+general.tex(,2150) $\hbox{Loc}_{(x)}K[x_1,\ldots,x_n])$.
+general.tex(,2151) @end tex
 general.tex(,2155) For more details, see @ref{Polynomial data}.
 general.tex(,2156) 
 general.tex(,2157) In a ring declaration, @sc{Singular} offers the following 
orderings:
@@ -3063,8 +3291,14 @@
 general.tex(,2177) @end table
 general.tex(,2178) 
 general.tex(,2179) Global orderings are well-orderings, i.e., 
+general.tex(,2183) @tex
+general.tex(,2184) $1 < x$
+general.tex(,2185) @end tex
 general.tex(,2186)  for each ring
 general.tex(,2187) variable 
+general.tex(,2191) @tex
+general.tex(,2192) $x$
+general.tex(,2193) @end tex
 general.tex(,2194) . They are denoted by a @code{p} as the second
 general.tex(,2195) character in their name.
 general.tex(,2196) 
@@ -3957,6 +4191,9 @@
 general.tex(,3083) by the size of expression.
 general.tex(,3084) @* But @code{matrix(} expression @code{,} m @code{,} n 
@code{)} may also be
 general.tex(,3085) used - the result is a
+general.tex(,3086) @tex
+general.tex(,3087) $ m \times n $
+general.tex(,3088) @end tex
 general.tex(,3092) matrix (@pxref{matrix type cast})
 general.tex(,3093) @item
 general.tex(,3094) @    @tab  @code{module} @tab expression lists of 
@code{int}, @code{number},
@@ -4270,11 +4507,17 @@
 general.tex(,3402) @*["help_text"]
 general.tex(,3403) @address@hidden@{}
 general.tex(,3404) @*
+general.tex(,3405) @tex
+general.tex(,3406) \quad
+general.tex(,3407) @end tex
 general.tex(,3408)    procedure_body
 general.tex(,3409) @address@hidden@}}
 general.tex(,3410) @address@hidden
 general.tex(,3411) @address@hidden@{}
 general.tex(,3412) @*
+general.tex(,3413) @tex
+general.tex(,3414) \quad
+general.tex(,3415) @end tex
 general.tex(,3416)    sequence_of_commands;
 general.tex(,3417) @address@hidden@}}]
 general.tex(,3418) @item Purpose:
@@ -5106,6 +5349,9 @@
 general.tex(,4210) @code{@@address@hidden@}}
 general.tex(,4211) @address@hidden
 general.tex(,4212) @*
+general.tex(,4216) @tex
+general.tex(,4217) $\alpha$
+general.tex(,4218) @end tex
 general.tex(,4219) 
 general.tex(,4220) @item Note:
 general.tex(,4221) Mathematical expressions inside @code{@@address@hidden@}} 
may
@@ -5205,6 +5451,9 @@
 general.tex(,4315) @address@hidden
 general.tex(,4316) @*Among others, within a texinfo environment one can use 
the tex environment
 general.tex(,4317) to typeset more complex mathematical like
+general.tex(,4318) @tex
+general.tex(,4319) $ i_{1,1} $
+general.tex(,4320) @end tex
 general.tex(,4321) @end table
 general.tex(,4322) 
 general.tex(,4323) @end table
@@ -5499,12 +5748,18 @@
 template_lib.tex(,107) 
 template_lib.tex(,108) @item @strong{Return:}
 template_lib.tex(,109) int: 
+template_lib.tex(,113) @tex
+template_lib.tex(,114) $i+i+i$
+template_lib.tex(,115) @end tex
 template_lib.tex(,116) 
 template_lib.tex(,117) @item @strong{Note:}
 template_lib.tex(,118) Help is in pure Texinfo
 template_lib.tex(,119) @*This help string is written in texinfo, which enables 
you to use,
 template_lib.tex(,120) among others, the @@math command for mathematical 
typesetting (like
 template_lib.tex(,121) 
+template_lib.tex(,125) @tex
+template_lib.tex(,126) $\alpha, \beta$
+template_lib.tex(,127) @end tex
 template_lib.tex(,128) ).
 template_lib.tex(,129) @*It also gives more control over the layout, but is, 
admittingly,
 template_lib.tex(,130) more cumbersome to write.
@@ -5545,6 +5800,9 @@
 template_lib.tex(,179) @* Use a @@ref constructs for references (like 
@pxref{mtripple})
 template_lib.tex(,180) @* Use @@code for typewriter font (like @code{i_1})
 template_lib.tex(,181) @* Use @@math for simple math mode typesetting (like 
+template_lib.tex(,185) @tex
+template_lib.tex(,186) $i_1$
+template_lib.tex(,187) @end tex
 template_lib.tex(,188) ).
 template_lib.tex(,189) @* Note: No parenthesis like @} are allowed inside 
@@math and @@code
 template_lib.tex(,190) @* Use @@example for indented preformatted text typeset 
in typewriter
@@ -5559,6 +5817,9 @@
 template_lib.tex(,199) Use @@texinfo for text in pure texinfo
 template_lib.tex(,200) 
 template_lib.tex(,201) @expansion{}
+template_lib.tex(,202) @tex
+template_lib.tex(,203) $i_{1,1}$
+template_lib.tex(,204) @end tex
 template_lib.tex(,205) 
 template_lib.tex(,206) 
 template_lib.tex(,207) Notice that
@@ -6208,6 +6469,9 @@
 types.tex(,416) set of minors of a matrix (see @ref{minor})
 types.tex(,417) @item modulo
 types.tex(,418) represents
+types.tex(,419) @tex
+types.tex(,420) $(h1+h2)/h1 \cong h2/(h1 \cap h2)$
+types.tex(,421) @end tex
 types.tex(,425) (see @ref{modulo})
 types.tex(,426) @item mres
 types.tex(,427) minimal free resolution of an ideal resp.@: module w.r.t. a 
minimal set of generators of the given ideal resp.@: module
@@ -7959,25 +8223,62 @@
 types.tex(,2236) Canonically realized are
 types.tex(,2237) @itemize @bullet
 types.tex(,2238) @item
+types.tex(,2239) @tex
+types.tex(,2240) $Q \rightarrow  Q(a, \ldots)$
+types.tex(,2241) @end tex
 types.tex(,2245) 
 types.tex(,2246) @item
+types.tex(,2247) @tex
+types.tex(,2248) $Q \rightarrow R$
+types.tex(,2249) @end tex
 types.tex(,2253) 
 types.tex(,2254) @item
+types.tex(,2255) @tex
+types.tex(,2256) $Q \rightarrow  C$
+types.tex(,2257) @end tex
 types.tex(,2261) 
 types.tex(,2262) @item
+types.tex(,2263) @tex
+types.tex(,2264) $Z/p \rightarrow  (Z/p)(a, \ldots)$
+types.tex(,2265) @end tex
 types.tex(,2269) 
 types.tex(,2270) @item
+types.tex(,2271) @tex
+types.tex(,2272) $Z/p \rightarrow  GF(p^n)$
+types.tex(,2273) @end tex
 types.tex(,2277) 
 types.tex(,2278) @item
+types.tex(,2279) @tex
+types.tex(,2280) $Z/p \rightarrow  R$
+types.tex(,2281) @end tex
 types.tex(,2285) 
 types.tex(,2286) @item
+types.tex(,2287) @tex
+types.tex(,2288) $R \rightarrow C$
+types.tex(,2289) @end tex
 types.tex(,2293) @end itemize
 types.tex(,2294) 
 types.tex(,2295) Possible are furthermore
 types.tex(,2296) @itemize @bullet
 types.tex(,2297) @item
+types.tex(,2298) @tex
+types.tex(,2299) % This is quite a hack, but for now it works.
+types.tex(,2300) $Z/p \rightarrow Q,
+types.tex(,2301) \quad
+types.tex(,2302) [i]_p \mapsto i \in [-p/2, \, p/2]
+types.tex(,2303) \subseteq Z$
+types.tex(,2304) @end tex
 types.tex(,2308) @item
+types.tex(,2309) @tex
+types.tex(,2310) $Z/p \rightarrow Z/p^\prime,
+types.tex(,2311) \quad
+types.tex(,2312) [i]_p \mapsto i \in [-p/2, \, p/2] \subseteq Z, \;
+types.tex(,2313) i \mapsto [i]_{p^\prime} \in Z/p^\prime$
+types.tex(,2314) @end tex
 types.tex(,2318) @item
+types.tex(,2319) @tex
+types.tex(,2320) $C \rightarrow R, \quad$ the real part
+types.tex(,2321) @end tex
 types.tex(,2325) @end itemize
 types.tex(,2326) 
 types.tex(,2327) Finally, in Singular we allow the mapping from rings
@@ -7986,8 +8287,14 @@
 types.tex(,2330) 
 types.tex(,2331) @itemize @bullet
 types.tex(,2332) @item
+types.tex(,2333) @tex
+types.tex(,2334) $Q \rightarrow Z/p$
+types.tex(,2335) @end tex
 types.tex(,2339) 
 types.tex(,2340) @item
+types.tex(,2341) @tex
+types.tex(,2342) $Q \rightarrow (Z/p)(a, \ldots)$
+types.tex(,2343) @end tex
 types.tex(,2347) @end itemize
 types.tex(,2348) In these cases the denominator and the numerator
 types.tex(,2349) of a number are mapped separately by the usual
@@ -8431,18 +8738,45 @@
 types.tex(,2822) Like vectors they
 types.tex(,2823) can only be defined or accessed with respect to a basering.
 types.tex(,2824) If 
+types.tex(,2828) @tex
+types.tex(,2829) $M$
+types.tex(,2830) @end tex
 types.tex(,2831)  is a submodule of
+types.tex(,2835) @tex
+types.tex(,2836) $R^n$,
+types.tex(,2837) @end tex
 types.tex(,2838) 
+types.tex(,2842) @tex
+types.tex(,2843) $R$
+types.tex(,2844) @end tex
 types.tex(,2845)  the basering, generated by vectors
+types.tex(,2849) @tex
+types.tex(,2850) $v_1, \ldots, v_k$, then $v_1, \ldots, v_k$
+types.tex(,2851) @end tex
 types.tex(,2852) may be considered as the generators of relations of
+types.tex(,2856) @tex
+types.tex(,2857) $R^n/M$
+types.tex(,2858) @end tex
 types.tex(,2859) between the canonical generators 
@code{gen(1)},@dots{},@code{gen(n)}.
 types.tex(,2860) Hence any finitely generated 
+types.tex(,2864) @tex
+types.tex(,2865) $R$
+types.tex(,2866) @end tex
 types.tex(,2867) -module can be represented in @sc{Singular}
 types.tex(,2868) by its module of relations. The assignments
 types.tex(,2869) @code{module M=v1,...,vk; matrix A=M;}
 types.tex(,2870) create the presentation matrix of size
+types.tex(,2874) @tex
+types.tex(,2875) n$\times$k
+types.tex(,2876) @end tex
 types.tex(,2877)  for
+types.tex(,2881) @tex
+types.tex(,2882) R$^n$/M,
+types.tex(,2883) @end tex
 types.tex(,2884) i.e., the columns of A are the vectors
+types.tex(,2888) @tex
+types.tex(,2889) $v_1, \ldots, v_k$
+types.tex(,2890) @end tex
 types.tex(,2891) which generate M (cf. @ref{Representation of mathematical 
objects}).
 types.tex(,2892) 
 types.tex(,2893) @menu
@@ -8597,6 +8931,9 @@
 types.tex(,3058) over a local ring
 types.tex(,3059) @item modulo
 types.tex(,3060) represents
+types.tex(,3061) @tex
+types.tex(,3062) $(h1+h2)/h1=h2/(h1 \cap h2)$
+types.tex(,3063) @end tex
 types.tex(,3067) (see @ref{modulo})
 types.tex(,3068) @item mres
 types.tex(,3069) minimal free resolution of an ideal resp.@: module w.r.t. a 
minimal set of generators of the given module
@@ -9206,11 +9543,17 @@
 types.tex(,3796) @*["help_text"]
 types.tex(,3797) @address@hidden@{}
 types.tex(,3798) @*
+types.tex(,3799) @tex
+types.tex(,3800) \quad
+types.tex(,3801) @end tex
 types.tex(,3802)    procedure_body
 types.tex(,3803) @address@hidden@}}
 types.tex(,3804) @address@hidden
 types.tex(,3805) @address@hidden@{}
 types.tex(,3806) @*
+types.tex(,3807) @tex
+types.tex(,3808) \quad
+types.tex(,3809) @end tex
 types.tex(,3810)    sequence_of_commands;
 types.tex(,3811) @address@hidden@}}]
 types.tex(,3812) @address@hidden proc_name @code{=} proc_name @code{;}
@@ -9525,31 +9868,82 @@
 types.tex(,4145) @table @asis
 types.tex(,4146) @item @code{+}
 types.tex(,4147) construct a new ring 
+types.tex(,4151) @tex
+types.tex(,4152) $k[X,Y]$
+types.tex(,4153) @end tex
 types.tex(,4154)  from 
+types.tex(,4158) @tex
+types.tex(,4159) $k_1[X]$
+types.tex(,4160) @end tex
 types.tex(,4161)   and 
+types.tex(,4165) @tex
+types.tex(,4166) $k_2[Y]$
+types.tex(,4167) @end tex
 types.tex(,4168) .
 types.tex(,4169) @end table
 types.tex(,4170) 
 types.tex(,4171) Concerning the ground fields 
+types.tex(,4175) @tex
+types.tex(,4176) $k_1$
+types.tex(,4177) @end tex
 types.tex(,4178)  and 
+types.tex(,4182) @tex
+types.tex(,4183) $k_2$
+types.tex(,4184) @end tex
 types.tex(,4185)  take the
 types.tex(,4186) following guide lines into consideration:
 types.tex(,4187) @itemize @bullet
 types.tex(,4188) @item Neither 
+types.tex(,4192) @tex
+types.tex(,4193) $k_1$
+types.tex(,4194) @end tex
 types.tex(,4195)  nor 
+types.tex(,4199) @tex
+types.tex(,4200) $k_2$
+types.tex(,4201) @end tex
 types.tex(,4202)  may be 
+types.tex(,4206) @tex
+types.tex(,4207) $R$
+types.tex(,4208) @end tex
 types.tex(,4209)  or 
+types.tex(,4213) @tex
+types.tex(,4214) $C$
+types.tex(,4215) @end tex
 types.tex(,4216) .
 types.tex(,4217) @item If the characteristic of 
+types.tex(,4221) @tex
+types.tex(,4222) $k_1$
+types.tex(,4223) @end tex
 types.tex(,4224)  and 
+types.tex(,4228) @tex
+types.tex(,4229) $k_2$
+types.tex(,4230) @end tex
 types.tex(,4231)  differs, then one of them must be 
+types.tex(,4235) @tex
+types.tex(,4236) $Q$
+types.tex(,4237) @end tex
 types.tex(,4238) .
 types.tex(,4239) @item At most one of 
+types.tex(,4243) @tex
+types.tex(,4244) $k_1$
+types.tex(,4245) @end tex
 types.tex(,4246)  and 
+types.tex(,4250) @tex
+types.tex(,4251) $k_2$
+types.tex(,4252) @end tex
 types.tex(,4253)  may be have parameters.
 types.tex(,4254) @item If one of 
+types.tex(,4258) @tex
+types.tex(,4259) $k_1$
+types.tex(,4260) @end tex
 types.tex(,4261)  and 
+types.tex(,4265) @tex
+types.tex(,4266) $k_2$
+types.tex(,4267) @end tex
 types.tex(,4268)  is an algebraic extension of 
+types.tex(,4272) @tex
+types.tex(,4273) $Z/p$
+types.tex(,4274) @end tex
 types.tex(,4275)  it may not be defined by a @code{charstr} of type 
@code{(p^n,a)}.
 types.tex(,4276) @end itemize
 types.tex(,4277) 
@@ -10445,6 +10839,18 @@
 reference.tex(,418) intmat
 reference.tex(,419) @item @strong{Purpose:}
 reference.tex(,420) with 1 argument: computes the graded Betti numbers of a 
minimal resolution of
+reference.tex(,421) @tex
+reference.tex(,422) $R^n/M$, if $R$ denotes the basering and
+reference.tex(,423) $M$ a homogeneous submodule of $R^n$ and the argument 
represents a
+reference.tex(,424) resolution of
+reference.tex(,425) $R^n/M$.
+reference.tex(,426) @end tex
+reference.tex(,430) @tex
+reference.tex(,431) The entry d of the intmat at place (i,j) is the minimal 
number of
+reference.tex(,432) generators in degree i+j of the j-th syzygy module (= 
module of
+reference.tex(,433) relations) of $R^n/M$ (the 0th (resp.\ 1st) syzygy module 
of $R^n/M$ is
+reference.tex(,434) $R^n$ (resp.\ $M$)).
+reference.tex(,435) @end tex
 reference.tex(,445) The argument is considered to be the result of a 
res/sres/mres/nres/lres
 reference.tex(,446) command. This implies that a zero is only allowed (and 
counted) as a
 reference.tex(,447) generator in the first module.
@@ -10512,6 +10918,15 @@
 reference.tex(,509) where the generators are the columns of the
 reference.tex(,510) displayed matrix and degrees are assigned such that the 
corresponding maps
 reference.tex(,511) have degree 0:
+reference.tex(,512) @tex
+reference.tex(,513) $$
+reference.tex(,514) 0 \longleftarrow r/j \longleftarrow r(1)
+reference.tex(,515) \buildrel{T[1]}\over{\longleftarrow} r(2) \oplus r^3(3)
+reference.tex(,516) \buildrel{T[2]}\over{\longleftarrow} r^4(4)
+reference.tex(,517) \buildrel{T[3]}\over{\longleftarrow} r(5)
+reference.tex(,518) \longleftarrow 0 \quad .
+reference.tex(,519) $$
+reference.tex(,520) @end tex
 reference.tex(,525) 
 reference.tex(,526) @c inserted refs from reference.doc:455
 reference.tex(,551) @c end inserted refs from reference.doc:455
@@ -10825,12 +11240,28 @@
 reference.tex(,919) @end format
 reference.tex(,920) If J is a vector or a module this procedure is repeated 
for each
 reference.tex(,921) component and the resulting matrices are address@hidden
+reference.tex(,926) @tex
+reference.tex(,927) The third argument is used to return the matrix T of 
coefficients
+reference.tex(,928) such that {\tt matrix}(J) = T*M.
+reference.tex(,929) @end tex
 reference.tex(,930) @item @strong{Note:}
 reference.tex(,931) @code{coeffs} returns the coefficient 0 at the appropriate 
place if a monomial
 reference.tex(,932) is not present, while @code{coef} considers only monomials 
which really occur
 reference.tex(,933) in the given expression. @*
 reference.tex(,934) If
+reference.tex(,935) @tex
+reference.tex(,936) $M=(m_{ij})$
+reference.tex(,937) @end tex
 reference.tex(,941) then the j-th generator of an ideal J is equal to
+reference.tex(,942) @tex
+reference.tex(,943) $$J_j = z^0 \cdot m_{1j} + z^1 \cdot m_{2j} + ... + 
z^{d-1} \cdot m_{dj},$$
+reference.tex(,944) while for a module J the i-th component of the j-th 
generator is
+reference.tex(,945) equal to the entry [i,j] of {\tt matrix}(J), and we get
+reference.tex(,946) @end tex
+reference.tex(,956) @tex
+reference.tex(,957) $$ J_{i,j} = z^0 \cdot m_{(i-1)d+1,j} + z^1 \cdot 
m_{(i-1)d+2,j} + ... +
+reference.tex(,958) z^{d-1} \cdot m_{id,j}.$$
+reference.tex(,959) @end tex
 reference.tex(,968) 
 reference.tex(,969) @item @strong{Example:}
 reference.tex(,970) @smallexample
@@ -10909,7 +11340,14 @@
 reference.tex(,1055) producing a m x n matrix.
 reference.tex(,1056) @*Contraction is defined on monomials by:
 reference.tex(,1057) @*
+reference.tex(,1064) @tex
+reference.tex(,1065) $${\rm contract}(x^A ,  x^B) := \cases{ x^{(B-A)}, &if 
$B\ge A$
+reference.tex(,1066) componentwise\cr 0,&otherwise.\cr}$$
+reference.tex(,1067) @end tex
 reference.tex(,1068) where A and B are the multiexponents of the ring 
variables represented by
+reference.tex(,1069) @tex
+reference.tex(,1070) $x$.
+reference.tex(,1071) @end tex
 reference.tex(,1075) @code{contract} is extended bilinearly to all polynomials.
 reference.tex(,1076) @item @strong{Example:}
 reference.tex(,1077) @smallexample
@@ -12342,13 +12780,24 @@
 reference.tex(,2950) @code{highcorner(I)} returns 0 iff @code{dim(I)>0} or 
@code{dim(I)=-1}.
 reference.tex(,2951) Otherwise it returns the smallest monomial m not in I 
which has the following
 reference.tex(,2952) properties (with
+reference.tex(,2956) @tex
+reference.tex(,2957) $x_i$
+reference.tex(,2958) @end tex
 reference.tex(,2959) the variables of the basering):
 reference.tex(,2960) @itemize @bullet
 reference.tex(,2961) @item
 reference.tex(,2962) if
+reference.tex(,2966) @tex
+reference.tex(,2967) $x_i>1$ then $x_i$
+reference.tex(,2968) @end tex
 reference.tex(,2969) does not divide m (e.g., m=1 if the ordering is global)
 reference.tex(,2970) @item
 reference.tex(,2971) given any set of generators
+reference.tex(,2977) @tex
+reference.tex(,2978) $f_1,\dots,f_k$ of I, let $f'_i$ be obtained from
+reference.tex(,2979) $f_i$ by deleting the terms divisible by $x_i\cdot m$ for 
all i with $x_i<1$.
+reference.tex(,2980) Then $f'_1,\dots,f'_k$ generate I.
+reference.tex(,2981) @end tex
 reference.tex(,2982) @end itemize
 reference.tex(,2983) @item @strong{Example:}
 reference.tex(,2984) @smallexample
@@ -12487,11 +12936,22 @@
 reference.tex(,3167) 
 reference.tex(,3168) More precisely, let R be the basering and I be the given 
ideal.
 reference.tex(,3169) Then @code{hres} computes a minimal free resolution of R/I
+reference.tex(,3176) @tex
+reference.tex(,3177) $$...\longrightarrow F_2 
\buildrel{A_2}\over{\longrightarrow} F_1
+reference.tex(,3178) \buildrel{A_1}\over{\longrightarrow} R\longrightarrow R/I
+reference.tex(,3179) \longrightarrow 0.$$
+reference.tex(,3180) @end tex
 reference.tex(,3181) If the int_expression k is not zero then the computation 
stops after
 reference.tex(,3182) k steps and returns a list of modules
+reference.tex(,3183) @tex
+reference.tex(,3184) $M_i={\tt module} (A_i)$, i=1..k.
+reference.tex(,3185) @end tex
 reference.tex(,3189) 
 reference.tex(,3190) @code{list L=hres(I,0);} returns a list L of n modules 
(where n is the
 reference.tex(,3191) number of variables of the basering) such that
+reference.tex(,3192) @tex
+reference.tex(,3193) ${\tt L[i]}=M_i$
+reference.tex(,3194) @end tex
 reference.tex(,3198) in the above notation.
 reference.tex(,3199) @item @strong{Note:}
 reference.tex(,3200) The ideal_expression has to be homogeneous.
@@ -12607,6 +13067,9 @@
 reference.tex(,3364) 
 reference.tex(,3365) @item @strong{Note:}
 reference.tex(,3366) U is a set of independent variables for I if and only if
+reference.tex(,3367) @tex
+reference.tex(,3368) $I \cap K[U]=(0)$,
+reference.tex(,3369) @end tex
 reference.tex(,3373) i.e., eliminating the remaining variables gives (0).
 reference.tex(,3374) U is maximal if dim(I)=#U.
 reference.tex(,3375) @item @strong{Syntax:}
@@ -12704,19 +13167,47 @@
 reference.tex(,3491) @item @strong{Purpose:}
 reference.tex(,3492) interreduces a set of polynomials/vectors.
 reference.tex(,3493) @*
+reference.tex(,3497) @tex
+reference.tex(,3498) input: $f_1,\dots,f_n$
+reference.tex(,3499) @end tex
 reference.tex(,3500) @*
+reference.tex(,3506) @tex
+reference.tex(,3507) output: $g_1,\dots,g_s$ with $s \leq n$ and the properties
+reference.tex(,3508) @end tex
 reference.tex(,3509) @itemize @bullet
 reference.tex(,3510) @item
+reference.tex(,3514) @tex
+reference.tex(,3515) $(f_1,\dots,f_n) = (g_1,\dots,g_s)$
+reference.tex(,3516) @end tex
 reference.tex(,3517) @item
+reference.tex(,3521) @tex
+reference.tex(,3522) $L(g_i)\neq L(g_j)$ for all $i\neq j$
+reference.tex(,3523) @end tex
 reference.tex(,3524) @item
 reference.tex(,3525) in the case of a global ordering (polynomial ring):
 reference.tex(,3526) @*
+reference.tex(,3530) @tex
+reference.tex(,3531) $L(g_i)$
+reference.tex(,3532) @end tex
 reference.tex(,3533)  does not divide m for all monomials m of
+reference.tex(,3537) @tex
+reference.tex(,3538) $\{g_1,\dots,g_{i-1},g_{i+1},\dots,g_s\}$
+reference.tex(,3539) @end tex
 reference.tex(,3540) @item
 reference.tex(,3541) in the case of a local or mixed ordering (localization of 
polynomial ring):
 reference.tex(,3542) @* if
+reference.tex(,3546) @tex
+reference.tex(,3547) $L(g_i) | L(g_j)$ for any $i \neq j$,
+reference.tex(,3548) @end tex
 reference.tex(,3549) then
+reference.tex(,3553) @tex
+reference.tex(,3554) $ecart(g_i) > ecart(g_j)$
+reference.tex(,3555) @end tex
 reference.tex(,3556) @end itemize
+reference.tex(,3557) @tex
+reference.tex(,3558) Here, $L(g)$ denotes the leading term of $g$ and
+reference.tex(,3559) $ecart(g):=deg(g)-deg(L(g))$.
+reference.tex(,3560) @end tex
 reference.tex(,3566) @item @strong{Example:}
 reference.tex(,3567) @smallexample
 reference.tex(,3568) @c reused example interred reference.doc:2557 
@@ -13446,11 +13937,22 @@
 reference.tex(,4704) 
 reference.tex(,4705) More precisely, let R be the basering and I be the given 
ideal.
 reference.tex(,4706) Then @code{lres} computes a minimal free resolution of R/I
+reference.tex(,4713) @tex
+reference.tex(,4714) $$...\longrightarrow F_2 
\buildrel{A_2}\over{\longrightarrow} F_1
+reference.tex(,4715) \buildrel{A_1}\over{\longrightarrow} R\longrightarrow R/I
+reference.tex(,4716) \longrightarrow 0.$$
+reference.tex(,4717) @end tex
 reference.tex(,4718) If the int_expression k is not zero then the computation 
stops after
 reference.tex(,4719) k steps and returns a list of modules
+reference.tex(,4720) @tex
+reference.tex(,4721) $M_i={\tt module}(A_i)$, i=1..k.
+reference.tex(,4722) @end tex
 reference.tex(,4726) 
 reference.tex(,4727) @code{list L=lres(I,0);} returns a list L of n modules 
(where n is the
 reference.tex(,4728) number of variables of the basering) such that
+reference.tex(,4729) @tex
+reference.tex(,4730) ${\tt L[i]}=M_i$
+reference.tex(,4731) @end tex
 reference.tex(,4735) in the above notation.
 reference.tex(,4736) @item @strong{Note:}
 reference.tex(,4737) The ideal_expression has to be homogeneous.
@@ -13704,9 +14206,25 @@
 reference.tex(,5069) module
 reference.tex(,5070) @item @strong{Purpose:}
 reference.tex(,5071) @code{modulo(h1,h2)}
+reference.tex(,5075) @tex
+reference.tex(,5076) represents $h_1/(h_1 \cap h_2) \cong (h_1+h_2)/h_2$
+reference.tex(,5077) @end tex
 reference.tex(,5078) where
+reference.tex(,5079) @tex
+reference.tex(,5080) $h_1$ and $h_2$
+reference.tex(,5081) @end tex
 reference.tex(,5085) are considered as submodules of the same free module
+reference.tex(,5086) @tex
+reference.tex(,5087) $R^l$
+reference.tex(,5088) @end tex
 reference.tex(,5092) (l=1 for ideals). Let
+reference.tex(,5093) @tex
+reference.tex(,5094) $H_1$, resp.\ $H_2$,
+reference.tex(,5095) @end tex
+reference.tex(,5100) @tex
+reference.tex(,5101) be the matrices of size $l \times k$, resp.\ $l \times 
m$, having the
+reference.tex(,5102) generators of $h_1$, resp.\ $h_2$,
+reference.tex(,5103) @end tex
 reference.tex(,5107) as columns.
 reference.tex(,5108) @c @*
 reference.tex(,5109) @c @tex
@@ -13720,7 +14238,14 @@
 reference.tex(,5117) @c @end smallexample
 reference.tex(,5118) @c @end ifinfo
 reference.tex(,5119) Then
+reference.tex(,5120) @tex
+reference.tex(,5121) $h_1/(h_1 \cap h_2) \cong R^k / ker(\overline{H_1})$
+reference.tex(,5122) @end tex
 reference.tex(,5131) where
+reference.tex(,5132) @tex
+reference.tex(,5133) $\overline{H_1}: R^k \rightarrow R^l/Im(H_2)=R^l/h_2$
+reference.tex(,5134) is the induced map.
+reference.tex(,5135) @end tex
 reference.tex(,5144) @address@hidden(h1,h2)} returns generators of
 reference.tex(,5145) the kernel of this induced map.
 reference.tex(,5146) @item @strong{Example:}
@@ -13821,17 +14346,32 @@
 reference.tex(,5261) computes a minimal free resolution of an ideal or module 
M with the
 reference.tex(,5262) standard basis method. More precisely, let 
address@hidden(M), then @code{mres}
 reference.tex(,5263) computes a free resolution of
+reference.tex(,5271) @tex
+reference.tex(,5272) $coker(A)=F_0/M$
+reference.tex(,5273) $$...\longrightarrow F_2 
\buildrel{A_2}\over{\longrightarrow} F_1
+reference.tex(,5274) \buildrel{A_1}\over{\longrightarrow} F_0\longrightarrow 
F_0/M
+reference.tex(,5275) \longrightarrow 0,$$
+reference.tex(,5276) @end tex
 reference.tex(,5277) where the columns of the matrix
+reference.tex(,5278) @tex
+reference.tex(,5279) $A_1$
+reference.tex(,5280) @end tex
 reference.tex(,5284) are a minimal set of generators
 reference.tex(,5285) of M if the basering is local or if M is homogeneous.
 reference.tex(,5286) If the int expression k is not zero then the computation 
stops after k steps
 reference.tex(,5287) and returns a list of modules
+reference.tex(,5288) @tex
+reference.tex(,5289) $M_i={\tt module}(A_i)$, i=1...k.
+reference.tex(,5290) @end tex
 reference.tex(,5294) @address@hidden(M,0)} returns a resolution consisting of 
at most n+2 modules,
 reference.tex(,5295) where n is the number of variables of the basering.
 reference.tex(,5296) Let @code{list L=mres(M,0);}
 reference.tex(,5297)  then @code{L[1]} consists of a minimal set of generators 
of the input, @code{L[2]}
 reference.tex(,5298) consists of a minimal set of generators for the first 
syzygy module of
 reference.tex(,5299) @code{L[1]}, etc., until @code{L[p+1]}, such that
+reference.tex(,5303) @tex
+reference.tex(,5304) ${\tt L[i]}\neq 0$ for $i \le p$,
+reference.tex(,5305) @end tex
 reference.tex(,5306)  but @code{L[p+1]}, the first syzygy module of 
@code{L[p]},
 reference.tex(,5307) is 0 (if the basering is not a qring).
 reference.tex(,5308) @item @strong{Note:}
@@ -14122,16 +14662,32 @@
 reference.tex(,5781) the second module on (by the standard basis method).
 reference.tex(,5782) 
 reference.tex(,5783) More precisely, let
+reference.tex(,5784) @tex
+reference.tex(,5785) $A_1$=matrix(M),
+reference.tex(,5786) @end tex
 reference.tex(,5790) then @code{nres} computes a free resolution of
+reference.tex(,5798) @tex
+reference.tex(,5799) $coker(A_1)=F_0/M$
+reference.tex(,5800) $$...\longrightarrow F_2 
\buildrel{A_2}\over{\longrightarrow} F_1 \buildrel{A_1}\over{\longrightarrow} 
F_0\longrightarrow F_0/M\longrightarrow 0,$$
+reference.tex(,5801) @end tex
 reference.tex(,5802) @*where the columns of the matrix
+reference.tex(,5803) @tex
+reference.tex(,5804) $A_1$
+reference.tex(,5805) @end tex
 reference.tex(,5809) are the given set of generators of M.
 reference.tex(,5810) If the int expression k is not zero then the computation 
stops after k steps
 reference.tex(,5811) and returns a list of modules
+reference.tex(,5812) @tex
+reference.tex(,5813) $M_i={\tt module}(A_i)$, i=1..k.
+reference.tex(,5814) @end tex
 reference.tex(,5818) @address@hidden(M,0)} returns a list of n modules where n 
is the number of
 reference.tex(,5819) variables of the basering.
 reference.tex(,5820) Let @code{list L=nres(M,0);} then @code{L[1]=M} is 
identical to the input,
 reference.tex(,5821) @code{L[2]} is a minimal set of generators for the first 
syzygy
 reference.tex(,5822) module of  @code{L[1]}, etc.
+reference.tex(,5826) @tex
+reference.tex(,5827) (${\tt L[i]}=M_i$
+reference.tex(,5828) @end tex
 reference.tex(,5829) in the notations from above).
 reference.tex(,5830) @item @strong{Example:}
 reference.tex(,5831) @smallexample
@@ -14750,9 +15306,18 @@
 reference.tex(,6638) @table @code
 reference.tex(,6639) @item "betti"
 reference.tex(,6640) The Betti numbers are printed in a matrix-like format 
where the entry
+reference.tex(,6641) @tex
+reference.tex(,6642) $d$ in row $i$ and column $j$
+reference.tex(,6643) @end tex
 reference.tex(,6647) is the minimal number of generators in
 reference.tex(,6648) degree
+reference.tex(,6649) @tex
+reference.tex(,6650) $i+j$ of the $j$-th
+reference.tex(,6651) @end tex
 reference.tex(,6655)  syzygy module of
+reference.tex(,6656) @tex
+reference.tex(,6657) $R^n/M$ (the 0th and 1st syzygy module of $R^n/M$ is 
$R^n$ and $M$, resp.).
+reference.tex(,6658) @end tex
 reference.tex(,6662) @item "%s"
 reference.tex(,6663) returns @code{string(} expression @code{)}
 reference.tex(,6664) @item "%2s"
@@ -15137,12 +15702,21 @@
 reference.tex(,7133) @item @strong{Purpose:}
 reference.tex(,7134) computes the ideal quotient, resp.@: module quotient. Let 
@code{R} be the
 reference.tex(,7135) basering, @code{I,J} ideals and @code{M} a module in
+reference.tex(,7139) @tex
+reference.tex(,7140) ${\tt R}^n$.
+reference.tex(,7141) @end tex
 reference.tex(,7142) Then
 reference.tex(,7143) @itemize
 reference.tex(,7144) @item
 reference.tex(,7145) @code{quotient(I,J)}=
+reference.tex(,7149) @tex
+reference.tex(,7150) $\{a \in R \mid aJ \subset I\}$,
+reference.tex(,7151) @end tex
 reference.tex(,7152) @item
 reference.tex(,7153) @code{quotient(M,J)}=
+reference.tex(,7157) @tex
+reference.tex(,7158) $\{b \in R^n \mid bJ \subset M\}$.
+reference.tex(,7159) @end tex
 reference.tex(,7160) @end itemize
 reference.tex(,7161) @item @strong{Example:}
 reference.tex(,7162) @smallexample
@@ -15332,6 +15906,15 @@
 reference.tex(,7410) computes the regularity of a homogeneous ideal, resp.@: 
module, from a
 reference.tex(,7411) minimal resolution given by the list expression.
 reference.tex(,7412) @*
+reference.tex(,7422) @tex
+reference.tex(,7423) \noindent
+reference.tex(,7424) Let $0 \rightarrow\ \bigoplus_a K[x]e_{a,n}\ \rightarrow\ 
\dots
+reference.tex(,7425)   \rightarrow\ \bigoplus_a K[x]e_{a,0}\ \rightarrow\
+reference.tex(,7426)   I\ \rightarrow\ 0$
+reference.tex(,7427) be a minimal resolution of I considered with homogeneous 
maps of degree 0.
+reference.tex(,7428) The regularity is the smallest number $s$ with the 
property deg($e_{a,i})
+reference.tex(,7429)  \leq s+i$ for all $i$.
+reference.tex(,7430) @end tex
 reference.tex(,7431) @item @strong{Note:}
 reference.tex(,7432) If applied to a non minimal resolution only an upper 
bound is returned.
 reference.tex(,7433) @*If the input to the commands @code{res} and @code{mres} 
is homogeneous
@@ -15898,6 +16481,12 @@
 reference.tex(,8160) @item @strong{Type:}
 reference.tex(,8161) intvec
 reference.tex(,8162) @item @strong{Purpose:}
+reference.tex(,8163) @tex
+reference.tex(,8164) computes the permutation {\tt v}
+reference.tex(,8165) which orders the ideal, resp.\ module, {\tt I} by its 
initial terms,
+reference.tex(,8166) starting with the smallest, that is, {\tt I(v[i]) < 
I(v[i+1])} for all
+reference.tex(,8167) {\tt i}.
+reference.tex(,8168) @end tex
 reference.tex(,8175) @item @strong{Example:}
 reference.tex(,8176) @smallexample
 reference.tex(,8177) @c reused example sortvec reference.doc:5565 
@@ -16026,10 +16615,20 @@
 reference.tex(,8326) computes a free resolution of an ideal or module with 
Schreyer's
 reference.tex(,8327) method. The ideal, resp.@: module, has to be a standard 
basis.
 reference.tex(,8328) More precisely, let M be given by a standard basis and
+reference.tex(,8329) @tex
+reference.tex(,8330) $A_1={\tt matrix}(M)$.
+reference.tex(,8331) @end tex
 reference.tex(,8335) Then @code{sres}
 reference.tex(,8336) computes a free resolution of
+reference.tex(,8344) @tex
+reference.tex(,8345) $coker(A_1)=F_0/M$
+reference.tex(,8346) $$...\longrightarrow F_2 
\buildrel{A_2}\over{\longrightarrow} F_1 \buildrel{A_1}\over{\longrightarrow} 
F_0\longrightarrow F_0/M\longrightarrow 0.$$
+reference.tex(,8347) @end tex
 reference.tex(,8348) If the int expression k is not zero then the computation 
stops after k steps
 reference.tex(,8349) and returns a list of modules (given by standard bases)
+reference.tex(,8350) @tex
+reference.tex(,8351) $M_i={\tt module}(A_i)$, i=1..k.
+reference.tex(,8352) @end tex
 reference.tex(,8356) @address@hidden(M,0)}
 reference.tex(,8357) returns a list of n modules where n is the number of 
variables of the basering.
 reference.tex(,8358) 
@@ -16040,6 +16639,9 @@
 reference.tex(,8363) @code{L[2]} is a standard basis with respect to the 
Schreyer ordering of
 reference.tex(,8364) the first syzygy
 reference.tex(,8365) module of @code{L[1]}, etc.
+reference.tex(,8369) @tex
+reference.tex(,8370) (${\tt L[i]}=M_i$
+reference.tex(,8371) @end tex
 reference.tex(,8372)  in the notations from above.)
 reference.tex(,8373) @item @strong{Note:}
 reference.tex(,8374) Accessing single elements of a resolution may require 
that some partial
@@ -16752,7 +17354,29 @@
 reference.tex(,9287) @item @strong{Type:}
 reference.tex(,9288) poly
 reference.tex(,9289) @item @strong{Purpose:}
+reference.tex(,9303) @tex
+reference.tex(,9304) {\tt vandermonde(p,v,d)} computes the (unique) polynomial 
of degree
+reference.tex(,9305) @code{d} with prescribed values {\tt v[1],...,v[N]} at 
the points
+reference.tex(,9306) {\tt p}$^0,\dots,$ {\tt p}$^{N-1}$, {\tt N=(d+1)}$^n$, 
$n$ the
+reference.tex(,9307) number of ring variables.
+reference.tex(,9308) 
+reference.tex(,9309) The returned polynomial is $\sum
+reference.tex(,9310) c_{\alpha_1\ldots\alpha_n}\cdot x_1^{\alpha_1} \cdot 
\dots \cdot
+reference.tex(,9311) x_n^{\alpha_n}$, where the coefficients
+reference.tex(,9312) $c_{\alpha_1\ldots\alpha_n}$ are the solution of the 
(transposed)
+reference.tex(,9313) Vandermonde system of linear equations
+reference.tex(,9314) $$ \sum_{\alpha_1+\ldots+\alpha_n\leq d} 
c_{\alpha_1\ldots\alpha_n} \cdot
+reference.tex(,9315) {\tt p}_1^{(k-1)\alpha_1}\cdot\dots\cdot {\tt 
p}_n^{(k-1)\alpha_n} =
+reference.tex(,9316) {\tt v}[k], \quad  k=1,\dots,{\tt N}.$$
+reference.tex(,9317) @end tex
 reference.tex(,9318) @item @strong{Note:}
+reference.tex(,9326) @tex
+reference.tex(,9327) the ground field has to be the field of rational
+reference.tex(,9328) numbers. Moreover, {\tt ncols(p)==}$n$, the number of 
variables in the
+reference.tex(,9329) basering, and all the given generators have to be numbers 
different from
+reference.tex(,9330) 0,1 or -1. Finally, {\tt ncols(v)==(d+1)$^n$}, and all 
given generators have
+reference.tex(,9331) to be numbers.
+reference.tex(,9332) @end tex
 reference.tex(,9333) @item @strong{Example:}
 reference.tex(,9334) @smallexample
 reference.tex(,9335) @c reused example vandermonde reference.doc:6304 
@@ -18398,7 +19022,20 @@
 examples.tex(,100) 
 examples.tex(,101) The Milnor number, resp.@: the Tjurina number, of a power
 examples.tex(,102) series f in
+examples.tex(,103) @tex
+examples.tex(,104) $K[[x_1,\ldots,x_n]]$
+examples.tex(,105) @end tex
 examples.tex(,109) is
+examples.tex(,116) @tex
+examples.tex(,117) $$
+examples.tex(,118) \hbox{milnor}(f) = 
\hbox{dim}_K(K[[x_1,\ldots,x_n]]/\hbox{jacob}(f)),
+examples.tex(,119) $$
+examples.tex(,120) respectively
+examples.tex(,121) $$
+examples.tex(,122) \hbox{tjurina}(f) = 
\hbox{dim}_K(K[[x_1,\ldots,x_n]]/((f)+\hbox{jacob}(f)))
+examples.tex(,123) $$
+examples.tex(,124) where
+examples.tex(,125) @end tex
 examples.tex(,126) @code{jacob(f)} is the ideal generated by the partials
 examples.tex(,127) of @code{f}. @code{tjurina(f)} is finite, if and only if 
@code{f} has an
 examples.tex(,128) isolated singularity. The same holds for @code{milnor(f)} if
@@ -18407,8 +19044,17 @@
 examples.tex(,131) 
 examples.tex(,132) @sc{Singular} cannot compute with infinite power series. 
But it can
 examples.tex(,133) work in
+examples.tex(,134) @tex
+examples.tex(,135) $\hbox{Loc}_{(x)}K[x_1,\ldots,x_n]$,
+examples.tex(,136) @end tex
 examples.tex(,140) the localization of
+examples.tex(,141) @tex
+examples.tex(,142) $K[x_1,\ldots,x_n]$
+examples.tex(,143) @end tex
 examples.tex(,147) at the maximal ideal
+examples.tex(,148) @tex
+examples.tex(,149) $(x_1,\ldots,x_n)$.
+examples.tex(,150) @end tex
 examples.tex(,154) To do this one has to define an
 examples.tex(,155) s-ordering like ds, Ds, ls, ws, Ws or an appropriate matrix
 examples.tex(,156) ordering (look at the manual to get information about the 
possible
@@ -18605,7 +19251,13 @@
 examples.tex(,349) 
 examples.tex(,350) The same computation which computes the Milnor, resp.@: the 
Tjurina,
 examples.tex(,351) number, but with ordering @code{dp} instead of @code{ds} 
(i.e., in
+examples.tex(,352) @tex
+examples.tex(,353) $K[x_1,\ldots,x_n]$
+examples.tex(,354) @end tex
 examples.tex(,358) instead of
+examples.tex(,359) @tex
+examples.tex(,360) $\hbox{Loc}_{(x)}K[x_1,\ldots,x_n])$
+examples.tex(,361) @end tex
 examples.tex(,365) gives:
 examples.tex(,366) @itemize @bullet
 examples.tex(,367) @item
@@ -18643,11 +19295,23 @@
 examples.tex(,399) @item
 examples.tex(,400) The result of the computation here (together with the 
previous one in
 examples.tex(,401)  @ref{Milnor and Tjurina}) shows that (for @code{t}=0)
+examples.tex(,402) @tex
+examples.tex(,403) $\hbox{dim}_K(\hbox{Loc}_{(x,y,z)}K[x,y,z]/\hbox{jacob}(f))$
+examples.tex(,404) @end tex
 examples.tex(,408) = 250 (previously computed) while
+examples.tex(,409) @tex
+examples.tex(,410) $\hbox{dim}_K(K[x,y,z]/\hbox{jacob}(f))$
+examples.tex(,411) @end tex
 examples.tex(,415) = 536. Hence @code{f} has 286 critical points,
 examples.tex(,416)   counted with multiplicity, outside the origin.
 examples.tex(,417)   Moreover, since
+examples.tex(,418) @tex
+examples.tex(,419) 
$\hbox{dim}_K(\hbox{Loc}_{(x,y,z)}K[x,y,z]/(\hbox{jacob}(f)+(f)))$
+examples.tex(,420) @end tex
 examples.tex(,424) = 195 =
+examples.tex(,425) @tex
+examples.tex(,426) $\hbox{dim}_K(K[x,y,z]/(\hbox{jacob}(f)+(f)))$,
+examples.tex(,427) @end tex
 examples.tex(,431) the affine surface @code{f}=0 is smooth outside the origin.
 examples.tex(,432) @end itemize
 examples.tex(,433) 
@@ -18676,27 +19340,72 @@
 examples.tex(,461) @cindex Saturation
 examples.tex(,462) 
 examples.tex(,463) Since in the example above, the ideal 
+examples.tex(,467) @tex
+examples.tex(,468) $j+(f)$
+examples.tex(,469) @end tex
 examples.tex(,470)  has the same @code{vdim}
 examples.tex(,471) in the polynomial ring and in the localization at 0 (each 
195),
 examples.tex(,472) 
+examples.tex(,476) @tex
+examples.tex(,477) $f=0$
+examples.tex(,478) @end tex
 examples.tex(,479)  is smooth outside 0.
 examples.tex(,480) Hence 
+examples.tex(,484) @tex
+examples.tex(,485) $j+(f)$
+examples.tex(,486) @end tex
 examples.tex(,487)  contains some power of the maximal ideal 
+examples.tex(,491) @tex
+examples.tex(,492) $m$
+examples.tex(,493) @end tex
 examples.tex(,494) . We shall
 examples.tex(,495) check this in a different manner:
 examples.tex(,496) For any two ideals 
+examples.tex(,500) @tex
+examples.tex(,501) $i, j$
+examples.tex(,502) @end tex
 examples.tex(,503)  in the basering 
+examples.tex(,507) @tex
+examples.tex(,508) $R$
+examples.tex(,509) @end tex
 examples.tex(,510)  let
+examples.tex(,511) @tex
+examples.tex(,512) $$
+examples.tex(,513) \hbox{sat}(i,j)=\{x\in R\;|\; \exists\;n\hbox{ s.t. }
+examples.tex(,514) x\cdot(j^n)\subseteq i\}
+examples.tex(,515) = \bigcup_{n=1}^\infty i:j^n$$
+examples.tex(,516) @end tex
 examples.tex(,521) @*denote the saturation of 
+examples.tex(,525) @tex
+examples.tex(,526) $i$
+examples.tex(,527) @end tex
 examples.tex(,528)  with respect to 
+examples.tex(,532) @tex
+examples.tex(,533) $j$
+examples.tex(,534) @end tex
 examples.tex(,535) . This defines,
 examples.tex(,536) geometrically, the closure of the complement of V(
+examples.tex(,540) @tex
+examples.tex(,541) $j$
+examples.tex(,542) @end tex
 examples.tex(,543) ) in V(
+examples.tex(,547) @tex
+examples.tex(,548) $i$
+examples.tex(,549) @end tex
 examples.tex(,550) )
 examples.tex(,551) (V(
+examples.tex(,555) @tex
+examples.tex(,556) $i$
+examples.tex(,557) @end tex
 examples.tex(,558) ) denotes the variety defined by 
+examples.tex(,562) @tex
+examples.tex(,563) $i$
+examples.tex(,564) @end tex
 examples.tex(,565) ).
 examples.tex(,566) In our case, 
+examples.tex(,570) @tex
+examples.tex(,571) $sat(j+(f),m)$
+examples.tex(,572) @end tex
 examples.tex(,573)  must be the whole ring, hence
 examples.tex(,574) generated by 1.
 examples.tex(,575) 
@@ -18836,13 +19545,25 @@
 examples.tex(,717) and compute over the ground field Q(t).
 examples.tex(,718) We compute the dimension at the generic point,
 examples.tex(,725) i.e.,
+examples.tex(,726) @tex
+examples.tex(,727) $dim_{Q(t)}Q(t)[x,y]/j$.
+examples.tex(,728) @end tex
 examples.tex(,733) (This gives the
 examples.tex(,734) same result as for the deformed ideal above. Hence, the 
above small
 examples.tex(,735) deformation was "generic".)
 examples.tex(,737) 
 examples.tex(,738) For almost all
+examples.tex(,739) @tex
+examples.tex(,740) $a \in Q$
+examples.tex(,741) @end tex
 examples.tex(,745) this is the same as
+examples.tex(,746) @tex
+examples.tex(,747) $dim_Q Q[x,y]/j_0$,
+examples.tex(,748) @end tex
 examples.tex(,752) where
+examples.tex(,753) @tex
+examples.tex(,754) $j_0=j|_{t=a}$.
+examples.tex(,755) @end tex
 examples.tex(,759) 
 examples.tex(,760) @smallexample
 examples.tex(,761) @c computed example Parameters examples.doc:579 
@@ -18876,8 +19597,17 @@
 examples.tex(,790) @cindex T2
 examples.tex(,791) 
 examples.tex(,792) 
+examples.tex(,796) @tex
+examples.tex(,797) $T^1$
+examples.tex(,798) @end tex
 examples.tex(,799) , resp.@: 
+examples.tex(,803) @tex
+examples.tex(,804) $T^2$
+examples.tex(,805) @end tex
 examples.tex(,806) , of an ideal 
+examples.tex(,810) @tex
+examples.tex(,811) $j$
+examples.tex(,812) @end tex
 examples.tex(,813)  usually denote the modules of
 examples.tex(,814) infinitesimal deformations, resp.@: of obstructions.
 examples.tex(,815) In @sc{Singular} there are procedures @code{T_1} and 
@code{T_2} in
@@ -19047,7 +19777,16 @@
 examples.tex(,985) singularity.
 examples.tex(,986) @item
 examples.tex(,987) The procedure @code{deform} in @code{sing.lib} returns a 
matrix whose columns
+examples.tex(,991) @tex
+examples.tex(,992) $h_1,\ldots,h_r$
+examples.tex(,993) @end tex
 examples.tex(,994) represent all 1st order deformations. More precisely, if
+examples.tex(,1000) @tex
+examples.tex(,1001) $I \subset R$ is the ideal generated by $f_1,...,f_s$, 
then any infinitesimal
+examples.tex(,1002) deformation of $R/I$ over $K[\varepsilon]/(\varepsilon^2)$ 
is given
+examples.tex(,1003) by $f+\varepsilon g$,
+examples.tex(,1004) where $f=(f_1,...,f_s)$, $g$ a $K$-linear combination of 
the $h_i$.
+examples.tex(,1005) @end tex
 examples.tex(,1006) 
 examples.tex(,1007) @item
 examples.tex(,1008) The procedure @code{versal} in @code{deform.lib} computes 
a formal
@@ -19167,12 +19906,24 @@
 examples.tex(,1130) @cindex Finite fields
 examples.tex(,1131) 
 examples.tex(,1132) We define a variety in 
+examples.tex(,1136) @tex
+examples.tex(,1137) $n$
+examples.tex(,1138) @end tex
 examples.tex(,1139) -space of codimension 2 defined by
 examples.tex(,1140) polynomials of degree 
+examples.tex(,1144) @tex
+examples.tex(,1145) $d$
+examples.tex(,1146) @end tex
 examples.tex(,1147)  with generic coefficients over the prime
 examples.tex(,1148) field 
+examples.tex(,1152) @tex
+examples.tex(,1153) $Z/p$
+examples.tex(,1154) @end tex
 examples.tex(,1155)  and look for zeros on the torus. First over the prime
 examples.tex(,1156) field and then in the finite extension field with
+examples.tex(,1157) @tex
+examples.tex(,1158) $p^k$
+examples.tex(,1159) @end tex
 examples.tex(,1163) elements.
 examples.tex(,1164) In general there will be many more solutions in the second 
case.
 examples.tex(,1165) (Since the @sc{Singular} language is interpreted, the 
evaluation of many
@@ -19349,9 +20100,24 @@
 examples.tex(,1342) 
 examples.tex(,1343) Elimination is the algebraic counterpart of the geometric 
concept of
 examples.tex(,1344) projection. If
+examples.tex(,1345) @tex
+examples.tex(,1346) $f=(f_1,\ldots,f_n):k^r\rightarrow k^n$
+examples.tex(,1347) @end tex
 examples.tex(,1351) is a polynomial map,
 examples.tex(,1352) the Zariski-closure of the image is the zero-set of the 
ideal
+examples.tex(,1353) @tex
+examples.tex(,1354) $$
+examples.tex(,1355) \displaylines{
+examples.tex(,1356) j=J \cap k[x_1,\ldots,x_n], \;\quad\hbox{\rm where}\cr
+examples.tex(,1357) 
J=(x_1-f_1(t_1,\ldots,t_r),\ldots,x_n-f_n(t_1,\ldots,t_r))\subseteq
+examples.tex(,1358) k[t_1,\ldots,t_r,x_1,\ldots,x_n]
+examples.tex(,1359) }
+examples.tex(,1360) $$
+examples.tex(,1361) @end tex
 examples.tex(,1370) i.e, of the ideal j obtained from J by eliminating the 
variables
+examples.tex(,1371) @tex
+examples.tex(,1372) $t_1,\ldots,t_r$.
+examples.tex(,1373) @end tex
 examples.tex(,1377) This can be done by computing a standard basis of J with 
respect to a product
 examples.tex(,1378) ordering where the block of t-variables precedes the block 
of
 examples.tex(,1379) x-variables and then selecting those polynomials which do 
not contain
@@ -19363,13 +20129,23 @@
 examples.tex(,1385) 
 examples.tex(,1386) @strong{WARNING:} In the case of a local or a mixed 
ordering, elimination needs special
 examples.tex(,1387) care. f may be considered as a map of germs
+examples.tex(,1388) @tex
+examples.tex(,1389) $f:(k^r,0)\rightarrow(k^n,0)$,
+examples.tex(,1390) @end tex
 examples.tex(,1394) but even
 examples.tex(,1395) if this map germ is finite, we are in general not able to 
compute the image
 examples.tex(,1396) germ because for this we would need an implementation of 
the Weierstrass
 examples.tex(,1397) preparation theorem. What we can compute, and what 
@code{eliminate} actually does,
 examples.tex(,1398) is the following: let V(J) be the zero-set of J in
+examples.tex(,1399) @tex
+examples.tex(,1400) $k^r\times(k^n,0)$,
+examples.tex(,1401) @end tex
 examples.tex(,1405) then the
 examples.tex(,1406) closure of the image of V(J) under the projection
+examples.tex(,1407) @tex
+examples.tex(,1408) $$\hbox{pr}:k^r\times(k^n,0)\rightarrow(k^n,0)$$
+examples.tex(,1409) can be computed.
+examples.tex(,1410) @end tex
 examples.tex(,1415) Note that this germ contains also those components
 examples.tex(,1416) of V(J) which meet the fiber of pr outside the origin.
 examples.tex(,1417) This is achieved by an ordering with the block of 
t-variables having a
@@ -19392,6 +20168,9 @@
 examples.tex(,1434) @enumerate
 examples.tex(,1435) @item
 examples.tex(,1436) First we compute the equations of the simple space curve
+examples.tex(,1437) @tex
+examples.tex(,1438) $\hbox{T}[7]^\prime$
+examples.tex(,1439) @end tex
 examples.tex(,1443)    consisting of two tangential cusps given in parametric 
form.
 examples.tex(,1444) @item
 examples.tex(,1445) We compute weights for the equations such that the
@@ -19399,6 +20178,9 @@
 examples.tex(,1447) @item
 examples.tex(,1448) Then we compute the tangent developable of the rational
 examples.tex(,1449)    normal curve in
+examples.tex(,1450) @tex
+examples.tex(,1451) $P^4$.
+examples.tex(,1452) @end tex
 examples.tex(,1456) @end enumerate
 examples.tex(,1457) 
 examples.tex(,1458) @smallexample
@@ -19548,11 +20330,20 @@
 examples.tex(,1621) 
 examples.tex(,1622) Now let's look at an example which uses resolutions: The 
Hilbert-Burch
 examples.tex(,1623) theorem says that the ideal i of a reduced curve in
+examples.tex(,1624) @tex
+examples.tex(,1625) $K^3$
+examples.tex(,1626) @end tex
 examples.tex(,1630) has a free resolution of length 2 and that i is given by 
the 2x2 minors
 examples.tex(,1631) of the 2nd matrix in the resolution.
 examples.tex(,1632) We test this for two transversal cusps in
+examples.tex(,1633) @tex
+examples.tex(,1634) $K^3$.
+examples.tex(,1635) @end tex
 examples.tex(,1639) Afterwards we compute the resolution of the ideal j of the 
tangent developable
 examples.tex(,1640) of the rational normal curve in
+examples.tex(,1641) @tex
+examples.tex(,1642) $P^4$
+examples.tex(,1643) @end tex
 examples.tex(,1647) from above.
 examples.tex(,1648) Finally we demonstrate the use of the type 
@code{resolution} in connection with
 examples.tex(,1649) the @code{lres} command.
@@ -19673,24 +20464,45 @@
 examples.tex(,1765) @cindex  Ext
 examples.tex(,1766) 
 examples.tex(,1767) We start by showing how to calculate the 
+examples.tex(,1771) @tex
+examples.tex(,1772) $n$
+examples.tex(,1773) @end tex
 examples.tex(,1774) -th Ext group of an
 examples.tex(,1775) ideal. The ingredients to do this are by the definition of 
Ext the
 examples.tex(,1776) following: calculate a (minimal) resolution at least up to 
length
 examples.tex(,1777) 
+examples.tex(,1781) @tex
+examples.tex(,1782) $n$
+examples.tex(,1783) @end tex
 examples.tex(,1784) , apply the Hom-functor, and calculate the 
+examples.tex(,1788) @tex
+examples.tex(,1789) $n$
+examples.tex(,1790) @end tex
 examples.tex(,1791) -th homology
 examples.tex(,1792) group, that is form the quotient
+examples.tex(,1793) @tex
+examples.tex(,1794) $\hbox{\rm ker} / \hbox{\rm Im}$
+examples.tex(,1795) @end tex
 examples.tex(,1799) in the resolution sequence.
 examples.tex(,1800) 
 examples.tex(,1801) The Hom functor is given simply by transposing (hence 
dualizing) the
 examples.tex(,1802) module or the corresponding matrix with the command 
@code{transpose}.
 examples.tex(,1803) The image of the 
+examples.tex(,1807) @tex
+examples.tex(,1808) $(n-1)$
+examples.tex(,1809) @end tex
 examples.tex(,1810) -st map is generated by the columns of the
 examples.tex(,1811) corresponding matrix. To calculate the kernel apply the 
command
 examples.tex(,1812) @code{syz} at the 
+examples.tex(,1816) @tex
+examples.tex(,1817) $(n-1)$
+examples.tex(,1818) @end tex
 examples.tex(,1819) -st transposed entry of the resolution.
 examples.tex(,1820) Finally, the quotient is obtained by the command 
@code{modulo}, which
 examples.tex(,1821) gives for two modules A = ker, B = Im the module of 
relations of
+examples.tex(,1822) @tex
+examples.tex(,1823) $A/(A \cap B)$
+examples.tex(,1824) @end tex
 examples.tex(,1828) in the usual way. As we have a chain complex this is 
obviously the same
 examples.tex(,1829) as ker/Im.
 examples.tex(,1830) 
@@ -19729,17 +20541,44 @@
 examples.tex(,1863) example.
 examples.tex(,1864) 
 examples.tex(,1865) If 
+examples.tex(,1869) @tex
+examples.tex(,1870) $M$
+examples.tex(,1871) @end tex
 examples.tex(,1872)  is a module, then
+examples.tex(,1873) @tex
+examples.tex(,1874) $\hbox{Ext}^1(M,M)$, resp.\ $\hbox{Ext}^2(M,M)$,
+examples.tex(,1875) @end tex
 examples.tex(,1879) are the modules of infinitesimal deformations, resp.@: of 
obstructions, of
 examples.tex(,1880) 
+examples.tex(,1884) @tex
+examples.tex(,1885) $M$
+examples.tex(,1886) @end tex
 examples.tex(,1887)  (like T1 and T2 for a singularity).  Similar to the 
treatment
 examples.tex(,1888) for singularities, the semiuniversal deformation of 
+examples.tex(,1892) @tex
+examples.tex(,1893) $M$
+examples.tex(,1894) @end tex
 examples.tex(,1895)  can be
 examples.tex(,1896) computed (if
+examples.tex(,1897) @tex
+examples.tex(,1898) $\hbox{Ext}^1$
+examples.tex(,1899) @end tex
 examples.tex(,1903) is finite dimensional) with the help of
+examples.tex(,1904) @tex
+examples.tex(,1905) $\hbox{Ext}^1$, $\hbox{Ext}^2$
+examples.tex(,1906) @end tex
 examples.tex(,1910) and the cup product. There is an extra procedure for
+examples.tex(,1911) @tex
+examples.tex(,1912) $\hbox{Ext}^k(R/J,R)$
+examples.tex(,1913) @end tex
 examples.tex(,1917) if 
+examples.tex(,1921) @tex
+examples.tex(,1922) $J$
+examples.tex(,1923) @end tex
 examples.tex(,1924)  is an ideal in 
+examples.tex(,1928) @tex
+examples.tex(,1929) $R$
+examples.tex(,1930) @end tex
 examples.tex(,1931)  since this is faster than the
 examples.tex(,1932) general Ext.
 examples.tex(,1933) 
@@ -19747,15 +20586,42 @@
 examples.tex(,1935) @itemize @bullet
 examples.tex(,1936) @item
 examples.tex(,1937) the infinitesimal deformations
+examples.tex(,1938) @tex
+examples.tex(,1939) ($=\hbox{Ext}^1(K,K)$)
+examples.tex(,1940) @end tex
 examples.tex(,1944) and obstructions
+examples.tex(,1945) @tex
+examples.tex(,1946) ($=\hbox{Ext}^2(K,K)$)
+examples.tex(,1947) @end tex
 examples.tex(,1951) of the residue field 
+examples.tex(,1955) @tex
+examples.tex(,1956) $K=R/m$
+examples.tex(,1957) @end tex
 examples.tex(,1958)  of an ordinary cusp,
+examples.tex(,1959) @tex
+examples.tex(,1960) $R=Loc_m K[x,y]/(x^2-y^3)$, $m=(x,y)$.
+examples.tex(,1961) @end tex
 examples.tex(,1965) To compute
+examples.tex(,1966) @tex
+examples.tex(,1967) $\hbox{Ext}^1(m,m)$
+examples.tex(,1968) @end tex
 examples.tex(,1972) we have to apply @code{Ext(1,syz(m),syz(m))} with
 examples.tex(,1973) @code{syz(m)} the first syzygy module of 
+examples.tex(,1977) @tex
+examples.tex(,1978) $m$
+examples.tex(,1979) @end tex
 examples.tex(,1980) , which is isomorphic to
+examples.tex(,1981) @tex
+examples.tex(,1982) $\hbox{Ext}^2(K,K)$.
+examples.tex(,1983) @end tex
 examples.tex(,1987) @item
+examples.tex(,1988) @tex
+examples.tex(,1989) $\hbox{Ext}^k(R/i,R)$
+examples.tex(,1990) @end tex
 examples.tex(,1994) for some ideal 
+examples.tex(,1998) @tex
+examples.tex(,1999) $i$
+examples.tex(,2000) @end tex
 examples.tex(,2001)  and with an extra option.
 examples.tex(,2002) @end itemize
 examples.tex(,2003) 
@@ -19851,18 +20717,45 @@
 examples.tex(,2095) @cindex Polar curves
 examples.tex(,2096) 
 examples.tex(,2097) The polar curve of a hypersurface given by a polynomial
+examples.tex(,2098) @tex
+examples.tex(,2099) $f\in k[x_1,\ldots,x_n,t]$
+examples.tex(,2100) @end tex
 examples.tex(,2104) with respect to 
+examples.tex(,2108) @tex
+examples.tex(,2109) $t$
+examples.tex(,2110) @end tex
 examples.tex(,2111)  (we may consider 
+examples.tex(,2115) @tex
+examples.tex(,2116) $f=0$
+examples.tex(,2117) @end tex
 examples.tex(,2118)  as a family of
 examples.tex(,2119) hypersurfaces parametrized by 
+examples.tex(,2123) @tex
+examples.tex(,2124) $t$
+examples.tex(,2125) @end tex
 examples.tex(,2126) ) is defined as the Zariski
 examples.tex(,2127) closure of
+examples.tex(,2128) @tex
+examples.tex(,2129) $V(\partial f/\partial x_1,\ldots,\partial f/\partial x_n) 
\setminus V(f)$
+examples.tex(,2130) @end tex
 examples.tex(,2134) if this happens to be a curve.  Some authors consider
+examples.tex(,2135) @tex
+examples.tex(,2136) $V(\partial f/\partial x_1,\ldots,\partial f/\partial x_n)$
+examples.tex(,2137) @end tex
 examples.tex(,2141) itself as polar curve.
 examples.tex(,2142) 
 examples.tex(,2143) We may consider projective hypersurfaces
+examples.tex(,2144) @tex
+examples.tex(,2145) (in $P^n$),
+examples.tex(,2146) @end tex
 examples.tex(,2150) affine hypersurfaces
+examples.tex(,2151) @tex
+examples.tex(,2152) (in $k^n$)
+examples.tex(,2153) @end tex
 examples.tex(,2157) or germs of hypersurfaces
+examples.tex(,2158) @tex
+examples.tex(,2159) (in $(k^n,0)$),
+examples.tex(,2160) @end tex
 examples.tex(,2164) getting in this way
 examples.tex(,2165) projective, affine or local polar curves.
 examples.tex(,2166) 
@@ -19975,12 +20868,24 @@
 examples.tex(,2275) @cindex Depth
 examples.tex(,2276) 
 examples.tex(,2277) We compute the depth of the module of Kaehler differentials
+examples.tex(,2278) @tex
+examples.tex(,2279) D$_k$(R)
+examples.tex(,2280) @end tex
 examples.tex(,2284) of the variety defined by the 
+examples.tex(,2288) @tex
+examples.tex(,2289) $(m+1)$
+examples.tex(,2290) @end tex
 examples.tex(,2291) -minors of a generic symmetric
+examples.tex(,2292) @tex
+examples.tex(,2293) $(n \times n)$-matrix.
+examples.tex(,2294) @end tex
 examples.tex(,2298) We do this by computing the resolution over the polynomial
 examples.tex(,2299) ring.  Then, by the Auslander-Buchsbaum formula, the depth 
is equal to
 examples.tex(,2300) the number of variables minus the length of a minimal 
resolution.  This
 examples.tex(,2301) example was suggested by U.@: Vetter in order to check 
whether his bound
+examples.tex(,2302) @tex
+examples.tex(,2303) $\hbox{depth}(\hbox{D}_k(R))\geq m(m+1)/2 + m-1$
+examples.tex(,2304) @end tex
 examples.tex(,2308) could be improved.
 examples.tex(,2309) 
 examples.tex(,2310) @smallexample
@@ -20149,6 +21054,9 @@
 examples.tex(,2482) 
 examples.tex(,2483) We work in characteristic 0 and use the Lie algebra 
generated by one
 examples.tex(,2484) vector field of the form
+examples.tex(,2485) @tex
+examples.tex(,2486) $\sum x_i \partial /\partial x_{i+1}$.
+examples.tex(,2487) @end tex
 examples.tex(,2491) @smallexample
 examples.tex(,2492) @c computed example G_a_-Invariants examples.doc:1783 
 examples.tex(,2493)   LIB "ainvar.lib";
@@ -20314,6 +21222,9 @@
 examples.tex(,2662) 
 examples.tex(,2663) We compute the Hamburger-Noether expansion of a plane curve
 examples.tex(,2664) singularity given by a polynomial 
+examples.tex(,2668) @tex
+examples.tex(,2669) $f$
+examples.tex(,2670) @end tex
 examples.tex(,2671)  in two variables. This is a
 examples.tex(,2672) matrix which allows to compute the parametrization (up to 
a given order)
 examples.tex(,2673) and all numerical invariants like the
@@ -20331,7 +21242,13 @@
 examples.tex(,2685) @end itemize
 examples.tex(,2686) Besides this, the library contains procedures to compute 
the Newton
 examples.tex(,2687) polygon of 
+examples.tex(,2691) @tex
+examples.tex(,2692) $f$
+examples.tex(,2693) @end tex
 examples.tex(,2694) , the squarefree part of 
+examples.tex(,2698) @tex
+examples.tex(,2699) $f$
+examples.tex(,2700) @end tex
 examples.tex(,2701)  and a procedure to
 examples.tex(,2702) convert one set of invariants to another.
 examples.tex(,2703) 
@@ -20556,9 +21473,15 @@
 examples.tex(,2926) @section Normalization
 examples.tex(,2927) @cindex Normalization
 examples.tex(,2928) The normalization will be computed for a reduced ring 
+examples.tex(,2932) @tex
+examples.tex(,2933) $R/I$
+examples.tex(,2934) @end tex
 examples.tex(,2935) . The
 examples.tex(,2936) result is a list of rings; ideals are always called 
@code{norid} in the
 examples.tex(,2937) rings of this list. The normalization of 
+examples.tex(,2941) @tex
+examples.tex(,2942) $R/I$
+examples.tex(,2943) @end tex
 examples.tex(,2944)  is the product of
 examples.tex(,2945) the factor rings of the rings in the list divided out by 
the ideals
 examples.tex(,2946) @code{norid}.
@@ -20762,12 +21685,41 @@
 examples.tex(,3152) @section Kernel of module homomorphisms
 examples.tex(,3153) @cindex Kernel of module homomorphisms
 examples.tex(,3154) Let 
+examples.tex(,3158) @tex
+examples.tex(,3159) $A$
+examples.tex(,3160) @end tex
 examples.tex(,3161) , 
+examples.tex(,3165) @tex
+examples.tex(,3166) $B$
+examples.tex(,3167) @end tex
 examples.tex(,3168)  be two matrices of size
+examples.tex(,3169) @tex
+examples.tex(,3170) $m\times r$ and $m\times s$
+examples.tex(,3171) @end tex
 examples.tex(,3175) over the ring 
+examples.tex(,3179) @tex
+examples.tex(,3180) $R$
+examples.tex(,3181) @end tex
 examples.tex(,3182)  and consider the corresponding maps
+examples.tex(,3183) @tex
+examples.tex(,3184) $$
+examples.tex(,3185) R^r \buildrel{A}\over{\longrightarrow}
+examples.tex(,3186) R^m \buildrel{B}\over{\longleftarrow} R^s\;.
+examples.tex(,3187) $$
+examples.tex(,3188) @end tex
 examples.tex(,3202) We want to compute the kernel of the map
+examples.tex(,3203) @tex
+examples.tex(,3204) $R^r \buildrel{A}\over{\longrightarrow}
+examples.tex(,3205) R^m\longrightarrow
+examples.tex(,3206) R^m/\hbox{Im}(B) \;.$
+examples.tex(,3207) @end tex
 examples.tex(,3216) This can be done using the @code{modulo} command:
+examples.tex(,3217) @tex
+examples.tex(,3218) $$
+examples.tex(,3219) \hbox{\tt modulo}(A,B)=\hbox{ker}(R^r
+examples.tex(,3220) \buildrel{A}\over{\longrightarrow}R^m/\hbox{Im}(B)) \; .
+examples.tex(,3221) $$
+examples.tex(,3222) @end tex
 examples.tex(,3231) 
 examples.tex(,3232) @smallexample
 examples.tex(,3233) @c computed example Kernel_of_module_homomorphisms 
examples.doc:2196 
@@ -20785,22 +21737,56 @@
 examples.tex(,3250) @section Algebraic dependence
 examples.tex(,3251) @cindex Algebraic dependence
 examples.tex(,3252) Let
+examples.tex(,3253) @tex
+examples.tex(,3254) $g$, $f_1$, \dots, $f_r\in K[x_1,\ldots,x_n]$.
+examples.tex(,3255) @end tex
 examples.tex(,3259) We want to check whether
 examples.tex(,3260) @enumerate
 examples.tex(,3261) @item
+examples.tex(,3262) @tex
+examples.tex(,3263) $f_1$, \dots, $f_r$
+examples.tex(,3264) @end tex
 examples.tex(,3268) are algebraically dependent.
 examples.tex(,3269) 
 examples.tex(,3270) Let
+examples.tex(,3271) @tex
+examples.tex(,3272) $I=\langle Y_1-f_1,\ldots,Y_r-f_r \rangle \subseteq
+examples.tex(,3273) K[x_1,\ldots,x_n,Y_1,\ldots,Y_r]$.
+examples.tex(,3274) @end tex
 examples.tex(,3282) Then
+examples.tex(,3283) @tex
+examples.tex(,3284) $I \cap K[Y_1,\ldots,Y_r]$
+examples.tex(,3285) @end tex
 examples.tex(,3289) are the algebraic relations between
+examples.tex(,3290) @tex
+examples.tex(,3291) $f_1$, \dots, $f_r$.
+examples.tex(,3292) @end tex
 examples.tex(,3296) 
 examples.tex(,3297) @item
+examples.tex(,3298) @tex
+examples.tex(,3299) $g \in K [f_1,\ldots,f_r]$.
+examples.tex(,3300) @end tex
 examples.tex(,3304) 
+examples.tex(,3305) @tex
+examples.tex(,3306) $g \in K[f_1,\ldots,f_r]$
+examples.tex(,3307) @end tex
 examples.tex(,3311) if and only if the normal form of 
+examples.tex(,3315) @tex
+examples.tex(,3316) $g$
+examples.tex(,3317) @end tex
 examples.tex(,3318)  with respect to 
+examples.tex(,3322) @tex
+examples.tex(,3323) $I$
+examples.tex(,3324) @end tex
 examples.tex(,3325)  and a
 examples.tex(,3326) block ordering with respect to
+examples.tex(,3327) @tex
+examples.tex(,3328) $X=(x_1,\ldots,x_n)$ and $Y=(Y_1,\ldots,Y_r)$ with $X>Y$
+examples.tex(,3329) @end tex
 examples.tex(,3333) is in 
+examples.tex(,3337) @tex
+examples.tex(,3338) $K[Y]$
+examples.tex(,3339) @end tex
 examples.tex(,3340) .
 examples.tex(,3341) @end enumerate
 examples.tex(,3342) 
@@ -21141,35 +22127,83 @@
 pdata.tex(,53) A vector  in @sc{Singular} is always an element of a free 
module over the
 pdata.tex(,54) basering. It is given as a list of polynomials in one of the 
following
 pdata.tex(,55) formats
+pdata.tex(,56) @tex
+pdata.tex(,57) $[f_1,...,f_n]$ or $f_1*gen(1)+...+f_n*gen(n)$, where $gen(i)$
+pdata.tex(,58) @end tex
 pdata.tex(,62) denotes the i-th canonical generator of a free module (with 1 
at place i and
 pdata.tex(,63) 0 everywhere else).
 pdata.tex(,64) Both forms are equivalent. A vector is internally represented in
 pdata.tex(,65) the second form with the
+pdata.tex(,66) @tex
+pdata.tex(,67) $gen(i)$
+pdata.tex(,68) @end tex
 pdata.tex(,72) being "special" ring variables, ordered accordingly to the 
monomial ordering.
 pdata.tex(,73) Therefore, the form
+pdata.tex(,74) @tex
+pdata.tex(,75) $[f_1,...,f_n]$
+pdata.tex(,76) @end tex
 pdata.tex(,80) is given as output only if the monomial ordering gives priority 
to the
 pdata.tex(,81) component, i.e@:., is of the form @code{(c,...)} (see 
@ref{Module
 pdata.tex(,82) orderings}).  However, in any case the procedure @code{show} 
from the
 pdata.tex(,83) library @code{inout.lib} displays the bracket format.
 pdata.tex(,84) 
 pdata.tex(,85) A vector
+pdata.tex(,86) @tex
+pdata.tex(,87) $v=[f_1,...,f_n]$
+pdata.tex(,88) @end tex
 pdata.tex(,92) should always be considered as a column vector in a free module
 pdata.tex(,93) of rank equal to
+pdata.tex(,94) @tex
+pdata.tex(,95) nrows($v$)
+pdata.tex(,96) @end tex
 pdata.tex(,100) where 
+pdata.tex(,101) @tex
+pdata.tex(,102) nrows($v$)
+pdata.tex(,103) @end tex
 pdata.tex(,107) is equal to the maximal index 
+pdata.tex(,108) @tex
+pdata.tex(,109) $r$
+pdata.tex(,110) @end tex
 pdata.tex(,114) such that
+pdata.tex(,115) @tex
+pdata.tex(,116) $f_r \not= 0$.
+pdata.tex(,117) @end tex
 pdata.tex(,121) This is due to the fact, that internally 
+pdata.tex(,122) @tex
+pdata.tex(,123) $v$
+pdata.tex(,124) @end tex
 pdata.tex(,128) is a polynomial in a sparse representation, i.e.,
+pdata.tex(,129) @tex
+pdata.tex(,130) $f_i*gen(i)$
+pdata.tex(,131) @end tex
 pdata.tex(,135) is not stored if
+pdata.tex(,136) @tex
+pdata.tex(,137) $f_i=0$
+pdata.tex(,138) @end tex
 pdata.tex(,142) (for reasons of efficiency), hence the last 0-entries of 
+pdata.tex(,143) @tex
+pdata.tex(,144) $v$
+pdata.tex(,145) @end tex
 pdata.tex(,149) are lost.
 pdata.tex(,150) Only more complex structures are able to keep the rank.
 pdata.tex(,151) 
 pdata.tex(,152) A module 
+pdata.tex(,153) @tex
+pdata.tex(,154) $M$
+pdata.tex(,155) @end tex
 pdata.tex(,159) in @sc{Singular} is given by a list of vectors
+pdata.tex(,160) @tex
+pdata.tex(,161) $v_1,...,v_k$
+pdata.tex(,162) @end tex
 pdata.tex(,166) which generate the module as a submodule of the free module of 
rank
 pdata.tex(,167) equal to 
+pdata.tex(,168) @tex
+pdata.tex(,169) nrows($M$)
+pdata.tex(,170) @end tex
 pdata.tex(,174) which is the maximum of
+pdata.tex(,175) @tex
+pdata.tex(,176) nrows($v_i$).
+pdata.tex(,177) @end tex
 pdata.tex(,181) 
 pdata.tex(,182) If one wants to create a module with a larger rank than given 
by its
 pdata.tex(,183) generators, one has to use the command 
@code{attrib(M,"rank",r)} (see
@@ -21184,33 +22218,84 @@
 pdata.tex(,192) By the above remarks it might appear that @sc{Singular} is 
only able to handle
 pdata.tex(,193) submodules of a free module. However, this is not true. 
@sc{Singular}
 pdata.tex(,194) can compute with any finitely generated module over the 
basering 
+pdata.tex(,195) @tex
+pdata.tex(,196) $R$.
+pdata.tex(,197) @end tex 
 pdata.tex(,201) Such a module, say 
+pdata.tex(,202) @tex
+pdata.tex(,203) $N$,
+pdata.tex(,204) @end tex
 pdata.tex(,208) is not represented by its generators but by its
 pdata.tex(,209) (generators and) relations. This means that
+pdata.tex(,210) @tex
+pdata.tex(,211) $N = R^n/M$ where $n$ 
+pdata.tex(,212) @end tex
 pdata.tex(,216) is the number of generators of 
+pdata.tex(,217) @tex
+pdata.tex(,218) $N$ and $M \subseteq R^n$
+pdata.tex(,219) @end tex
 pdata.tex(,223) is the module of relations.
 pdata.tex(,224) In other words, defining  a module 
+pdata.tex(,225) @tex
+pdata.tex(,226) $M$
+pdata.tex(,227) @end tex
 pdata.tex(,231) as a submodule of a free module
+pdata.tex(,232) @tex
+pdata.tex(,233) $R^n$
+pdata.tex(,234) @end tex
 pdata.tex(,238) can also be considered as the definition of
+pdata.tex(,239) @tex
+pdata.tex(,240) $N = R^n/M$.
+pdata.tex(,241) @end tex
 pdata.tex(,245) 
 pdata.tex(,246) Note that most functions, when applied to a module 
+pdata.tex(,247) @tex
+pdata.tex(,248) $M$,
+pdata.tex(,249) @end tex
 pdata.tex(,253) really deal with
+pdata.tex(,254) @tex
+pdata.tex(,255) $M$.
+pdata.tex(,256) @end tex
 pdata.tex(,260) However, there are some functions which deal with 
+pdata.tex(,261) @tex
+pdata.tex(,262) $N = R^n/M$ instead of $M$.
+pdata.tex(,263) @end tex
 pdata.tex(,267) 
 pdata.tex(,268) For example, @code{std(M)} computes a standard basis of 
+pdata.tex(,269) @tex
+pdata.tex(,270) $M$
+pdata.tex(,271) @end tex
 pdata.tex(,275) (and thus gives another representation of 
+pdata.tex(,276) @tex
+pdata.tex(,277) $N$ as $N = R^n/$std($M$)).
+pdata.tex(,278) @end tex
 pdata.tex(,282) However, @code{dim(M)}, resp.@: @code{vdim(M)}, returns
+pdata.tex(,283) @tex
+pdata.tex(,284) dim$(R^n/M)$, resp.@: dim$_k(R^n/M)$
+pdata.tex(,285) @end tex
 pdata.tex(,289) (if M is given by a standard basis).
 pdata.tex(,290) 
 pdata.tex(,291) The function @code{syz(M)}  returns the first syzygy module of 
+pdata.tex(,292) @tex
+pdata.tex(,293) $M$,
+pdata.tex(,294) @end tex
 pdata.tex(,298) i.e@:., the module 
 pdata.tex(,299) of relations of the given generators of 
+pdata.tex(,300) @tex
+pdata.tex(,301) $M$
+pdata.tex(,302) @end tex
 pdata.tex(,306) which is equal to the second syzygy module of 
+pdata.tex(,307) @tex
+pdata.tex(,308) $N$.
+pdata.tex(,309) @end tex
 pdata.tex(,313) Refer to the description of each function in
 pdata.tex(,314) @ref{Functions} to get information which module the function 
deals with.
 pdata.tex(,315) 
 pdata.tex(,316) The numbering in @code{res} and other commands for computing 
resolutions
 pdata.tex(,317) refers to a resolution of
+pdata.tex(,318) @tex
+pdata.tex(,319) $N = R^n/M$
+pdata.tex(,320) @end tex
 pdata.tex(,324) (see @ref{res}; @ref{Syzygies and resolutions}).
 pdata.tex(,325) 
 pdata.tex(,326) It is possible to compute in any field which is a valid ground 
field in
@@ -21254,13 +22339,28 @@
 pdata.tex(,364) flexibility might also be confusing for the novice user.  
Therefore, we
 pdata.tex(,365) recommend to those not familiar with monomial orderings to 
generally use
 pdata.tex(,366) the ordering @code{dp} for computations in the polynomial ring
+pdata.tex(,367) @tex
+pdata.tex(,368) $K[x_1,\ldots,x_n]$, 
+pdata.tex(,369) @end tex
 pdata.tex(,373) resp.@:  @code{ds} for computations in the localization 
+pdata.tex(,374) @tex
+pdata.tex(,375) $\hbox{Loc}_{(x)}K[x_1,\ldots,x_n]$.
+pdata.tex(,376) @end tex
 pdata.tex(,380) 
 pdata.tex(,381) For inhomogeneous input ideals,  standard (resp.@: groebner) 
bases
 pdata.tex(,382) computations are generally faster 
 pdata.tex(,383) with the orderings 
+pdata.tex(,384) @tex
+pdata.tex(,385) $\hbox{Wp}(w_1, \ldots, w_n)$
+pdata.tex(,386) @end tex
 pdata.tex(,390) (resp.@: 
+pdata.tex(,391) @tex
+pdata.tex(,392) $\hbox{Ws}(w_1, \ldots, w_n)$)
+pdata.tex(,393) @end tex
 pdata.tex(,397) if the input is quasihomogeneous w.r.t. the weights 
+pdata.tex(,398) @tex
+pdata.tex(,399) $w_1$, $\ldots$, $w_n$ of $x_1$, $\ldots$, $x_n$. 
+pdata.tex(,400) @end tex
 pdata.tex(,404) 
 pdata.tex(,405) If the output needs to be "triangular" (resp.@: 
"block-triangular"), the
 pdata.tex(,406) lexicographical ordering @code{lp} (resp.@: lexicographical
@@ -21275,12 +22375,39 @@
 pdata.tex(,415) @cindex term orderings
 pdata.tex(,416) @cindex monomial orderings
 pdata.tex(,417) 
+pdata.tex(,418) @tex
+pdata.tex(,419) A monomial ordering (term ordering) on $K[x_1, \ldots, x_n]$ is
+pdata.tex(,420) a total ordering $<$ on the
+pdata.tex(,421) set of monomials (power products) $\{x^\alpha \mid \alpha \in 
\bf{N}^n\}$
+pdata.tex(,422) which is compatible with the
+pdata.tex(,423) natural semigroup structure, i.e., $x^\alpha < x^\beta$ 
implies $x^\gamma
+pdata.tex(,424) x^\alpha < x^\gamma x^\beta$ for any $\gamma \in \bf{N}^n$.
+pdata.tex(,425) We do not require
+pdata.tex(,426) $<$ to be  a well ordering.
+pdata.tex(,427) @end tex
 pdata.tex(,439)  See the literature cited in @ref{References}.
 pdata.tex(,441) 
 pdata.tex(,442) It is known that any monomial ordering can be represented by a 
matrix 
+pdata.tex(,443) @tex
+pdata.tex(,444) $M$ in $GL(n,R)$,
+pdata.tex(,445) @end tex
 pdata.tex(,449) but, of course, only integer coefficients are of relevance in
 pdata.tex(,450) practice.
 pdata.tex(,451) 
+pdata.tex(,452) @tex
+pdata.tex(,453) Global orderings are well orderings (i.e.,  \hbox{$1 < x_i$} 
for each variable
+pdata.tex(,454) $x_i$), local orderings satisfy $1 > x_i$ for each variable.   
If some variables are ordered globally and others locally we
+pdata.tex(,455) call it a mixed ordering.   Local or mixed orderings are not 
well orderings.
+pdata.tex(,456) 
+pdata.tex(,457) Let $K$ be the ground field, \hbox{$x = (x_1, \ldots, x_n)$} 
the
+pdata.tex(,458) variables and $<$ a monomial ordering, then Loc $K[x]$ denotes 
the
+pdata.tex(,459) localization of $K[x]$ with respect to the multiplicatively 
closed set $$\{1 +
+pdata.tex(,460) g \mid g = 0 \hbox{ or } g \in K[x]\backslash \{0\} \hbox{ and 
}L(g) <
+pdata.tex(,461) 1\}.$$   Here, $L(g)$ 
+pdata.tex(,462) denotes the leading monomial of $g$, i.e., the biggest 
monomial of $g$ with
+pdata.tex(,463) respect to $<$.   The result of any computation which uses 
standard basis
+pdata.tex(,464) computations has to be interpreted in Loc $K[x]$.
+pdata.tex(,465) @end tex
 pdata.tex(,480) 
 pdata.tex(,481) Note that the definition of a ring includes the definition of 
its
 pdata.tex(,482) monomial ordering (see 
@@ -21294,6 +22421,9 @@
 pdata.tex(,490) @cindex Global orderings
 pdata.tex(,491) @cindex orderings, global
 pdata.tex(,492) 
+pdata.tex(,493) @tex
+pdata.tex(,494) For all these orderings: Loc $K[x]$ = $K[x]$
+pdata.tex(,495) @end tex
 pdata.tex(,499) 
 pdata.tex(,500) @table @asis
 pdata.tex(,501) @item lp:
@@ -21301,35 +22431,81 @@
 pdata.tex(,503) @cindex lp, global ordering
 pdata.tex(,504) @cindex lexicographical ordering
 pdata.tex(,505) @*
+pdata.tex(,510) @tex
+pdata.tex(,511) $x^\alpha < x^\beta  \Leftrightarrow  \exists\; 1 \le i \le n :
+pdata.tex(,512) \alpha_1 = \beta_1, \ldots, \alpha_{i-1} = \beta_{i-1}, 
\alpha_i <
+pdata.tex(,513) \beta_i$.
+pdata.tex(,514) @end tex
 pdata.tex(,515) @item rp:
 pdata.tex(,516) reverse lexicographical ordering:
 pdata.tex(,517) @cindex rp, global ordering
 pdata.tex(,518) @cindex reverse lexicographical ordering
 pdata.tex(,519) @*
+pdata.tex(,524) @tex
+pdata.tex(,525) $x^\alpha < x^\beta  \Leftrightarrow  \exists\; 1 \le i \le n :
+pdata.tex(,526) \alpha_n = \beta_n,
+pdata.tex(,527)     \ldots, \alpha_{i+1} = \beta_{i+1}, \alpha_i > \beta_i.$
+pdata.tex(,528) @end tex
 pdata.tex(,529) @item dp:
 pdata.tex(,530) degree reverse lexicographical ordering:
 pdata.tex(,531) @cindex degree reverse lexicographical ordering
 pdata.tex(,532) @cindex dp, global ordering
 pdata.tex(,533) @*
+pdata.tex(,537) @tex
+pdata.tex(,538) let $\deg(x^\alpha) = \alpha_1 + \cdots + \alpha_n,$ then
+pdata.tex(,539) @end tex
+pdata.tex(,547) @tex
+pdata.tex(,548)     $x^\alpha < x^\beta \Leftrightarrow \deg(x^\alpha) < 
\deg(x^\beta)$ or
+pdata.tex(,549) @end tex
+pdata.tex(,553) @tex
+pdata.tex(,554)     \phantom{$x^\alpha < x^\beta \Leftrightarrow $}$ 
\deg(x^\alpha) =
+pdata.tex(,555)     \deg(x^\beta)$ and $\exists\ 1 \le i \le n: \alpha_n = 
\beta_n,
+pdata.tex(,556)     \ldots, \alpha_{i+1} = \beta_{i+1}, \alpha_i > \beta_i.$
+pdata.tex(,557) @end tex
 pdata.tex(,558) @item Dp:
 pdata.tex(,559) degree lexicographical ordering:
 pdata.tex(,560) @cindex degree lexicographical ordering
 pdata.tex(,561) @cindex Dp, global ordering
 pdata.tex(,562) @*
+pdata.tex(,566) @tex
+pdata.tex(,567) let $\deg(x^\alpha) = \alpha_1 + \cdots + \alpha_n,$ then
+pdata.tex(,568) @end tex
+pdata.tex(,576) @tex
+pdata.tex(,577)     $x^\alpha < x^\beta \Leftrightarrow \deg(x^\alpha) < 
\deg(x^\beta)$ or
+pdata.tex(,578) @end tex
+pdata.tex(,582) @tex
+pdata.tex(,583)     \phantom{ $x^\alpha < x^\beta \Leftrightarrow $} 
$\deg(x^\alpha) =
+pdata.tex(,584)     \deg(x^\beta)$ and $\exists\ 1 \le i \le n:\alpha_1 = 
\beta_1,
+pdata.tex(,585)     \ldots, \alpha_{i-1} = \beta_{i-1}, \alpha_i < \beta_i.$
+pdata.tex(,586) @end tex
 pdata.tex(,587) @item wp:
 pdata.tex(,588) weighted reverse lexicographical ordering:
 pdata.tex(,589) @cindex weighted reverse lexicographical ordering
 pdata.tex(,590) @cindex wp, global ordering
 pdata.tex(,591) @*
+pdata.tex(,595) @tex
+pdata.tex(,596) let $w_1, \ldots, w_n$ be positive integers. Then ${\tt 
wp}(w_1, \ldots,
+pdata.tex(,597) w_n)$ 
+pdata.tex(,598) @end tex
 pdata.tex(,599)  is defined as @code{dp}
 pdata.tex(,600)  but with
+pdata.tex(,604) @tex
+pdata.tex(,605) $\deg(x^\alpha) = w_1 \alpha_1 + \cdots + w_n\alpha_n.$
+pdata.tex(,606) @end tex
 pdata.tex(,607) @item Wp:
 pdata.tex(,608) weighted lexicographical ordering:
 pdata.tex(,609) @cindex weighted lexicographical ordering
 pdata.tex(,610) @cindex WP, global ordering
 pdata.tex(,611) @*
+pdata.tex(,615) @tex
+pdata.tex(,616) let $w_1, \ldots, w_n$ be positive integers. Then ${\tt 
Wp}(w_1, \ldots,
+pdata.tex(,617) w_n)$ 
+pdata.tex(,618) @end tex
 pdata.tex(,619)  is defined as @code{Dp}
 pdata.tex(,620)  but with
+pdata.tex(,624) @tex
+pdata.tex(,625) $\deg(x^\alpha) = w_1 \alpha_1 + \cdots + w_n\alpha_n.$
+pdata.tex(,626) @end tex
 pdata.tex(,627) @end table
 pdata.tex(,628) @c 
--------------------------------------------------------------------------
 pdata.tex(,629) @node Local orderings, Module orderings, Global orderings, 
Monomial orderings
@@ -21339,8 +22515,17 @@
 pdata.tex(,633) 
 pdata.tex(,634) For ls, ds, Ds and, if the weights are positive integers, also 
for ws and
 pdata.tex(,635) Ws,  we have
+pdata.tex(,639) @tex
+pdata.tex(,640) Loc $K[x]$ = $K[x]_{(x)}$,
+pdata.tex(,641) @end tex
 pdata.tex(,642)  the localization of 
+pdata.tex(,643) @tex
+pdata.tex(,644) $K[x]$
+pdata.tex(,645) @end tex
 pdata.tex(,649) at the maximal ideal
+pdata.tex(,653) @tex
+pdata.tex(,654) \ $(x_1, ..., x_n)$.
+pdata.tex(,655) @end tex
 pdata.tex(,656) 
 pdata.tex(,657) @table @asis
 pdata.tex(,658) @item ls:
@@ -21348,36 +22533,81 @@
 pdata.tex(,660) @cindex negative lexicographical ordering
 pdata.tex(,661) @cindex ls, local ordering
 pdata.tex(,662) @*
+pdata.tex(,667) @tex
+pdata.tex(,668) $x^\alpha < x^\beta  \Leftrightarrow  \exists\; 1 \le i \le n :
+pdata.tex(,669) \alpha_1 = \beta_1, \ldots, \alpha_{i-1} = \beta_{i-1}, 
\alpha_i >
+pdata.tex(,670) \beta_i$.
+pdata.tex(,671) @end tex
 pdata.tex(,672) @item ds:
 pdata.tex(,673) negative degree reverse lexicographical ordering:
 pdata.tex(,674) @cindex negative degree reverse lexicographical ordering
 pdata.tex(,675) @cindex ds, local ordering
 pdata.tex(,676) @*
+pdata.tex(,680) @tex
+pdata.tex(,681) let $\deg(x^\alpha) = \alpha_1 + \cdots + \alpha_n,$ then
+pdata.tex(,682) @end tex
+pdata.tex(,690) @tex
+pdata.tex(,691)     $x^\alpha < x^\beta \Leftrightarrow \deg(x^\alpha) > 
\deg(x^\beta)$ or
+pdata.tex(,692) @end tex
+pdata.tex(,696) @tex
+pdata.tex(,697)     \phantom{ $x^\alpha < x^\beta \Leftrightarrow$}$ 
\deg(x^\alpha) =
+pdata.tex(,698)     \deg(x^\beta)$ and $\exists\ 1 \le i \le n: \alpha_n = 
\beta_n,
+pdata.tex(,699)     \ldots, \alpha_{i+1} = \beta_{i+1}, \alpha_i > \beta_i.$
+pdata.tex(,700) @end tex
 pdata.tex(,701) @item Ds:
 pdata.tex(,702) negative degree lexicographical ordering:
 pdata.tex(,703) @cindex negative degree lexicographical ordering
 pdata.tex(,704) @cindex Ds, local ordering
 pdata.tex(,705) @*
+pdata.tex(,709) @tex
+pdata.tex(,710) let $\deg(x^\alpha) = \alpha_1 + \cdots + \alpha_n,$ then
+pdata.tex(,711) @end tex
+pdata.tex(,719) @tex
+pdata.tex(,720)     $x^\alpha < x^\beta \Leftrightarrow \deg(x^\alpha) > 
\deg(x^\beta)$ or 
+pdata.tex(,721) @end tex
+pdata.tex(,725) @tex
+pdata.tex(,726)     \phantom{ $ x^\alpha < x^\beta \Leftrightarrow$}$ 
\deg(x^\alpha) =
+pdata.tex(,727)     \deg(x^\beta)$ and $\exists\ 1 \le i \le n:\alpha_1 = 
\beta_1,
+pdata.tex(,728)     \ldots, \alpha_{i-1} = \beta_{i-1}, \alpha_i < \beta_i.$
+pdata.tex(,729) @end tex
 pdata.tex(,730) @item ws:
 pdata.tex(,731) (general) weighted reverse lexicographical ordering:
 pdata.tex(,732) @cindex general weighted reverse lexicographical ordering
 pdata.tex(,733) @cindex local weighted reverse lexicographical ordering
 pdata.tex(,734) @cindex ws, local ordering
 pdata.tex(,735) @*
+pdata.tex(,739) @tex
+pdata.tex(,740) ${\tt ws}(w_1, \ldots, w_n),\; w_1$
+pdata.tex(,741) @end tex
 pdata.tex(,742)  a nonzero integer,
+pdata.tex(,746) @tex
+pdata.tex(,747) $w_2,\ldots,w_n$
+pdata.tex(,748) @end tex
 pdata.tex(,749)  any integer (including 0),
 pdata.tex(,750)  is defined as @code{ds}
 pdata.tex(,751)  but with
+pdata.tex(,755) @tex
+pdata.tex(,756) $\deg(x^\alpha) = w_1 \alpha_1 + \cdots + w_n\alpha_n.$
+pdata.tex(,757) @end tex
 pdata.tex(,758) @item Ws:
 pdata.tex(,759) (general) weighted lexicographical ordering:
 pdata.tex(,760) @cindex general weighted lexicographical ordering
 pdata.tex(,761) @cindex local weighted lexicographical ordering
 pdata.tex(,762) @cindex Ws, local ordering
 pdata.tex(,763) @*
+pdata.tex(,767) @tex
+pdata.tex(,768) ${\tt Ws}(w_1, \ldots, w_n),\; w_1$
+pdata.tex(,769) @end tex
 pdata.tex(,770)  a nonzero integer,
+pdata.tex(,774) @tex
+pdata.tex(,775) $w_2,\ldots,w_n$
+pdata.tex(,776) @end tex
 pdata.tex(,777)  any integer (including 0),
 pdata.tex(,778)  is defined as @code{Ds}
 pdata.tex(,779)  but with
+pdata.tex(,783) @tex
+pdata.tex(,784) $\deg(x^\alpha) = w_1 \alpha_1 + \cdots + w_n\alpha_n.$
+pdata.tex(,785) @end tex
 pdata.tex(,786) @end table
 pdata.tex(,787) 
 pdata.tex(,788) @c 
--------------------------------------------------------------------------
@@ -21386,22 +22616,42 @@
 pdata.tex(,791) @cindex Module orderings
 pdata.tex(,792) 
 pdata.tex(,793) @sc{Singular} offers also orderings on the set of ``monomials''
+pdata.tex(,799) @tex
+pdata.tex(,800) $\{ x^a e_i  \mid  a \in N^n, 1 \leq i \leq r \}$ in Loc 
$K[x]^r$ = Loc
+pdata.tex(,801) $K[x]e_1 
+pdata.tex(,802) + \ldots +$Loc $K[x]e_r$, where $e_1, \ldots, e_r$ denote the 
canonical
+pdata.tex(,803) generators of Loc $K[x]^r$, the r-fold direct sum of Loc 
$K[x]$.
+pdata.tex(,804) (The function {\tt gen(i)} yields $e_i$).
+pdata.tex(,805) @end tex
 pdata.tex(,806) 
 pdata.tex(,807) We have two possibilities: either to give priority to the 
component of a
 pdata.tex(,808) vector in 
+pdata.tex(,812) @tex
+pdata.tex(,813)  Loc $K[x]^r$
+pdata.tex(,814) @end tex
 pdata.tex(,815) or (which is the default in @sc{Singular}) to give priority
 pdata.tex(,816) to the coefficients.
 pdata.tex(,817) The orderings @code{(<,c)} and @code{(<,C)} give priority to 
the
 pdata.tex(,818) coefficients; whereas
 pdata.tex(,819) @code{(c,<)} and @code{(C,<)} give priority to the components.
 pdata.tex(,820) @*Let < be any of the monomial orderings of 
+pdata.tex(,821) @tex
+pdata.tex(,822) Loc $K[x]$
+pdata.tex(,823) @end tex
 pdata.tex(,827) as above.
 pdata.tex(,828) 
 pdata.tex(,829) @table @asis
 pdata.tex(,830) @item (<,C):
 pdata.tex(,831) @cindex C, module ordering
 pdata.tex(,832) @cindex module ordering C
+pdata.tex(,840) @tex
+pdata.tex(,841) $<_m = (<,C)$ denotes the module ordering (giving priority to 
the coefficients):
+pdata.tex(,842) @end tex
 pdata.tex(,843) @*
+pdata.tex(,844) @tex
+pdata.tex(,845) \quad  \quad  $x^\alpha e_i <_m x^\beta e_j \Leftrightarrow 
x^\alpha <
+pdata.tex(,846) x^\beta$ or ($x^\alpha = x^\beta $ and $ i < j$).
+pdata.tex(,847) @end tex
 pdata.tex(,848) 
 pdata.tex(,849) @strong{Example:}
 pdata.tex(,850) @smallexample
@@ -21416,6 +22666,13 @@
 pdata.tex(,859) @end smallexample
 pdata.tex(,860) 
 pdata.tex(,861) @item (C,<):
+pdata.tex(,870) @tex
+pdata.tex(,871) $<_m = (C, <)$ denotes the module ordering (giving priority to 
the component):
+pdata.tex(,872) @end tex
+pdata.tex(,876) @tex
+pdata.tex(,877) \quad \quad   $x^\alpha e_i <_m x^\beta e_j \Leftrightarrow i 
< j$ or ($
+pdata.tex(,878) i = j $ and $ x^\alpha < x^\beta $). 
+pdata.tex(,879) @end tex
 pdata.tex(,880) 
 pdata.tex(,881) @strong{Example:}
 pdata.tex(,882) @smallexample
@@ -21431,6 +22688,13 @@
 pdata.tex(,892) @item (<,c):
 pdata.tex(,893) @cindex c, module ordering
 pdata.tex(,894) @cindex module ordering c
+pdata.tex(,902) @tex
+pdata.tex(,903) $<_m = (<,c)$ denotes the module ordering (giving priority to 
the coefficients):
+pdata.tex(,904) @end tex
+pdata.tex(,908) @tex
+pdata.tex(,909) \quad \quad $x^\alpha e_i <_m x^\beta e_j \Leftrightarrow 
x^\alpha <
+pdata.tex(,910) x^\beta$ or ($x^\alpha = x^\beta $ and $ i > j$).
+pdata.tex(,911) @end tex
 pdata.tex(,912) 
 pdata.tex(,913) @strong{Example:}
 pdata.tex(,914) @smallexample
@@ -21444,6 +22708,13 @@
 pdata.tex(,922) @end smallexample
 pdata.tex(,923) 
 pdata.tex(,924) @item (c,<):
+pdata.tex(,933) @tex
+pdata.tex(,934) $<_m = (c, <)$ denotes the module ordering (giving priority to 
the component):
+pdata.tex(,935) @end tex
+pdata.tex(,939) @tex
+pdata.tex(,940) \quad \quad   $x^\alpha e_i <_m x^\beta e_j \Leftrightarrow i 
> j$ or ($
+pdata.tex(,941) i = j $ and $ x^\alpha < x^\beta $). 
+pdata.tex(,942) @end tex
 pdata.tex(,943) 
 pdata.tex(,944) @strong{Example:}
 pdata.tex(,945) @smallexample
@@ -21457,7 +22728,14 @@
 pdata.tex(,953) @end smallexample
 pdata.tex(,954) @end table
 pdata.tex(,955) 
+pdata.tex(,960) @tex
+pdata.tex(,961) The output of a vector $v$ in $K[x]^r$ with components $v_1,
+pdata.tex(,962) \ldots, v_r$ has the format $v_1 * gen(1) + \ldots + v_r * 
gen(r)$
+pdata.tex(,963) @end tex
 pdata.tex(,964) (up to permutation) unless the ordering starts with @code{c}.
+pdata.tex(,968) @tex
+pdata.tex(,969) In this case a vector is written as $[v_1, \ldots, v_r]$.
+pdata.tex(,970) @end tex
 pdata.tex(,971) In all cases @sc{Singular} can read input in both formats.
 pdata.tex(,972) 
 pdata.tex(,973) @c 
--------------------------------------------------------------------------
@@ -21468,25 +22746,152 @@
 pdata.tex(,978) @cindex M, ordering
 pdata.tex(,979) 
 pdata.tex(,980) Let 
+pdata.tex(,981) @tex
+pdata.tex(,982) $M$
+pdata.tex(,983) @end tex
 pdata.tex(,987) be an invertible 
+pdata.tex(,988) @tex
+pdata.tex(,989) $(n \times n)$-matrix
+pdata.tex(,990) @end tex
 pdata.tex(,994)  with integer coefficients and
+pdata.tex(,998) @tex
+pdata.tex(,999) $M_1, \ldots, M_n$ the rows of $M$.
+pdata.tex(,1000) @end tex
 pdata.tex(,1001) 
 pdata.tex(,1002) The M-ordering < is defined as follows:
 pdata.tex(,1003) @*
+pdata.tex(,1008) @tex
+pdata.tex(,1009) \quad \quad $x^a < x^b \Leftrightarrow \exists\  1 \leq i 
\leq n :
+pdata.tex(,1010) M_1 a = \; M_1 b, \ldots, M_{i-1} a = \; M_{i-1} b$ and $M_i 
a < \; M_i b$.
+pdata.tex(,1011) @end tex
 pdata.tex(,1012) 
 pdata.tex(,1013) Thus,
+pdata.tex(,1018) @tex
+pdata.tex(,1019) $x^a < x^b$
+pdata.tex(,1020) if and only if $M a$ is smaller than $M b$
+pdata.tex(,1021) @end tex
 pdata.tex(,1022) with respect to the lexicographical ordering.
 pdata.tex(,1023) 
 pdata.tex(,1024) The following matrices represent (for 3 variables) the global 
and
 pdata.tex(,1025) local orderings defined above (note that the matrix is not 
uniquely determined
 pdata.tex(,1026) by the ordering):
 pdata.tex(,1027) 
+pdata.tex(,1072) @tex
+pdata.tex(,1073) 
+pdata.tex(,1074) $\quad$ lp:
+pdata.tex(,1075) $\left(\matrix{
+pdata.tex(,1076)  1 & 0 & 0 \cr
+pdata.tex(,1077)  0 & 1 & 0 \cr
+pdata.tex(,1078)  0 & 0 & 1 \cr
+pdata.tex(,1079)  }\right)$
+pdata.tex(,1080) \quad dp:
+pdata.tex(,1081) $\left(\matrix{
+pdata.tex(,1082)  1 & 1 & 1 \cr
+pdata.tex(,1083)  0 & 0 &-1 \cr
+pdata.tex(,1084)  0 &-1 & 0 \cr
+pdata.tex(,1085)  }\right)$
+pdata.tex(,1086) \quad Dp:
+pdata.tex(,1087) $\left(\matrix{
+pdata.tex(,1088)  1 & 1 & 1 \cr
+pdata.tex(,1089)  1 & 0 & 0 \cr
+pdata.tex(,1090)  0 & 1 & 0 \cr
+pdata.tex(,1091)  }\right)$
+pdata.tex(,1092) 
+pdata.tex(,1093) $\quad$ wp(1,2,3):
+pdata.tex(,1094) $\left(\matrix{
+pdata.tex(,1095)  1 & 2 & 3 \cr
+pdata.tex(,1096)  0 & 0 &-1 \cr
+pdata.tex(,1097)  0 &-1 & 0 \cr
+pdata.tex(,1098)  }\right)$
+pdata.tex(,1099) \quad Wp(1,2,3):
+pdata.tex(,1100) $\left(\matrix{
+pdata.tex(,1101)  1 & 2 & 3 \cr
+pdata.tex(,1102)  1 & 0 & 0 \cr
+pdata.tex(,1103)  0 & 1 & 0 \cr
+pdata.tex(,1104)  }\right)$
+pdata.tex(,1105) 
+pdata.tex(,1106) $\quad$ ls:
+pdata.tex(,1107) $\left(\matrix{
+pdata.tex(,1108) -1 & 0 & 0 \cr
+pdata.tex(,1109)  0 &-1 & 0 \cr
+pdata.tex(,1110)  0 & 0 &-1 \cr
+pdata.tex(,1111)  }\right)$
+pdata.tex(,1112) \quad ds:
+pdata.tex(,1113) $\left(\matrix{
+pdata.tex(,1114) -1 &-1 &-1 \cr
+pdata.tex(,1115)  0 & 0 &-1 \cr
+pdata.tex(,1116)  0 &-1 & 0 \cr
+pdata.tex(,1117)  }\right)$
+pdata.tex(,1118) \quad Ds:
+pdata.tex(,1119) $\left(\matrix{
+pdata.tex(,1120) -1 &-1 &-1 \cr
+pdata.tex(,1121)  1 & 0 & 0 \cr
+pdata.tex(,1122)  0 & 1 & 0 \cr
+pdata.tex(,1123)  }\right)$
+pdata.tex(,1124) 
+pdata.tex(,1125) $\quad$ ws(1,2,3):
+pdata.tex(,1126) $\left(\matrix{
+pdata.tex(,1127) -1 &-2 &-3 \cr
+pdata.tex(,1128)  0 & 0 &-1 \cr
+pdata.tex(,1129)  0 &-1 & 0 \cr
+pdata.tex(,1130)  }\right)$
+pdata.tex(,1131) \quad Ws(1,2,3):
+pdata.tex(,1132) $\left(\matrix{
+pdata.tex(,1133) -1 &-2 &-3 \cr
+pdata.tex(,1134)  1 & 0 & 0 \cr
+pdata.tex(,1135)  0 & 1 & 0 \cr
+pdata.tex(,1136)  }\right)$
+pdata.tex(,1137) @end tex
 pdata.tex(,1138) 
 pdata.tex(,1139) Product orderings (see next section) represented by  a matrix:
 pdata.tex(,1140) 
+pdata.tex(,1159) @tex
+pdata.tex(,1160) $\quad$ (dp(3), wp(1,2,3)):
+pdata.tex(,1161) $\left(\matrix{
+pdata.tex(,1162) 1&  1&  1&  0&  0&  0 \cr
+pdata.tex(,1163) 0&  0&  -1&  0&  0&  0 \cr
+pdata.tex(,1164) 0&  -1&  0&  0&  0&  0 \cr
+pdata.tex(,1165) 0&  0&  0&  1&  2&  3 \cr
+pdata.tex(,1166) 0&  0&  0&  0&  0&  -1 \cr
+pdata.tex(,1167) 0&  0&  0&  0&  -1&  0 \cr
+pdata.tex(,1168)  }\right)$
+pdata.tex(,1169) 
+pdata.tex(,1170) $\quad$ (Dp(3), ds(3)):
+pdata.tex(,1171) $\left(\matrix{
+pdata.tex(,1172) 1&  1&  1&  0&  0&  0 \cr
+pdata.tex(,1173) 1&  0&  0&  0&  0&  0 \cr
+pdata.tex(,1174) 0&  1&  0&  0&  0&  0 \cr
+pdata.tex(,1175) 0&  0&  0&  -1&  -1&  -1 \cr
+pdata.tex(,1176) 0&  0&  0&  0&  0&  -1 \cr
+pdata.tex(,1177) 0&  0&  0&  0&  -1&  0 \cr
+pdata.tex(,1178)  }\right)$
+pdata.tex(,1179) @end tex
 pdata.tex(,1180) 
 pdata.tex(,1181) Orderings with extra weight vector (see below) represented by 
 a matrix:
 pdata.tex(,1182) 
+pdata.tex(,1203) @tex
+pdata.tex(,1204) $\quad$ (dp(3), a(1,2,3),dp(3)):
+pdata.tex(,1205) $\left(\matrix{
+pdata.tex(,1206) 1&  1&  1&  0&  0&  0 \cr
+pdata.tex(,1207) 0&  0&  -1&  0&  0&  0 \cr
+pdata.tex(,1208) 0&  -1&  0&  0&  0&  0 \cr
+pdata.tex(,1209) 0&  0&  0&  1&  2&  3 \cr
+pdata.tex(,1210) 0&  0&  0&  1&  1&  1 \cr
+pdata.tex(,1211) 0&  0&  0&  0&  0&  -1 \cr
+pdata.tex(,1212) 0&  0&  0&  0&  -1&  0 \cr
+pdata.tex(,1213)  }\right)$
+pdata.tex(,1214) 
+pdata.tex(,1215) $\quad$ (a(1,2,3,4,5),Dp(3), ds(3)):
+pdata.tex(,1216) $\left(\matrix{
+pdata.tex(,1217) 1&  2&  3&  4&  5&  0 \cr
+pdata.tex(,1218) 1&  1&  1&  0&  0&  0 \cr
+pdata.tex(,1219) 1&  0&  0&  0&  0&  0 \cr
+pdata.tex(,1220) 0&  1&  0&  0&  0&  0 \cr
+pdata.tex(,1221) 0&  0&  0&  -1&  -1&  -1 \cr
+pdata.tex(,1222) 0&  0&  0&  0&  0 & -1 \cr
+pdata.tex(,1223) 0&  0&  0&  0&  -1&  0 \cr
+pdata.tex(,1224)  }\right)$
+pdata.tex(,1225) @end tex
 pdata.tex(,1226) 
 pdata.tex(,1227) @address@hidden:
 pdata.tex(,1228) @smallexample
@@ -21516,7 +22921,13 @@
 pdata.tex(,1252) @end smallexample
 pdata.tex(,1253) 
 pdata.tex(,1254) If the ring has 
+pdata.tex(,1255) @tex
+pdata.tex(,1256) $n$
+pdata.tex(,1257) @end tex
 pdata.tex(,1261) variables and the matrix contains less than 
+pdata.tex(,1262) @tex
+pdata.tex(,1263) $n \times n$
+pdata.tex(,1264) @end tex
 pdata.tex(,1268) entries an error message is given, if there are more entries,
 pdata.tex(,1269) the last ones are ignored.
 pdata.tex(,1270) 
@@ -21537,6 +22948,9 @@
 pdata.tex(,1285) @cindex orderings, product
 pdata.tex(,1286) 
 pdata.tex(,1287) Let
+pdata.tex(,1292) @tex
+pdata.tex(,1293) $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_m)$
+pdata.tex(,1294) @end tex
 pdata.tex(,1295) be two ordered sets of variables,
 pdata.tex(,1317) 
 pdata.tex(,1318) Inductively one defines the product ordering of more than two 
monomial
@@ -21558,9 +22972,24 @@
 pdata.tex(,1334) @cindex a, ordering
 pdata.tex(,1335) @cindex orderings, a 
 pdata.tex(,1336) 
+pdata.tex(,1340) @tex
+pdata.tex(,1341) ${\tt a}(w_1, \ldots, w_n),\; $
+pdata.tex(,1342) @end tex
+pdata.tex(,1346) @tex
+pdata.tex(,1347) $w_1,\ldots,w_n$
+pdata.tex(,1348) @end tex
 pdata.tex(,1349) any integers (including 0), defines
+pdata.tex(,1353) @tex
+pdata.tex(,1354) $\deg(x^\alpha) = w_1 \alpha_1 + \cdots + w_n\alpha_n$
+pdata.tex(,1355) @end tex
 pdata.tex(,1356) and
 pdata.tex(,1357) @*
+pdata.tex(,1361) @tex
+pdata.tex(,1362)     $$\deg(x^\alpha) < \deg(x^\beta) \Rightarrow x^\alpha < 
x^\beta,$$
+pdata.tex(,1363) @end tex
+pdata.tex(,1368) @tex
+pdata.tex(,1369)     $$\deg(x^\alpha) > \deg(x^\beta) \Rightarrow x^\alpha > 
x^\beta. $$
+pdata.tex(,1370) @end tex
 pdata.tex(,1371) @*An extra weight vector does not define a monomial ordering 
by itself:
 pdata.tex(,1372) it can only be used in combination with other orderings
 pdata.tex(,1373) to insert an extra line of weights into the ordering
@@ -21609,14 +23038,44 @@
 math.tex(,42) @cindex Standard bases
 math.tex(,43) 
 math.tex(,44) @subheading Definition
+math.tex(,45) @tex
+math.tex(,46) Let $R = \hbox{Loc}_< K[\underline{x}]$ and let $I$ be a 
submodule of $R^r$.
+math.tex(,47) Note that for r=1 this means that $I$ is an ideal in $R$.
+math.tex(,48) Denote by $L(I)$ the submodule of $R^r$ generated by the leading 
terms 
+math.tex(,49) of elements of $I$, i.e. by $\left\{L(f) \mid f \in I\right\}$.
+math.tex(,50) Then $f_1, \ldots, f_s \in I$ is called a {\bf standard basis} 
of $I$ 
+math.tex(,51) if $L(f_1), \ldots, L(f_s)$ generate $L(I)$.
+math.tex(,52) @end tex
 math.tex(,60) 
 math.tex(,61) @subheading Properties
 math.tex(,62) @table @asis
 math.tex(,63) @item normal form:
 math.tex(,64) @cindex Normal form
+math.tex(,65) @tex
+math.tex(,66) A function $\hbox{NF} : R^r \times \{G \mid G\ \hbox{ a standard
+math.tex(,67) basis}\} \to R^r, (p,G) \mapsto \hbox{NF}(p|G)$, is called a 
{\bf normal
+math.tex(,68) form} if for any $p \in R^r$ and any standard basis $G$ the 
following
+math.tex(,69) holds: if $\hbox{NF}(p|G) \not= 0$ then $L(g)$ does not divide
+math.tex(,70) $L(\hbox{NF}(p|G))$ for all $g \in G$.
+math.tex(,71) 
+math.tex(,72) \noindent
+math.tex(,73) $\hbox{NF}(p|G)$ is called a {\bf normal form of} $p$ {\bf with
+math.tex(,74) respect to} $G$ (note that such a function is not unique).
+math.tex(,75) @end tex
 math.tex(,84) @item ideal membership:
 math.tex(,85) @cindex Ideal membership
+math.tex(,86) @tex
+math.tex(,87) For a standard basis $G$ of $I$ the following holds: 
+math.tex(,88) $f \in I$ if and only if $\hbox{NF}(f,G) = 0$.
+math.tex(,89) @end tex
 math.tex(,94) @item Hilbert function:
+math.tex(,95) @tex
+math.tex(,96) Let \hbox{$I \subseteq K[\underline{x}]^r$} be a homogeneous 
module, then the Hilbert function
+math.tex(,97) $H_I$ of $I$ (see below)
+math.tex(,98) and the Hilbert function $H_{L(I)}$ of the leading module $L(I)$
+math.tex(,99) coincide, i.e.,
+math.tex(,100) $H_I=H_{L(I)}$.
+math.tex(,101) @end tex
 math.tex(,106) @end table
 math.tex(,107) 
 math.tex(,108) @c 
---------------------------------------------------------------------------
@@ -21624,8 +23083,32 @@
 math.tex(,110) @section Hilbert function
 math.tex(,111) @cindex Hilbert function
 math.tex(,112) @cindex Hilbert series
+math.tex(,113) @tex
+math.tex(,114) Let M $=\bigoplus_i M_i$ be a graded module over 
$K[x_1,..,x_n]$ with 
+math.tex(,115) respect to weights $(w_1,..w_n)$.
+math.tex(,116) The {\bf Hilbert function} of $M$, $H_M$, is defined (on the 
integers) by
+math.tex(,117) $$H_M(k) :=dim_K M_k.$$
+math.tex(,118) The {\bf Hilbert-Poincare series}  of $M$ is the power series
+math.tex(,119) $$\hbox{HP}_M(t) :=\sum_{i=-\infty}^\infty
+math.tex(,120) H_M(i)t^i=\sum_{i=-\infty}^\infty dim_K M_i \cdot t^i.$$
+math.tex(,121) It turns out that $\hbox{HP}_M(t)$ can be written in two useful 
ways
+math.tex(,122) for weights $(1,..,1)$:
+math.tex(,123) $$\hbox{HP}_M(t)={Q(t)\over (1-t)^n}={P(t)\over 
(1-t)^{dim(M)}}$$
+math.tex(,124) where $Q(t)$ and $P(t)$ are polynomials in ${\bf Z}[t]$.
+math.tex(,125) $Q(t)$ is called the {\bf first Hilbert series},
+math.tex(,126) and $P(t)$ the {\bf second Hilbert series}.
+math.tex(,127) If \hbox{$P(t)=\sum_{k=0}^N a_k t^k$}, and \hbox{$d = dim(M)$},
+math.tex(,128) then \hbox{$H_M(s)=\sum_{k=0}^N a_k$ ${d+s-k-1}\choose{d-1}$}
+math.tex(,129) (the {\bf Hilbert polynomial}) for $s \ge N$.
+math.tex(,130) @end tex
 math.tex(,156) @*
 math.tex(,157) @*
+math.tex(,158) @tex
+math.tex(,159) Generalizing these to quasihomogeneous modules we get
+math.tex(,160) $$\hbox{HP}_M(t)={Q(t)\over {\Pi_{i=1}^n(1-t^{w_i})}}$$
+math.tex(,161) where $Q(t)$ is a polynomial in ${\bf Z}[t]$.
+math.tex(,162) $Q(t)$ is called the {\bf first (weighted) Hilbert series} of M.
+math.tex(,163) @end tex
 math.tex(,172) 
 math.tex(,173) @c 
---------------------------------------------------------------------------
 math.tex(,174) @node Syzygies and resolutions, Characteristic sets, Hilbert 
function, Mathematical background
@@ -21633,11 +23116,22 @@
 math.tex(,176) @cindex Syzygies and resolutions
 math.tex(,177) 
 math.tex(,178) @subheading Syzygies
+math.tex(,179) @tex
+math.tex(,180) Let $R$ be a quotient of $\hbox{Loc}_< K[\underline{x}]$ and 
let \hbox{$I=(g_1, ..., g_s)$} be a submodule of $R^r$.
+math.tex(,181) Then the {\bf module of syzygies} (or {\bf 1st syzygy module}, 
{\bf module of relations}) of $I$, syz($I$), is defined to be the kernel of the 
map \hbox{$R^s \rightarrow R^r,\; \sum_{i=1}^s w_ie_i \mapsto \sum_{i=1}^s 
w_ig_i$.}
+math.tex(,182) @end tex
 math.tex(,192) 
 math.tex(,193) The @strong{k-th syzygy module} is defined inductively to be 
the module
 math.tex(,194) of syzygies of the
+math.tex(,195) @tex
+math.tex(,196) $(k-1)$-st 
+math.tex(,197) @end tex
 math.tex(,201)  syzygy module.
 math.tex(,202) 
+math.tex(,203) @tex
+math.tex(,204) Note, that the syzygy modules of $I$ depend on a choice of 
generators $g_1, ..., g_s$.
+math.tex(,205) But one can show that they depend on $I$ uniquely up to direct 
summands.
+math.tex(,206) @end tex
 math.tex(,211) 
 math.tex(,212) @table @code
 math.tex(,213) @item @strong{Example:}
@@ -21655,10 +23149,26 @@
 math.tex(,225) @end table
 math.tex(,226) 
 math.tex(,227) @subheading Free resolutions
+math.tex(,228) @tex
+math.tex(,229) Let $I=(g_1,...,g_s)\subseteq R^r$ and $M= R^r/I$.
+math.tex(,230) A {\bf free resolution of $M$} is a long exact sequence
+math.tex(,231) $$...\longrightarrow F_2 \buildrel{A_2}\over{\longrightarrow} 
F_1
+math.tex(,232) \buildrel{A_1}\over{\longrightarrow} F_0\longrightarrow 
M\longrightarrow
+math.tex(,233) 0,$$
+math.tex(,234) @end tex
 math.tex(,242) @*where the columns of the matrix
+math.tex(,243) @tex
+math.tex(,244) $A_1$
+math.tex(,245) @end tex
 math.tex(,249) generate 
+math.tex(,253) @tex
+math.tex(,254) $I$
+math.tex(,255) @end tex
 math.tex(,256) . Note, that resolutions need not to be finite (i.e., of
 math.tex(,257) finite length). The Hilbert Syzygy Theorem states, that for 
+math.tex(,258) @tex
+math.tex(,259) $R=\hbox{Loc}_< K[\underline{x}]$
+math.tex(,260) @end tex
 math.tex(,264) there exists a ("minimal") resolution of length not exceeding 
the number of
 math.tex(,265) variables.
 math.tex(,266) 
@@ -21691,11 +23201,37 @@
 math.tex(,293) @subheading Betti numbers and regularity
 math.tex(,294) @cindex Betti number
 math.tex(,295) @cindex regularity
+math.tex(,296) @tex
+math.tex(,297) Let $R$ be a graded ring (e.g., $R = \hbox{Loc}_< 
K[\underline{x}]$) and
+math.tex(,298) let $I \subset R^r$ be a graded submodule. Let
+math.tex(,299) $$
+math.tex(,300)   R^r = \bigoplus_a R\cdot e_{a,0} \buildrel A_1 \over 
\longleftarrow
+math.tex(,301)         \bigoplus_a R\cdot e_{a,1} \longleftarrow \ldots 
\longleftarrow
+math.tex(,302)         \bigoplus_a R\cdot e_{a,n} \longleftarrow 0
+math.tex(,303) $$
+math.tex(,304) be a minimal free resolution of $R^n/I$ considered with 
homogeneous maps
+math.tex(,305) of degree 0. Then the {\bf graded Betti number} $b_{i,j}$ of 
$R^r/I$ is
+math.tex(,306) the minimal number of generators $e_{a,j}$ in degree $i+j$ of 
the $j$-th
+math.tex(,307) syzygy module of $R^r/I$ (i.e., the $(j-1)$-st syzygy module of
+math.tex(,308) $I$). Note, that by definition the $0$-th syzygy module of 
$R^r/I$ is $R^r$
+math.tex(,309) and the 1st syzygy module of $R^r/I$ is $I$.
+math.tex(,310) @end tex
 math.tex(,325) 
 math.tex(,326) The @strong{regularity} of 
+math.tex(,330) @tex
+math.tex(,331) $I$
+math.tex(,332) @end tex
 math.tex(,333)  is the smallest integer 
+math.tex(,337) @tex
+math.tex(,338) $s$
+math.tex(,339) @end tex
 math.tex(,340) 
 math.tex(,341) such that
+math.tex(,342) @tex
+math.tex(,343) $$
+math.tex(,344)     \hbox{deg}(e_{a,j}) \le s+j-1 \quad \hbox{for all $j$.}
+math.tex(,345) $$
+math.tex(,346) @end tex
 math.tex(,352) 
 math.tex(,353) @table @code
 math.tex(,354) @item @strong{Example:}
@@ -21728,6 +23264,43 @@
 math.tex(,381) @section Characteristic sets
 math.tex(,382) @cindex Characteristic sets
 math.tex(,383) 
+math.tex(,384) @tex
+math.tex(,385) Let $<$ be the lexicographical ordering on $R=K[x_1,...,x_n]$ 
with $x_1
+math.tex(,386) < ... < x_n$.
+math.tex(,387) For $f \in R$ let lvar($f$) (the leading variable of $f$) be 
the largest
+math.tex(,388) variable in $f$,
+math.tex(,389) i.e., if $f=a_s(x_1,...,x_{k-1})x_k^s+...+a_0(x_1,...,x_{k-1})$ 
for some
+math.tex(,390) $k \leq n$ then lvar$(f)=x_k$.
+math.tex(,391) 
+math.tex(,392) Moreover, let
+math.tex(,393) \hbox{ini}$(f):=a_s(x_1,...,x_{k-1})$. The pseudo remainder
+math.tex(,394) $r=\hbox{prem}(g,f)$ of $g$ with respect to $f$ is
+math.tex(,395) defined by the equality $\hbox{ini}(f)^a\cdot g = qf+r$ with
+math.tex(,396) $\hbox{deg}_{lvar(f)}(r)<\hbox{deg}_{lvar(f)}(f)$ and $a$
+math.tex(,397) minimal.
+math.tex(,398) 
+math.tex(,399) A set $T=\{f_1,...,f_r\} \subset R$ is called triangular if
+math.tex(,400) $\hbox{lvar}(f_1)<...<\hbox{lvar}(f_r)$. Moreover, let $ U 
\subset T $,
+math.tex(,401) then $(T,U)$ is called a triangular system, if $T$ is a 
triangular set
+math.tex(,402) such that $\hbox{ini}(T)$ does not vanish on $V(T) \setminus 
V(U)
+math.tex(,403) (=:V(T\setminus U))$.
+math.tex(,404) 
+math.tex(,405) $T$ is called irreducible if for every $i$ there are no
+math.tex(,406) $d_i$,$f_i'$,$f_i''$ such that
+math.tex(,407) $$   \hbox{lvar}(d_i)<\hbox{lvar}(f_i) =
+math.tex(,408) \hbox{lvar}(f_i')=\hbox{lvar}(f_i''),$$
+math.tex(,409) $$   0 \not\in \hbox{prem}(\{ d_i, \hbox{ini}(f_i'),
+math.tex(,410) \hbox{ini}(f_i'')\},\{ f_1,...,f_{i-1}\}),$$
+math.tex(,411) $$\hbox{prem}(d_if_i-f_i'f_i'',\{f_1,...,f_{i-1}\})=0.$$
+math.tex(,412) Furthermore, $(T,U)$ is called irreducible if $T$ is 
irreducible.
+math.tex(,413) 
+math.tex(,414) The main result on triangular sets is the following:
+math.tex(,415) let $G=\{g_1,...,g_s\} \subset R$ then there are irreducible 
triangular sets $T_1,...,T_l$
+math.tex(,416) such that $V(G)=\bigcup_{i=1}^{l}(V(T_i\setminus I_i))$
+math.tex(,417) where $I_i=\{\hbox{ini}(f) \mid f \in T_i \}$. Such a set
+math.tex(,418) $\{T_1,...,T_l\}$ is called an {\bf irreducible characteristic 
series} of
+math.tex(,419) the ideal $(G)$.
+math.tex(,420) @end tex
 math.tex(,456) 
 math.tex(,457) @table @code
 math.tex(,458) @item @strong{Example:}
@@ -21752,14 +23325,61 @@
 math.tex(,477) @c tex and info versions of it. It end just before the 
introducing text
 math.tex(,478) @c to the first example.
 math.tex(,479) 
+math.tex(,480) @tex
+math.tex(,481) Let $f\colon(C^{n+1},0)\rightarrow(C,0)$ be a complex isolated 
hypersurface singularity given by a polynomial with algebraic coefficients 
which we also denote by $f$.
+math.tex(,482) Let $O=C[x_0,\ldots,x_n]_{(x_0,\ldots,x_n)}$ be the local ring 
at the origin and $J_f$ the Jacobian ideal of $f$.
+math.tex(,483) 
+math.tex(,484) A {\bf Milnor representative} of $f$ defines a differentiable 
fibre bundle over the punctured disc with fibres of homotopy type of $\mu$ 
$n$-spheres.
+math.tex(,485) The $n$-th cohomology bundle is a flat vector bundle of 
dimension $n$ and carries a natural flat connection with covariant derivative 
$\partial_t$.
+math.tex(,486) The {\bf monodromy operator} is the action of a positively 
oriented generator of the fundamental group of the puctured disc on the Milnor 
fibre.
+math.tex(,487) Sections in the cohomology bundle of {\bf moderate growth} at 
$0$ form a regular $D=C\{t\}[\partial_t]$-module $G$, the {\bf Gauss-Manin 
connection}.
+math.tex(,488) 
+math.tex(,489) By integrating along flat multivalued families of cycles, one 
can consider fibrewise global holomorphic differential forms as elements of $G$.
+math.tex(,490) This factors through an inclusion of the {\bf Brieskorn 
lattice} $H'':=\Omega^{n+1}_{C^{n+1},0}/df\wedge d\Omega^{n-1}_{C^{n+1},0}$ in 
$G$.
+math.tex(,491) 
+math.tex(,492) The $D$-module structure defines the {\bf V-filtration} $V$ on 
$G$ by $V^\alpha:=\sum_{\beta\ge\alpha}C\{t\}ker(t\partial_t-\beta)^{n+1}$.
+math.tex(,493) The Brieskorn lattice defines the {\bf Hodge filtration} $F$ on 
$G$ by $F_k=\partial_t^kH''$ which comes from the {\bf mixed Hodge structure} 
on the Milnor fibre.
+math.tex(,494) Note that $F_{-1}=H'$.
+math.tex(,495) 
+math.tex(,496) The induced V-filtration on the Brieskorn lattice determines 
the {\bf singularity spectrum} $Sp$ by $Sp(\alpha):=\dim_CGr_V^\alpha Gr^F_0G$.
+math.tex(,497) The spectrum consists of $\mu$ rational numbers 
$\alpha_1,\dots,\alpha_\mu$ such that $e^{2\pi i\alpha_1},\dots,e^{2\pi 
i\alpha_\mu}$ are the eigenvalues of the monodromy.
+math.tex(,498) These {\bf spectral numbers} lie in the open interval $(-1,n)$, 
symmetric about the midpoint $(n-1)/2$.
+math.tex(,499) 
+math.tex(,500) The spectrum is constant under $\mu$-constant deformations and 
has the following semicontinuity property:
+math.tex(,501) The number of spectral numbers in an interval $(a,a+1]$ of all 
singularities of a small deformation of $f$ is greater or equal to that of f in 
this interval.
+math.tex(,502) For semiquasihomogeneous singularities, this also holds for 
intervals of the form $(a,a+1)$.
+math.tex(,503) 
+math.tex(,504) Two given isolated singularities $f$ and $g$ determine two 
spectra and from these spectra we get an integer.
+math.tex(,505) This integer is the maximal positive integer $k$ such that the 
semicontinuity holds for the spectrum of $f$ and $k$ times the spectrum of $g$.
+math.tex(,506) These numbers give bounds for the maximal number of isolated 
singularities of a specific type on a hypersurface $X\subset{P}^n$ of degree 
$d$: 
+math.tex(,507) such a hypersurface has a smooth hyperplane section, and the 
complement is a small deformation of a cone over this hyperplane section.
+math.tex(,508) The cone itself being a $\mu$-constant deformation of 
$x_0^d+\dots+x_n^d=0$, the singularities are bounded by the spectrum of 
$x_0^d+\dots+x_n^d$.
+math.tex(,509) 
+math.tex(,510) Using the library {\tt gaussman.lib} one can compute the {\bf 
monodromy}, the V-filtration on $H''/H'$, and the spectrum.
+math.tex(,511) @end tex
 math.tex(,512) 
 math.tex(,545) 
 math.tex(,546) Let us consider as an example 
+math.tex(,550) @tex
+math.tex(,551) $f=x^5+x^2y^2+y^5$
+math.tex(,552) @end tex
 math.tex(,553) .
 math.tex(,554) First, we compute a matrix 
+math.tex(,558) @tex
+math.tex(,559) $M$
+math.tex(,560) @end tex
 math.tex(,561)  such that
+math.tex(,562) @tex
+math.tex(,563) $\exp(2\pi iM)$
+math.tex(,564) @end tex
 math.tex(,568) is a monodromy matrix of 
+math.tex(,572) @tex
+math.tex(,573) $f$
+math.tex(,574) @end tex
 math.tex(,575)  and the Jordan normal form of 
+math.tex(,579) @tex
+math.tex(,580) $M$
+math.tex(,581) @end tex
 math.tex(,582) :
 math.tex(,583) @smallexample
 math.tex(,584) @c reused example Gauss-Manin_connection math.doc:505 
@@ -21784,6 +23404,9 @@
 math.tex(,603) @end smallexample
 math.tex(,604) 
 math.tex(,605) Now, we compute the V-filtration on 
+math.tex(,609) @tex
+math.tex(,610) $H''/H'$
+math.tex(,611) @end tex
 math.tex(,612)  and the spectrum:
 math.tex(,613) @smallexample
 math.tex(,614) @c reused example Gauss-Manin_connection_1 math.doc:517 
@@ -21835,17 +23458,36 @@
 math.tex(,660) @c end example Gauss-Manin_connection_1 math.doc:517
 math.tex(,661) @end smallexample
 math.tex(,662) Here @code{l[1]} contains the spectral numbers, @code{l[2]} the 
corresponding multiplicities, @code{l[3]} a 
+math.tex(,666) @tex
+math.tex(,667) $C$
+math.tex(,668) @end tex
 math.tex(,669) -basis of the V-filtration on 
+math.tex(,673) @tex
+math.tex(,674) $H''/H'$
+math.tex(,675) @end tex
 math.tex(,676)  in terms of the monomial basis of
+math.tex(,677) @tex
+math.tex(,678) $O/J_f\cong H''/H'$
+math.tex(,679) @end tex
 math.tex(,683) in @code{l[4]}.
 math.tex(,684) 
+math.tex(,685) @tex
+math.tex(,686) If the principal part of $f$ is $C$-nondegenerate, one can 
compute the spectrum using the library {\tt spectrum.lib}.
+math.tex(,687) In this case, the V-filtration on $H''$ coincides with the 
Newton-filtration on $H''$ which allows to compute the spectrum more 
efficiently.
+math.tex(,688) @end tex
 math.tex(,689) 
 math.tex(,694) 
 math.tex(,695) Let us calculate one specific example, the maximal number 
 math.tex(,696) of triple points of type
+math.tex(,697) @tex
+math.tex(,698) $\tilde{E}_6$ on a surface $X\subset{P}^3$
+math.tex(,699) @end tex
 math.tex(,703) of degree seven.
 math.tex(,704) This calculation can be done over the rationals.
 math.tex(,705) So choose a local ordering on 
+math.tex(,709) @tex
+math.tex(,710) $Q[x,y,z]$
+math.tex(,711) @end tex
 math.tex(,712) . Here we take the
 math.tex(,713) negative degree lexicographical ordering which is denoted
 math.tex(,714) @code{ds} in @sc{Singular}:
@@ -21880,21 +23522,44 @@
 math.tex(,743) @end smallexample
 math.tex(,744) 
 math.tex(,745) The command @code{spectrumnd(f)} computes the spectrum of 
+math.tex(,749) @tex
+math.tex(,750) $f$
+math.tex(,751) @end tex
 math.tex(,752)  and
 math.tex(,753) returns a list with six entries:
 math.tex(,754) The Milnor number
+math.tex(,755) @tex
+math.tex(,756) $\mu(f)$, the geometric genus $p_g(f)$
+math.tex(,757) @end tex
 math.tex(,761) and the number of different spectrum numbers.
 math.tex(,762) The other three entries are of type @code{intvec}.
 math.tex(,763) They contain the numerators, denominators and
 math.tex(,764) multiplicities of the spectrum numbers. So
+math.tex(,765) @tex
+math.tex(,766) $x^7+y^7+z^7=0$
+math.tex(,767) @end tex
 math.tex(,771) has Milnor number 216 and geometrical
 math.tex(,772) genus 35. Its spectrum consists of the 16 different rationals
 math.tex(,773) @*
+math.tex(,774) @tex
+math.tex(,775) ${3 \over 7}, {4 \over 7}, {5 \over 7}, {6 \over 7}, {1 \over 
1},
+math.tex(,776) {8 \over 7}, {9 \over 7}, {10 \over 7}, {11 \over 7}, {12 \over 
7},
+math.tex(,777) {13 \over 7}, {2 \over 1}, {15 \over 7}, {16 \over 7}, {17 
\over 7},
+math.tex(,778) {18 \over 7}$
+math.tex(,779) @end tex
 math.tex(,784) @*appearing with multiplicities
 math.tex(,785) @*1,3,6,10,15,21,25,27,27,25,21,15,10,6,3,1.
 math.tex(,786) 
+math.tex(,787) @tex
+math.tex(,788) The singularities of type $\tilde{E}_6$ form a
+math.tex(,789) $\mu$-constant one parameter family given by
+math.tex(,790) $x^3+y^3+z^3+\lambda xyz=0,\quad \lambda^3\neq-27$.
+math.tex(,791) @end tex
 math.tex(,797) Therefore they have all the same spectrum, which we compute
 math.tex(,798) for 
+math.tex(,799) @tex
+math.tex(,800) $x^3+y^3+z^3$.
+math.tex(,801) @end tex
 math.tex(,805) 
 math.tex(,806) @smallexample
 math.tex(,807) poly g=x^3+y^3+z^3;
@@ -21920,6 +23585,9 @@
 math.tex(,827) @end smallexample
 math.tex(,828) 
 math.tex(,829) This tells us that there are at most 18 singularities of type
+math.tex(,830) @tex
+math.tex(,831) $\tilde{E}_6$ on a septic in $P^3$. But $x^7+y^7+z^7$
+math.tex(,832) @end tex
 math.tex(,836) is semiquasihomogeneous (sqh), so we can also apply the stronger
 math.tex(,837) form of semicontinuity:
 math.tex(,838) 
@@ -21929,12 +23597,21 @@
 math.tex(,842) @end smallexample
 math.tex(,843) 
 math.tex(,844) So in fact a septic has at most 17 triple points of type
+math.tex(,845) @tex
+math.tex(,846) $\tilde{E}_6$.
+math.tex(,847) @end tex
 math.tex(,851) 
 math.tex(,852) Note that @code{spectrumnd(f)} works only if 
+math.tex(,856) @tex
+math.tex(,857) $f$
+math.tex(,858) @end tex
 math.tex(,859)  has nondegenerate
 math.tex(,860) principal part. In fact @code{spectrumnd} will detect a 
degenerate
 math.tex(,861) principal part in many cases and print out an error message.
 math.tex(,862) However if it is known in advance that 
+math.tex(,866) @tex
+math.tex(,867) $f$
+math.tex(,868) @end tex
 math.tex(,869)  has nondegenerate
 math.tex(,870) principal part, then the spectrum may be computed much faster
 math.tex(,871) using @code{spectrumnd(f,1)}.
@@ -21958,10 +23635,33 @@
 ti_ip.tex(,12) @comment DO NOT EDIT DIRECTLY, BUT EDIT ti_ip.doc INSTEAD
 ti_ip.tex(,13) @cindex ideal, toric
 ti_ip.tex(,14) 
+ti_ip.tex(,15) @tex
+ti_ip.tex(,16) Let $A$ denote an $m\times n$ matrix with integral 
coefficients. For $u
+ti_ip.tex(,17) \in Z\!\!\! Z^n$, we define $u^+,u^-$ to be the uniquely 
determined
+ti_ip.tex(,18) vectors with nonnegative coefficients and disjoint support 
(i.e.,
+ti_ip.tex(,19) $u_i^+=0$ or $u_i^-=0$ for each component $i$) such that
+ti_ip.tex(,20) $u=u^+-u^-$. For $u\geq 0$ component-wise, let $x^u$ denote the 
monomial
+ti_ip.tex(,21) $x_1^{u_1}\cdot\ldots\cdot x_n^{u_n}\in K[x_1,\ldots,x_n]$.
+ti_ip.tex(,22) 
+ti_ip.tex(,23) The ideal
+ti_ip.tex(,24) $$ I_A:=<x^{u^+}-x^{u^-} | u\in\ker(A)\cap Z\!\!\! Z^n>\ \subset
+ti_ip.tex(,25) K[x_1,\ldots,x_n] $$
+ti_ip.tex(,26) is called a \bf toric ideal. \rm
+ti_ip.tex(,27) 
+ti_ip.tex(,28) The first problem in computing toric ideals is to find a finite
+ti_ip.tex(,29) generating set: Let $v_1,\ldots,v_r$ be a lattice basis of 
$\ker(A)\cap
+ti_ip.tex(,30) Z\!\!\! Z^n$ (i.e, a basis of the $Z\!\!\! Z$-module). Then
+ti_ip.tex(,31) $$ I_A:=I:(x_1\cdot\ldots\cdot x_n)^\infty $$
+ti_ip.tex(,32) where
+ti_ip.tex(,33) $$ I=<x^{v_i^+}-x^{v_i^-}|i=1,\ldots,r> $$
+ti_ip.tex(,34) @end tex
 ti_ip.tex(,35) 
 ti_ip.tex(,61) 
 ti_ip.tex(,62) The required lattice basis can be computed using the 
LLL-algorithm (@pxref{[Coh93]}). For the computation of the saturation, there 
are various
 ti_ip.tex(,63) possibilities described in the
+ti_ip.tex(,64) @tex
+ti_ip.tex(,65) section Algorithms.
+ti_ip.tex(,66) @end tex
 ti_ip.tex(,70) 
 ti_ip.tex(,71) @menu
 ti_ip.tex(,72) * Algorithms::             Various algorithms for computing 
toric ideals.
@@ -21989,6 +23689,23 @@
 ti_ip.tex(,94) 
 ti_ip.tex(,95) 
 ti_ip.tex(,96) The algorithm of Conti and Traverso (@pxref{[CoTr91]})
+ti_ip.tex(,97) @tex
+ti_ip.tex(,98) computes $I_A$ via the
+ti_ip.tex(,99) extended matrix $B=(I_m|A)$,
+ti_ip.tex(,100) where $I_m$ is the $m\times m$ unity matrix. A lattice basis 
of $B$ is
+ti_ip.tex(,101) given by the set of vectors $(a^j,-e_j)\in Z\!\!\! Z^{m+n}$, 
where $a^j$
+ti_ip.tex(,102) is the $j$-th row of $A$ and $e_j$ the $j$-th coordinate 
vector. We
+ti_ip.tex(,103) look at the ideal in $K[y_1,\ldots,y_m,x_1,\ldots,x_n]$ 
corresponding to
+ti_ip.tex(,104) these vectors, namely
+ti_ip.tex(,105) $$ I_1=<y^{a_j^+}- x_j y^{a_j^-} | j=1,\ldots, n>.$$
+ti_ip.tex(,106) We introduce a further variable $t$ and adjoin the binomial 
$t\cdot
+ti_ip.tex(,107) y_1\cdot\ldots\cdot y_m -1$ to the generating set of $I_1$, 
obtaining
+ti_ip.tex(,108) an ideal $I_2$ in the polynomial ring $K[t,
+ti_ip.tex(,109) y_1,\ldots,y_m,x_1,\ldots,x_n]$. $I_2$ is saturated w.r.t. all
+ti_ip.tex(,110) variables because all variables are invertible modulo $I_2$. 
Now $I_A$
+ti_ip.tex(,111) can be computed from $I_2$ by eliminating the variables
+ti_ip.tex(,112) $t,y_1,\ldots,y_m$.
+ti_ip.tex(,113) @end tex
 ti_ip.tex(,131) 
 ti_ip.tex(,132) Because of the big number of auxiliary variables needed to 
compute a
 ti_ip.tex(,133) toric ideal, this algorithm is rather slow in practice. 
However, it has
@@ -22003,6 +23720,16 @@
 ti_ip.tex(,142) 
 ti_ip.tex(,143) 
 ti_ip.tex(,144) The algorithm of Pottier (@pxref{[Pot94]}) starts by computing 
a lattice
+ti_ip.tex(,145) @tex
+ti_ip.tex(,146) basis $v_1,\ldots,v_r$ for the integer kernel of $A$ using the
+ti_ip.tex(,147) LLL-algorithm. The ideal corresponding to the lattice basis 
vectors
+ti_ip.tex(,148) $$ I_1=<x^{v_i^+}-x^{v_i^-}|i=1,\ldots,r> $$
+ti_ip.tex(,149) is saturated -- as in the algorithm of Conti and Traverso -- by
+ti_ip.tex(,150) inversion of all variables: One adds an auxiliary variable $t$ 
and the
+ti_ip.tex(,151) generator $t\cdot x_1\cdot\ldots\cdot x_n -1$ to obtain an 
ideal $I_2$
+ti_ip.tex(,152) in $K[t,x_1,\ldots,x_n]$ from which one computes $I_A$ by 
elimination of
+ti_ip.tex(,153) $t$.
+ti_ip.tex(,154) @end tex
 ti_ip.tex(,167) 
 ti_ip.tex(,168) 
 ti_ip.tex(,169) @node Hosten and Sturmfels, Di Biase and Urbanke, Pottier, 
Algorithms
@@ -22013,6 +23740,33 @@
 ti_ip.tex(,174) 
 ti_ip.tex(,175) 
 ti_ip.tex(,176) The algorithm of Hosten and Sturmfels (@pxref{[HoSt95]}) 
allows to
+ti_ip.tex(,177) @tex
+ti_ip.tex(,178) compute $I_A$ without any auxiliary variables, provided that 
$A$ contains a vector $w$
+ti_ip.tex(,179) with positive coefficients in its row space. This is a real 
restriction,
+ti_ip.tex(,180) i.e., the algorithm will not necessarily work in the general 
case.
+ti_ip.tex(,181) 
+ti_ip.tex(,182) A lattice basis $v_1,\ldots,v_r$ is again computed via the
+ti_ip.tex(,183) LLL-algorithm. The saturation step is performed in the 
following way:
+ti_ip.tex(,184) First note that $w$ induces a positive grading w.r.t. which 
the ideal
+ti_ip.tex(,185) $$ I=<x^{v_i^+}-x^{v_i^-}|i=1,\ldots,r> $$
+ti_ip.tex(,186) corresponding to our lattice basis is homogeneous. We use the 
following
+ti_ip.tex(,187) lemma:
+ti_ip.tex(,188) 
+ti_ip.tex(,189) Let $I$ be a homogeneous ideal w.r.t. the weighted reverse
+ti_ip.tex(,190) lexicographical ordering with weight vector $w$ and variable 
order $x_1
+ti_ip.tex(,191) > x_2 > \ldots > x_n$. Let $G$ denote a Groebner basis of $I$ 
w.r.t. to
+ti_ip.tex(,192) this ordering.  Then a Groebner basis of $(I:x_n^\infty)$ is 
obtained by
+ti_ip.tex(,193) dividing each element of $G$ by the highest possible power of 
$x_n$.
+ti_ip.tex(,194) 
+ti_ip.tex(,195) From this fact, we can successively compute
+ti_ip.tex(,196) $$ I_A= I:(x_1\cdot\ldots\cdot x_n)^\infty
+ti_ip.tex(,197) =(((I:x_1^\infty):x_2^\infty):\ldots :x_n^\infty); $$
+ti_ip.tex(,198) in the $i$-th step we take $x_i$ as the cheapest variable and 
apply the
+ti_ip.tex(,199) lemma with $x_i$ instead of $x_n$.
+ti_ip.tex(,200) 
+ti_ip.tex(,201) This procedure involves $n$ Groebner basis computations. 
Actually, this
+ti_ip.tex(,202) number can be reduced to at most $n/2$
+ti_ip.tex(,203) @end tex
 ti_ip.tex(,235) (@pxref{[HoSh98]}), and the single
 ti_ip.tex(,236) computations -- except from the first one -- show to be easy 
and fast in
 ti_ip.tex(,237) practice.
@@ -22025,6 +23779,38 @@
 ti_ip.tex(,244) 
 ti_ip.tex(,245) Like the algorithm of Hosten and Sturmfels, the algorithm of 
Di Biase
 ti_ip.tex(,246) and Urbanke (@pxref{[DBUr95]}) performs up
+ti_ip.tex(,247) @tex
+ti_ip.tex(,248) to $n/2$ Groebner basis
+ti_ip.tex(,249) computations. It needs no auxiliary variables, but a 
supplementary
+ti_ip.tex(,250) precondition; namely, the existence of a vector without zero 
components
+ti_ip.tex(,251) in the kernel of $A$.
+ti_ip.tex(,252) 
+ti_ip.tex(,253) The main idea comes from the following observation:
+ti_ip.tex(,254) 
+ti_ip.tex(,255) Let $B$ be an integer matrix, $u_1,\ldots,u_r$ a lattice basis 
of the
+ti_ip.tex(,256) integer kernel of $B$. Assume that all components of $u_1$ are
+ti_ip.tex(,257) positive. Then
+ti_ip.tex(,258) $$ I_B=<x^{u_i^+}-x^{u_i^-}|i=1,\ldots,r>, $$
+ti_ip.tex(,259) i.e., the ideal on the right is already saturated w.r.t. all 
variables.
+ti_ip.tex(,260) 
+ti_ip.tex(,261) The algorithm starts by finding a lattice basis 
$v_1,\ldots,v_r$ of the
+ti_ip.tex(,262) kernel of $A$ such that $v_1$ has no zero component. Let
+ti_ip.tex(,263) $\{i_1,\ldots,i_l\}$ be the set of indices $i$ with
+ti_ip.tex(,264) $v_{1,i}<0$. Multiplying the components $i_1,\ldots,i_l$ of
+ti_ip.tex(,265) $v_1,\ldots,v_r$ and the columns $i_1,\ldots,i_l$ of $A$ by 
$-1$ yields
+ti_ip.tex(,266) a matrix $B$ and a lattice basis $u_1,\ldots,u_r$ of the 
kernel of $B$
+ti_ip.tex(,267) that fulfill the assumption of the observation above. We are 
then able
+ti_ip.tex(,268) to compute a generating set of $I_A$ by applying the following
+ti_ip.tex(,269) ``variable flip'' successively to $i=i_1,\ldots,i_l$:
+ti_ip.tex(,270) 
+ti_ip.tex(,271) Let $>$ be an elimination ordering for $x_i$. Let $A_i$ be the 
matrix
+ti_ip.tex(,272) obtained by multiplying the $i$-th column of $A$ with $-1$. Let
+ti_ip.tex(,273) $$\{x_i^{r_j} x^{a_j} - x^{b_j} | j\in J \}$$
+ti_ip.tex(,274) be a Groebner basis of $I_{A_i}$ w.r.t. $>$ (where $x_i$ is 
neither
+ti_ip.tex(,275) involved in $x^{a_j}$ nor in $x^{b_j}$). Then
+ti_ip.tex(,276) $$\{x^{a_j} - x_i^{r_j} x^{b_j} | j\in J \}$$
+ti_ip.tex(,277) is a generating set for $I_A$.
+ti_ip.tex(,278) @end tex
 ti_ip.tex(,316) 
 ti_ip.tex(,317) @node Bigatti and La Scala and Robbiano, , Di Biase and 
Urbanke, Algorithms
 ti_ip.tex(,318) 
@@ -22035,6 +23821,12 @@
 ti_ip.tex(,323) The algorithm of Bigatti, La Scala and Robbiano 
(@pxref{[BLR98]}) combines the ideas of
 ti_ip.tex(,324) the algorithms of Pottier and of Hosten and Sturmfels. The
 ti_ip.tex(,325) computations are performed on a graded ideal with one auxiliary
+ti_ip.tex(,326) @tex
+ti_ip.tex(,327) variable $u$ and one supplementary generator 
$x_1\cdot\ldots\cdot x_n -
+ti_ip.tex(,328) u$ (instead of the generator $t\cdot x_1\cdot\ldots\cdot x_n 
-1$ in
+ti_ip.tex(,329) the algorithm of Pottier). The algorithm uses a quite unusual 
technique to
+ti_ip.tex(,330) get rid of the variable $u$ again.
+ti_ip.tex(,331) @end tex
 ti_ip.tex(,338) 
 ti_ip.tex(,339) There is another algorithm of the authors which tries to 
parallelize
 ti_ip.tex(,340) the computations (but which is not implemented in this 
library).
@@ -22059,6 +23851,25 @@
 ti_ip.tex(,359) @subsection Integer programming
 ti_ip.tex(,360) @cindex integer programming
 ti_ip.tex(,361) 
+ti_ip.tex(,362) @tex
+ti_ip.tex(,363) Let $A$ be an $m\times n$ matrix with integral coefficients, 
$b\in
+ti_ip.tex(,364) Z\!\!\! Z^m$ and $c\in Z\!\!\! Z^n$. The problem
+ti_ip.tex(,365) $$ \min\{c^T x | x\in Z\!\!\! Z^n, Ax=b, x\geq 0\hbox{
+ti_ip.tex(,366) component-wise}\} $$
+ti_ip.tex(,367) is called an instance of the \bf integer programming problem 
\rm or
+ti_ip.tex(,368) \bf IP problem. \rm
+ti_ip.tex(,369) 
+ti_ip.tex(,370) The IP problem is very hard; namely, it is NP-complete.
+ti_ip.tex(,371) 
+ti_ip.tex(,372) For the following discussion let $c\geq 0$ (component-wise). We
+ti_ip.tex(,373) consider $c$ as a weight vector; because of its 
non-negativity, $c$ can
+ti_ip.tex(,374) be refined into a monomial ordering $>_c$. It turns out that 
we can
+ti_ip.tex(,375) solve such an IP instance with the help of toric ideals:
+ti_ip.tex(,376) 
+ti_ip.tex(,377) First we assume that an initial solution $v$ (i.e., $v\in 
Z\!\!\!
+ti_ip.tex(,378) Z^n, v\geq 0, Av=b$) is already known. We obtain the optimal 
solution
+ti_ip.tex(,379) $v_0$ (i.e., with $c^T v_0$ minimal) by the following 
procedure:
+ti_ip.tex(,380) @end tex
 ti_ip.tex(,381) @c \begin{itemize}
 ti_ip.tex(,382) @c \item (1) Compute the toric ideal $I_A$ using one of the 
algorithms in the
 ti_ip.tex(,383) @c       previous section.
@@ -22073,11 +23884,23 @@
 ti_ip.tex(,412) @itemize @bullet
 ti_ip.tex(,413) @item (1) Compute the toric ideal I(A) using one of the 
algorithms in the previous section.
 ti_ip.tex(,414) @item (2) Compute the reduced Groebner basis G(c) of I(A) 
w.r.t.@: 
+ti_ip.tex(,418) @tex
+ti_ip.tex(,419) $>_c$
+ti_ip.tex(,420) @end tex
 ti_ip.tex(,421) .
 ti_ip.tex(,422) @item (3) Reduce 
+ti_ip.tex(,426) @tex
+ti_ip.tex(,427) $x^v$
+ti_ip.tex(,428) @end tex
 ti_ip.tex(,429)  modulo G(c) using the Hironaka division algorithm.
 ti_ip.tex(,430) If the result of this reduction is 
+ti_ip.tex(,434) @tex
+ti_ip.tex(,435) $x^(v_0)$
+ti_ip.tex(,436) @end tex
 ti_ip.tex(,437) , then 
+ti_ip.tex(,441) @tex
+ti_ip.tex(,442) $v_0$
+ti_ip.tex(,443) @end tex
 ti_ip.tex(,444)  is an optimal
 ti_ip.tex(,445) solution of the given instance.
 ti_ip.tex(,446) @end itemize
@@ -22097,6 +23920,9 @@
 ti_ip.tex(,460) methods seem to be faster in general than the methods using 
toric
 ti_ip.tex(,461) ideals. But the latter have one great advantage: If one wants 
to solve
 ti_ip.tex(,462) various instances that differ only by the vector 
+ti_ip.tex(,466) @tex
+ti_ip.tex(,467) $b$
+ti_ip.tex(,468) @end tex
 ti_ip.tex(,469) , one has to
 ti_ip.tex(,470) perform steps (1) and (2) above only once. As the running time 
of step (3)
 ti_ip.tex(,471) is very short, solving all the instances is not much harder 
than
@@ -22239,6 +24065,9 @@
 math.tex(,959) Symbolic Computation
 math.tex(,960) 
 math.tex(,961) @item
+math.tex(,962) @tex
+math.tex(,963) Faug\`ere,
+math.tex(,964) @end tex
 math.tex(,968) J. C.; Gianni, P.; Lazard, D.; Mora, T.: Efficient computation
 math.tex(,969) of zero-dimensional
 math.tex(,970) Gr@"obner bases by change of ordering. Journal of Symbolic 
Computation, 1989
@@ -47789,6 +49618,9 @@
 brnoeth_lib.tex(,685) 
 brnoeth_lib.tex(,686) @item @strong{Warnings:}
 brnoeth_lib.tex(,687) G should satisfy 
+brnoeth_lib.tex(,691) @tex
+brnoeth_lib.tex(,692) $ 2*genus-2 < deg(G) < size(D) $
+brnoeth_lib.tex(,693) @end tex
 brnoeth_lib.tex(,694) , which is
 brnoeth_lib.tex(,695) not checked by the algorithm.
 brnoeth_lib.tex(,696) @*G and D should have disjoint supports (checked by the 
algorithm).
@@ -47853,10 +49685,16 @@
 brnoeth_lib.tex(,771) for more details)address@hidden
 brnoeth_lib.tex(,772) The code computes the residues of a vector space basis of
 brnoeth_lib.tex(,773) 
+brnoeth_lib.tex(,777) @tex
+brnoeth_lib.tex(,778) $\Omega(G-D)$
+brnoeth_lib.tex(,779) @end tex
 brnoeth_lib.tex(,780)  at the rational places given by D.
 brnoeth_lib.tex(,781) 
 brnoeth_lib.tex(,782) @item @strong{Warnings:}
 brnoeth_lib.tex(,783) G should satisfy 
+brnoeth_lib.tex(,787) @tex
+brnoeth_lib.tex(,788) $ 2*genus-2 < deg(G) < size(D) $
+brnoeth_lib.tex(,789) @end tex
 brnoeth_lib.tex(,790) , which is
 brnoeth_lib.tex(,791) not checked by the algorithm.
 brnoeth_lib.tex(,792) @*G and D should have disjoint supports (checked by the 
algorithm).
@@ -47913,8 +49751,14 @@
 brnoeth_lib.tex(,859)    E[2] ... E[n+2]:  matrices used in the procedure 
decodeSV
 brnoeth_lib.tex(,860)    E[n+3]:  intvec with
 brnoeth_lib.tex(,861)        E[n+3][1]: correction capacity 
+brnoeth_lib.tex(,865) @tex
+brnoeth_lib.tex(,866) $epsilon$
+brnoeth_lib.tex(,867) @end tex
 brnoeth_lib.tex(,868)  of the algorithm
 brnoeth_lib.tex(,869)        E[n+3][2]: designed Goppa distance 
+brnoeth_lib.tex(,873) @tex
+brnoeth_lib.tex(,874) $delta$
+brnoeth_lib.tex(,875) @end tex
 brnoeth_lib.tex(,876)  of the current AG code
 brnoeth_lib.tex(,877)    @end format
 brnoeth_lib.tex(,878) 
@@ -47930,6 +49774,9 @@
 brnoeth_lib.tex(,888) The current AG code is 
@code{AGcode_Omega(G,D,EC)address@hidden
 brnoeth_lib.tex(,889) If you know the exact minimum distance d and you want to 
use it in
 brnoeth_lib.tex(,890) @code{decodeSV} instead of 
+brnoeth_lib.tex(,894) @tex
+brnoeth_lib.tex(,895) $delta$
+brnoeth_lib.tex(,896) @end tex
 brnoeth_lib.tex(,897) , you can change the value
 brnoeth_lib.tex(,898) of E[n+3][2] to d before applying decodeSV.
 brnoeth_lib.tex(,899) @*If you have a systematic encoding for the current code 
and want to
@@ -47940,10 +49787,19 @@
 brnoeth_lib.tex(,904) @item @strong{Warnings:}
 brnoeth_lib.tex(,905) F must be a divisor with support disjoint from the 
support of D and
 brnoeth_lib.tex(,906) with degree 
+brnoeth_lib.tex(,910) @tex
+brnoeth_lib.tex(,911) $epsilon + genus$
+brnoeth_lib.tex(,912) @end tex
 brnoeth_lib.tex(,913) , where
 brnoeth_lib.tex(,914) 
+brnoeth_lib.tex(,918) @tex
+brnoeth_lib.tex(,919) $epsilon:=[(deg(G)-3*genus+1)/2]$
+brnoeth_lib.tex(,920) @end tex
 brnoeth_lib.tex(,921) address@hidden
 brnoeth_lib.tex(,922) G should satisfy 
+brnoeth_lib.tex(,926) @tex
+brnoeth_lib.tex(,927) $ 2*genus-2 < deg(G) < size(D) $
+brnoeth_lib.tex(,928) @end tex
 brnoeth_lib.tex(,929) , which is
 brnoeth_lib.tex(,930) not checked by the algorithm.
 brnoeth_lib.tex(,931) @*G and D should also have disjoint supports (checked by 
the

Index: test/singular_manual/res/texi_singular/singular.passtexi
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/singular_manual/res/texi_singular/singular.passtexi,v
retrieving revision 1.3
retrieving revision 1.4
diff -u -b -r1.3 -r1.4
--- test/singular_manual/res/texi_singular/singular.passtexi    29 Aug 2008 
15:06:51 -0000      1.3
+++ test/singular_manual/res/texi_singular/singular.passtexi    9 Jan 2009 
21:20:58 -0000       1.4
@@ -332,6 +332,9 @@
 start.tex(,78) @sc{Singular}'s development started in 1984 with an 
implementation of
 start.tex(,79) Mora's Tangent Cone algorithm in Modula-2 on an Atari computer 
(K.P.
 start.tex(,80) Neuendorf, G. Pfister,
+start.tex(,84) @tex
+start.tex(,85) H.\ Sch\"onemann; Humboldt-Universit\"at
+start.tex(,86) @end tex
 start.tex(,87)  zu Berlin).  The need for a new system arose from the 
investigation of
 start.tex(,88) mathematical problems coming from singularity theory which none 
of the
 start.tex(,89) existing systems was able to compute.
@@ -574,6 +577,9 @@
 start.tex(,351) @noindent This shows the text of @ref{intmat}, in the printed 
manual.
 start.tex(,356) 
 start.tex(,357) Next, we define a
+start.tex(,358) @tex
+start.tex(,359) $3 \times 3$
+start.tex(,360) @end tex
 start.tex(,364)  matrix of integers and initialize it with some values, row by 
row
 start.tex(,365) from left to right:
 start.tex(,366) 
@@ -650,6 +656,9 @@
 start.tex(,442) ring variables, and the third part determines the monomial 
ordering to
 start.tex(,443) be used. So the example above declares a polynomial ring 
called @code{r}
 start.tex(,444) with a ground field of characteristic 
+start.tex(,448) @tex
+start.tex(,449) $0$
+start.tex(,450) @end tex
 start.tex(,451)  (i.e., the rational
 start.tex(,452) numbers) and ring variables called @code{x}, @code{y}, and 
@code{z}. The
 start.tex(,453) @code{dp} at the end means that the degree reverse 
lexicographical
@@ -672,7 +681,13 @@
 start.tex(,470) 
 start.tex(,471) @item ring r4=(0,a),(mu,nu),lp;
 start.tex(,472) transcendental extension of 
+start.tex(,476) @tex
+start.tex(,477) $Q$
+start.tex(,478) @end tex
 start.tex(,479)  by 
+start.tex(,483) @tex
+start.tex(,484) $a$
+start.tex(,485) @end tex
 start.tex(,486) , variable names
 start.tex(,487) @code{mu} and @code{nu}.
 start.tex(,488) 
@@ -701,6 +716,9 @@
 start.tex(,511) @c
 start.tex(,512) Typing the name of a ring prints its definition. The example 
below
 start.tex(,513) shows that the default ring in @sc{Singular} is 
+start.tex(,517) @tex
+start.tex(,518) $Z/32003[x,y,z]$
+start.tex(,519) @end tex
 start.tex(,520) 
 start.tex(,521) with degree reverse lexicographical ordering:
 start.tex(,522) 
@@ -730,6 +748,9 @@
 start.tex(,551) @end smallexample
 start.tex(,552) 
 start.tex(,553) Once a ring is active, we can define polynomials. A monomial, 
say
+start.tex(,554) @tex
+start.tex(,555) $x^3$
+start.tex(,556) @end tex
 start.tex(,560) may be entered in two ways: either using the power operator 
@code{^},
 start.tex(,561) saying @code{x^3}, or in short-hand notation without operator, 
saying
 start.tex(,562) @code{x3}. Note that the short-hand notation is forbidden if 
the name
@@ -848,6 +869,9 @@
 start.tex(,677) @end smallexample
 start.tex(,678) 
 start.tex(,679) @noindent gives the desired vector space dimension
+start.tex(,680) @tex
+start.tex(,681) $K[x,y,z]/\hbox{\rm jacob}(f)$.
+start.tex(,682) @end tex
 start.tex(,686) As in @sc{Singular} the functions may take the input directly 
from
 start.tex(,687) earlier calculations, the whole sequence of commands may be 
written
 start.tex(,688) in one single statement.
@@ -1021,6 +1045,9 @@
 start.tex(,876) 
 start.tex(,877) This shows that @code{f} has outside the origin in affine 
3-space
 start.tex(,878) singularities with local Milnor number adding up to
+start.tex(,879) @tex
+start.tex(,880) $12-4=8$.
+start.tex(,881) @end tex
 start.tex(,885) Using global and local orderings as above is a convenient way 
to check
 start.tex(,886) whether a variety has singularities outside the origin.
 start.tex(,887) 
@@ -1067,6 +1094,9 @@
 start.tex(,928) The algorithm of the standard basis computations may be
 start.tex(,929) affected by the command @code{option}. For example, a reduced 
standard
 start.tex(,930) basis of the ideal generated by the
+start.tex(,931) @tex
+start.tex(,932) $1 \times 1$-minors
+start.tex(,933) @end tex
 start.tex(,937)  of H  is obtained in the following way:
 start.tex(,938) @smallexample
 start.tex(,939) option(redSB);
@@ -1075,6 +1105,9 @@
 start.tex(,942) @end smallexample
 start.tex(,943) 
 start.tex(,944) This shows that 1 is contained in the ideal of the
+start.tex(,945) @tex
+start.tex(,946) $1 \times 1$-minors,
+start.tex(,947) @end tex
 start.tex(,951) hence the corresponding variety is empty.
 start.tex(,952) @c Coming back to some mathematical considerations, we study 
the problem how
 start.tex(,953) @c to calculate some ....
@@ -1130,13 +1163,22 @@
 start.tex(,1008) @end smallexample
 start.tex(,1009) 
 start.tex(,1010) However the submodule 
+start.tex(,1014) @tex
+start.tex(,1015) $MD$
+start.tex(,1016) @end tex
 start.tex(,1017)  may also be considered as the module
 start.tex(,1018) of relations of the factor module
+start.tex(,1019) @tex
+start.tex(,1020) $r^3/MD$.
+start.tex(,1021) @end tex
 start.tex(,1025) In this way, @sc{Singular} can treat arbitrary finitely 
generated modules
 start.tex(,1026) over the
 start.tex(,1028) basering (@pxref{Representation of mathematical objects}).
 start.tex(,1033) 
 start.tex(,1034) In order to get the module of relations of 
+start.tex(,1038) @tex
+start.tex(,1039) $MD$
+start.tex(,1040) @end tex
 start.tex(,1041) ,
 start.tex(,1042) we use the command @code{syz}.
 start.tex(,1043) 
@@ -1147,15 +1189,30 @@
 start.tex(,1048) 
 start.tex(,1049) We want to calculate, as an application, the annihilator of a 
given module.
 start.tex(,1050) Let
+start.tex(,1051) @tex
+start.tex(,1052) $M = r^3/U$,
+start.tex(,1053) @end tex
 start.tex(,1057) where U is our defining module of relations for the module
+start.tex(,1058) @tex
+start.tex(,1059) $M$.
+start.tex(,1060) @end tex
 start.tex(,1064) 
 start.tex(,1065) @smallexample
 start.tex(,1066) module U = 
[z3,xy2,x3],[yz2,1,xy5z+z3],[y2z,0,x3],[xyz+x2,y2,0],[xyz,x2y,1];
 start.tex(,1067) @end smallexample
 start.tex(,1068) 
 start.tex(,1069) Then, by definition, the annihilator of M is the ideal
+start.tex(,1070) @tex
+start.tex(,1071) $\hbox{ann}(M) = \{a \mid aM = 0 \}$
+start.tex(,1072) @end tex
 start.tex(,1076) which is by the description of M the same as
+start.tex(,1077) @tex
+start.tex(,1078) $\{ a \mid ar^3 \in U \}$.
+start.tex(,1079) @end tex
 start.tex(,1083) Hence we have to calculate the quotient
+start.tex(,1084) @tex
+start.tex(,1085) $U \colon r^3 $.
+start.tex(,1086) @end tex
 start.tex(,1090) The rank of the free module is determined by the choice of U 
and is the
 start.tex(,1091) number of rows of the corresponding matrix. This may be 
determined by
 start.tex(,1092) the function @code{nrows}. All we have to do now is the 
following:
@@ -1175,7 +1232,13 @@
 start.tex(,1111) The most general command is @code{res(... ,n)} which 
determines heuristically
 start.tex(,1112) what method to use for the given problem. It computes the 
free resolution
 start.tex(,1113) up to the length 
+start.tex(,1117) @tex
+start.tex(,1118) $n$
+start.tex(,1119) @end tex
 start.tex(,1120) , where 
+start.tex(,1124) @tex
+start.tex(,1125) $n=0$
+start.tex(,1126) @end tex
 start.tex(,1127)  corresponds to the full resolution.
 start.tex(,1128) 
 start.tex(,1129) Here we use the possibility to inspect the calculation 
process using the
@@ -1247,7 +1310,13 @@
 start.tex(,1195) 
 start.tex(,1196) In this case, the output is to be interpreted as follows: the 
3rd syzygy
 start.tex(,1197) module of R/I, @code{rs[3]}, is the rank-2-submodule of
+start.tex(,1198) @tex
+start.tex(,1199) $R^5$
+start.tex(,1200) @end tex
 start.tex(,1204) generated by the vectors
+start.tex(,1205) @tex
+start.tex(,1206) $(z^3,0,-y+4z,x+2z,0)$ and 
$(-xyz-y^2z-4xz^2+16z^3,-y^2,48z,48z,x+y-z)$.
+start.tex(,1207) @end tex
 start.tex(,1211) 
 singular.texi(,128) @c 
----------------------------------------------------------------------------
 singular.texi(,129) @node General concepts, Data types, Introduction, Top
@@ -2662,16 +2731,37 @@
 general.tex(,1435) @enumerate
 general.tex(,1436) @item
 general.tex(,1437) the field of rational numbers 
+general.tex(,1441) @tex
+general.tex(,1442) $Q$
+general.tex(,1443) @end tex
 general.tex(,1444) ,
 general.tex(,1445) @item
+general.tex(,1446) @tex
+general.tex(,1447) finite fields $Z/p$, $p$ a prime $\le 2147483629$,
+general.tex(,1448) @end tex
 general.tex(,1452) @item
+general.tex(,1453) @tex
+general.tex(,1454) finite fields $\hbox{GF}(p^n)$ with $p^n$ elements, $p$ a 
prime, $p^n \le 2^{15}$,
+general.tex(,1455) @end tex
 general.tex(,1459) @item
 general.tex(,1460) transcendental extension of 
+general.tex(,1464) @tex
+general.tex(,1465) $Q$
+general.tex(,1466) @end tex
 general.tex(,1467)  or 
+general.tex(,1471) @tex
+general.tex(,1472) $Z/p$
+general.tex(,1473) @end tex
 general.tex(,1474) ,
 general.tex(,1475) @item
 general.tex(,1476) simple algebraic extension of 
+general.tex(,1480) @tex
+general.tex(,1481) $Q$
+general.tex(,1482) @end tex
 general.tex(,1483)  or 
+general.tex(,1487) @tex
+general.tex(,1488) $Z/p$
+general.tex(,1489) @end tex
 general.tex(,1490) ,
 general.tex(,1491) @item
 general.tex(,1492) the field of real numbers represented by floating point
@@ -2722,6 +2812,9 @@
 general.tex(,1537) @itemize @bullet
 general.tex(,1538) @item
 general.tex(,1539) the ring 
+general.tex(,1543) @tex
+general.tex(,1544) $Z/32003[x,y,z]$
+general.tex(,1545) @end tex
 general.tex(,1546)  with degree reverse lexicographical
 general.tex(,1547) ordering.  The exact ring declaration may be omitted in the 
first
 general.tex(,1548) example since this is the default ring:
@@ -2733,6 +2826,9 @@
 general.tex(,1554) 
 general.tex(,1555) @item
 general.tex(,1556) the ring 
+general.tex(,1560) @tex
+general.tex(,1561) $Q[a,b,c,d]$
+general.tex(,1562) @end tex
 general.tex(,1563)  with lexicographical ordering:
 general.tex(,1564) 
 general.tex(,1565) @smallexample
@@ -2741,6 +2837,9 @@
 general.tex(,1568) 
 general.tex(,1569) @item
 general.tex(,1570) the ring 
+general.tex(,1574) @tex
+general.tex(,1575) $Z/7[x,y,z]$
+general.tex(,1576) @end tex
 general.tex(,1577)  with local degree reverse lexicographical
 general.tex(,1578) ordering.  The non-prime 10 is converted to the next lower 
prime in the
 general.tex(,1579) second example:
@@ -2752,8 +2851,17 @@
 general.tex(,1585) 
 general.tex(,1586) @item
 general.tex(,1587) the ring
+general.tex(,1588) @tex
+general.tex(,1589) $Z/7[x_1,\ldots,x_6]$
+general.tex(,1590) @end tex
 general.tex(,1594) with lexicographical ordering for
+general.tex(,1595) @tex
+general.tex(,1596) $x_1,x_2,x_3$
+general.tex(,1597) @end tex
 general.tex(,1601) and degree reverse lexicographical ordering for
+general.tex(,1602) @tex
+general.tex(,1603) $x_4,x_5,x_6$:
+general.tex(,1604) @end tex
 general.tex(,1608) 
 general.tex(,1609) @smallexample
 general.tex(,1610) ring r = 7,(x(1..6)),(lp(3),dp);
@@ -2761,8 +2869,14 @@
 general.tex(,1612) 
 general.tex(,1613) @item
 general.tex(,1614) the localization of 
+general.tex(,1618) @tex
+general.tex(,1619) $(Q[a,b,c])[x,y,z]$
+general.tex(,1620) @end tex
 general.tex(,1621)  at the maximal ideal
 general.tex(,1622) 
+general.tex(,1626) @tex
+general.tex(,1627) $(x,y,z)$
+general.tex(,1628) @end tex
 general.tex(,1629) :
 general.tex(,1630) 
 general.tex(,1631) @smallexample
@@ -2771,10 +2885,22 @@
 general.tex(,1634) 
 general.tex(,1635) @item
 general.tex(,1636) the ring 
+general.tex(,1640) @tex
+general.tex(,1641) $Q[x,y,z]$
+general.tex(,1642) @end tex
 general.tex(,1643)  with weighted reverse lexicographical ordering.
 general.tex(,1644) The variables 
+general.tex(,1648) @tex
+general.tex(,1649) $x$
+general.tex(,1650) @end tex
 general.tex(,1651) , 
+general.tex(,1655) @tex
+general.tex(,1656) $y$
+general.tex(,1657) @end tex
 general.tex(,1658) , and 
+general.tex(,1662) @tex
+general.tex(,1663) $z$
+general.tex(,1664) @end tex
 general.tex(,1665)  have the weights 2, 1,
 general.tex(,1666) and 3, respectively, and  vectors are first ordered by 
components (in
 general.tex(,1667) descending order) and then by monomials:
@@ -2786,12 +2912,30 @@
 general.tex(,1673) 
 general.tex(,1674) @item
 general.tex(,1675) the ring 
+general.tex(,1679) @tex
+general.tex(,1680) $K[x,y,z]$
+general.tex(,1681) @end tex
 general.tex(,1682) , where 
+general.tex(,1686) @tex
+general.tex(,1687) $K=Z/7(a,b,c)$
+general.tex(,1688) @end tex
 general.tex(,1689)  denotes the transcendental
 general.tex(,1690) extension of 
+general.tex(,1694) @tex
+general.tex(,1695) $Z/7$
+general.tex(,1696) @end tex
 general.tex(,1697)  by 
+general.tex(,1701) @tex
+general.tex(,1702) $a$
+general.tex(,1703) @end tex
 general.tex(,1704) , 
+general.tex(,1708) @tex
+general.tex(,1709) $b$
+general.tex(,1710) @end tex
 general.tex(,1711)  and 
+general.tex(,1715) @tex
+general.tex(,1716) $c$
+general.tex(,1717) @end tex
 general.tex(,1718)  with degree
 general.tex(,1719) lexicographical ordering:
 general.tex(,1720) 
@@ -2801,19 +2945,49 @@
 general.tex(,1724) 
 general.tex(,1725) @item
 general.tex(,1726) the ring 
+general.tex(,1730) @tex
+general.tex(,1731) $K[x,y,z]$
+general.tex(,1732) @end tex
 general.tex(,1733) , where 
+general.tex(,1737) @tex
+general.tex(,1738) $K=Z/7[a]$
+general.tex(,1739) @end tex
 general.tex(,1740)  denotes the algebraic extension of
 general.tex(,1741) degree 2 of 
+general.tex(,1745) @tex
+general.tex(,1746) $Z/7$
+general.tex(,1747) @end tex
 general.tex(,1748)  by 
+general.tex(,1752) @tex
+general.tex(,1753) $a.$
+general.tex(,1754) @end tex
 general.tex(,1755)  In other words, 
+general.tex(,1759) @tex
+general.tex(,1760) $K$
+general.tex(,1761) @end tex
 general.tex(,1762)  is the finite field with
 general.tex(,1763) 49 elements.  In the first case, 
+general.tex(,1767) @tex
+general.tex(,1768) $a$
+general.tex(,1769) @end tex
 general.tex(,1770)  denotes an algebraic
 general.tex(,1771) element over 
+general.tex(,1775) @tex
+general.tex(,1776) $Z/7$
+general.tex(,1777) @end tex
 general.tex(,1778)  with minimal polynomial
+general.tex(,1779) @tex
+general.tex(,1780) $\mu_a=a^2+a+3$,
+general.tex(,1781) @end tex
 general.tex(,1785) in the second case, 
+general.tex(,1789) @tex
+general.tex(,1790) $a$
+general.tex(,1791) @end tex
 general.tex(,1792) 
 general.tex(,1793) refers to some generator of the cyclic group of units of 
+general.tex(,1797) @tex
+general.tex(,1798) $K$
+general.tex(,1799) @end tex
 general.tex(,1800) :
 general.tex(,1801) 
 general.tex(,1802) @smallexample
@@ -2823,7 +2997,13 @@
 general.tex(,1806) 
 general.tex(,1807) @item
 general.tex(,1808) the ring 
+general.tex(,1812) @tex
+general.tex(,1813) $R[x,y,z]$
+general.tex(,1814) @end tex
 general.tex(,1815) , where 
+general.tex(,1819) @tex
+general.tex(,1820) $R$
+general.tex(,1821) @end tex
 general.tex(,1822)  denotes the field of real
 general.tex(,1823) numbers represented by simple precision floating point 
numbers. This is
 general.tex(,1824) a special case:
@@ -2834,7 +3014,13 @@
 general.tex(,1829) 
 general.tex(,1830) @item
 general.tex(,1831) the ring 
+general.tex(,1835) @tex
+general.tex(,1836) $R[x,y,z]$
+general.tex(,1837) @end tex
 general.tex(,1838) , where 
+general.tex(,1842) @tex
+general.tex(,1843) $R$
+general.tex(,1844) @end tex
 general.tex(,1845)  denotes the field of real
 general.tex(,1846) numbers represented by floating point numbers of 50 valid 
decimal digits
 general.tex(,1847) and the same number of digits for the rest:
@@ -2845,7 +3031,13 @@
 general.tex(,1852) 
 general.tex(,1853) @item
 general.tex(,1854) the ring 
+general.tex(,1858) @tex
+general.tex(,1859) $R[x,y,z]$
+general.tex(,1860) @end tex
 general.tex(,1861) , where 
+general.tex(,1865) @tex
+general.tex(,1866) $R$
+general.tex(,1867) @end tex
 general.tex(,1868)  denotes the field of real
 general.tex(,1869) numbers represented by floating point numbers of 10 valid 
decimal digits
 general.tex(,1870) and with 50 digits for the rest:
@@ -2856,10 +3048,19 @@
 general.tex(,1875) 
 general.tex(,1876) @item
 general.tex(,1877) the ring 
+general.tex(,1881) @tex
+general.tex(,1882) $R(j)[x,y,z]$
+general.tex(,1883) @end tex
 general.tex(,1884) , where 
+general.tex(,1888) @tex
+general.tex(,1889) $R$
+general.tex(,1890) @end tex
 general.tex(,1891)  denotes the field of real
 general.tex(,1892) numbers represented by floating point numbers of 30 valid 
decimal digits
 general.tex(,1893) and the same number for the rest. 
+general.tex(,1897) @tex
+general.tex(,1898) $j$
+general.tex(,1899) @end tex
 general.tex(,1900)  denotes the imaginary unit.
 general.tex(,1901) 
 general.tex(,1902) @smallexample
@@ -2868,10 +3069,19 @@
 general.tex(,1905) 
 general.tex(,1906) @item
 general.tex(,1907) the ring 
+general.tex(,1911) @tex
+general.tex(,1912) $R(i)[x,y,z]$
+general.tex(,1913) @end tex
 general.tex(,1914) , where 
+general.tex(,1918) @tex
+general.tex(,1919) $R$
+general.tex(,1920) @end tex
 general.tex(,1921)  denotes the field of real
 general.tex(,1922) numbers represented by floating point numbers of 6 valid 
decimal digits
 general.tex(,1923) and the same number for the rest. 
+general.tex(,1927) @tex
+general.tex(,1928) $i$
+general.tex(,1929) @end tex
 general.tex(,1930)  is the default for the imaginary unit.
 general.tex(,1931) 
 general.tex(,1932) @smallexample
@@ -2880,8 +3090,14 @@
 general.tex(,1935) 
 general.tex(,1936) @item
 general.tex(,1937) the quotient ring 
+general.tex(,1941) @tex
+general.tex(,1942) $Z/7[x,y,z]$
+general.tex(,1943) @end tex
 general.tex(,1944)  modulo the square of the maximal
 general.tex(,1945) ideal 
+general.tex(,1949) @tex
+general.tex(,1950) $(x,y,z)$
+general.tex(,1951) @end tex
 general.tex(,1952) :
 general.tex(,1953) 
 general.tex(,1954) @smallexample
@@ -2934,7 +3150,13 @@
 general.tex(,2001) an expression_list of an int_expression and a name.
 general.tex(,2002) @* The int_expression has to be a prime number p to the 
power of a
 general.tex(,2003) positive integer n. This defines the Galois field
+general.tex(,2004) @tex
+general.tex(,2005) $\hbox{GF}(p^n)$ with $p^n$ elements, where $p^n$ has to be 
smaller or equal $2^{15}$.
+general.tex(,2006) @end tex
 general.tex(,2010) The given name refers to a primitive element of
+general.tex(,2011) @tex
+general.tex(,2012) $\hbox{GF}(p^n)$
+general.tex(,2013) @end tex
 general.tex(,2017) generating the multiplicative group.  Due to a different 
internal
 general.tex(,2018) representation, the arithmetic operations in these 
coefficient fields
 general.tex(,2019) are faster than arithmetic operations in algebraic 
extensions as
@@ -3060,7 +3282,13 @@
 general.tex(,2139) 
 general.tex(,2140) @strong{Remark:} The novice user should generally use the 
ordering
 general.tex(,2141) @code{dp} for computations in the polynomial ring
+general.tex(,2142) @tex
+general.tex(,2143) $K[x_1,\ldots,x_n]$,
+general.tex(,2144) @end tex
 general.tex(,2148) resp.@:  @code{ds} for computations in the localization
+general.tex(,2149) @tex
+general.tex(,2150) $\hbox{Loc}_{(x)}K[x_1,\ldots,x_n])$.
+general.tex(,2151) @end tex
 general.tex(,2155) For more details, see @ref{Polynomial data}.
 general.tex(,2156) 
 general.tex(,2157) In a ring declaration, @sc{Singular} offers the following 
orderings:
@@ -3086,8 +3314,14 @@
 general.tex(,2177) @end table
 general.tex(,2178) 
 general.tex(,2179) Global orderings are well-orderings, i.e., 
+general.tex(,2183) @tex
+general.tex(,2184) $1 < x$
+general.tex(,2185) @end tex
 general.tex(,2186)  for each ring
 general.tex(,2187) variable 
+general.tex(,2191) @tex
+general.tex(,2192) $x$
+general.tex(,2193) @end tex
 general.tex(,2194) . They are denoted by a @code{p} as the second
 general.tex(,2195) character in their name.
 general.tex(,2196) 
@@ -3980,6 +4214,9 @@
 general.tex(,3083) by the size of expression.
 general.tex(,3084) @* But @code{matrix(} expression @code{,} m @code{,} n 
@code{)} may also be
 general.tex(,3085) used - the result is a
+general.tex(,3086) @tex
+general.tex(,3087) $ m \times n $
+general.tex(,3088) @end tex
 general.tex(,3092) matrix (@pxref{matrix type cast})
 general.tex(,3093) @item
 general.tex(,3094) @    @tab  @code{module} @tab expression lists of 
@code{int}, @code{number},
@@ -4293,11 +4530,17 @@
 general.tex(,3402) @*["help_text"]
 general.tex(,3403) @address@hidden@{}
 general.tex(,3404) @*
+general.tex(,3405) @tex
+general.tex(,3406) \quad
+general.tex(,3407) @end tex
 general.tex(,3408)    procedure_body
 general.tex(,3409) @address@hidden@}}
 general.tex(,3410) @address@hidden
 general.tex(,3411) @address@hidden@{}
 general.tex(,3412) @*
+general.tex(,3413) @tex
+general.tex(,3414) \quad
+general.tex(,3415) @end tex
 general.tex(,3416)    sequence_of_commands;
 general.tex(,3417) @address@hidden@}}]
 general.tex(,3418) @item Purpose:
@@ -5129,6 +5372,9 @@
 general.tex(,4210) @code{@@address@hidden@}}
 general.tex(,4211) @address@hidden
 general.tex(,4212) @*
+general.tex(,4216) @tex
+general.tex(,4217) $\alpha$
+general.tex(,4218) @end tex
 general.tex(,4219) 
 general.tex(,4220) @item Note:
 general.tex(,4221) Mathematical expressions inside @code{@@address@hidden@}} 
may
@@ -5228,6 +5474,9 @@
 general.tex(,4315) @address@hidden
 general.tex(,4316) @*Among others, within a texinfo environment one can use 
the tex environment
 general.tex(,4317) to typeset more complex mathematical like
+general.tex(,4318) @tex
+general.tex(,4319) $ i_{1,1} $
+general.tex(,4320) @end tex
 general.tex(,4321) @end table
 general.tex(,4322) 
 general.tex(,4323) @end table
@@ -5522,12 +5771,18 @@
 template_lib.tex(,107) 
 template_lib.tex(,108) @item @strong{Return:}
 template_lib.tex(,109) int: 
+template_lib.tex(,113) @tex
+template_lib.tex(,114) $i+i+i$
+template_lib.tex(,115) @end tex
 template_lib.tex(,116) 
 template_lib.tex(,117) @item @strong{Note:}
 template_lib.tex(,118) Help is in pure Texinfo
 template_lib.tex(,119) @*This help string is written in texinfo, which enables 
you to use,
 template_lib.tex(,120) among others, the @@math command for mathematical 
typesetting (like
 template_lib.tex(,121) 
+template_lib.tex(,125) @tex
+template_lib.tex(,126) $\alpha, \beta$
+template_lib.tex(,127) @end tex
 template_lib.tex(,128) ).
 template_lib.tex(,129) @*It also gives more control over the layout, but is, 
admittingly,
 template_lib.tex(,130) more cumbersome to write.
@@ -5568,6 +5823,9 @@
 template_lib.tex(,179) @* Use a @@ref constructs for references (like 
@pxref{mtripple})
 template_lib.tex(,180) @* Use @@code for typewriter font (like @code{i_1})
 template_lib.tex(,181) @* Use @@math for simple math mode typesetting (like 
+template_lib.tex(,185) @tex
+template_lib.tex(,186) $i_1$
+template_lib.tex(,187) @end tex
 template_lib.tex(,188) ).
 template_lib.tex(,189) @* Note: No parenthesis like @} are allowed inside 
@@math and @@code
 template_lib.tex(,190) @* Use @@example for indented preformatted text typeset 
in typewriter
@@ -5582,6 +5840,9 @@
 template_lib.tex(,199) Use @@texinfo for text in pure texinfo
 template_lib.tex(,200) 
 template_lib.tex(,201) @expansion{}
+template_lib.tex(,202) @tex
+template_lib.tex(,203) $i_{1,1}$
+template_lib.tex(,204) @end tex
 template_lib.tex(,205) 
 template_lib.tex(,206) 
 template_lib.tex(,207) Notice that
@@ -6231,6 +6492,9 @@
 types.tex(,416) set of minors of a matrix (see @ref{minor})
 types.tex(,417) @item modulo
 types.tex(,418) represents
+types.tex(,419) @tex
+types.tex(,420) $(h1+h2)/h1 \cong h2/(h1 \cap h2)$
+types.tex(,421) @end tex
 types.tex(,425) (see @ref{modulo})
 types.tex(,426) @item mres
 types.tex(,427) minimal free resolution of an ideal resp.@: module w.r.t. a 
minimal set of generators of the given ideal resp.@: module
@@ -7982,25 +8246,62 @@
 types.tex(,2236) Canonically realized are
 types.tex(,2237) @itemize @bullet
 types.tex(,2238) @item
+types.tex(,2239) @tex
+types.tex(,2240) $Q \rightarrow  Q(a, \ldots)$
+types.tex(,2241) @end tex
 types.tex(,2245) 
 types.tex(,2246) @item
+types.tex(,2247) @tex
+types.tex(,2248) $Q \rightarrow R$
+types.tex(,2249) @end tex
 types.tex(,2253) 
 types.tex(,2254) @item
+types.tex(,2255) @tex
+types.tex(,2256) $Q \rightarrow  C$
+types.tex(,2257) @end tex
 types.tex(,2261) 
 types.tex(,2262) @item
+types.tex(,2263) @tex
+types.tex(,2264) $Z/p \rightarrow  (Z/p)(a, \ldots)$
+types.tex(,2265) @end tex
 types.tex(,2269) 
 types.tex(,2270) @item
+types.tex(,2271) @tex
+types.tex(,2272) $Z/p \rightarrow  GF(p^n)$
+types.tex(,2273) @end tex
 types.tex(,2277) 
 types.tex(,2278) @item
+types.tex(,2279) @tex
+types.tex(,2280) $Z/p \rightarrow  R$
+types.tex(,2281) @end tex
 types.tex(,2285) 
 types.tex(,2286) @item
+types.tex(,2287) @tex
+types.tex(,2288) $R \rightarrow C$
+types.tex(,2289) @end tex
 types.tex(,2293) @end itemize
 types.tex(,2294) 
 types.tex(,2295) Possible are furthermore
 types.tex(,2296) @itemize @bullet
 types.tex(,2297) @item
+types.tex(,2298) @tex
+types.tex(,2299) % This is quite a hack, but for now it works.
+types.tex(,2300) $Z/p \rightarrow Q,
+types.tex(,2301) \quad
+types.tex(,2302) [i]_p \mapsto i \in [-p/2, \, p/2]
+types.tex(,2303) \subseteq Z$
+types.tex(,2304) @end tex
 types.tex(,2308) @item
+types.tex(,2309) @tex
+types.tex(,2310) $Z/p \rightarrow Z/p^\prime,
+types.tex(,2311) \quad
+types.tex(,2312) [i]_p \mapsto i \in [-p/2, \, p/2] \subseteq Z, \;
+types.tex(,2313) i \mapsto [i]_{p^\prime} \in Z/p^\prime$
+types.tex(,2314) @end tex
 types.tex(,2318) @item
+types.tex(,2319) @tex
+types.tex(,2320) $C \rightarrow R, \quad$ the real part
+types.tex(,2321) @end tex
 types.tex(,2325) @end itemize
 types.tex(,2326) 
 types.tex(,2327) Finally, in Singular we allow the mapping from rings
@@ -8009,8 +8310,14 @@
 types.tex(,2330) 
 types.tex(,2331) @itemize @bullet
 types.tex(,2332) @item
+types.tex(,2333) @tex
+types.tex(,2334) $Q \rightarrow Z/p$
+types.tex(,2335) @end tex
 types.tex(,2339) 
 types.tex(,2340) @item
+types.tex(,2341) @tex
+types.tex(,2342) $Q \rightarrow (Z/p)(a, \ldots)$
+types.tex(,2343) @end tex
 types.tex(,2347) @end itemize
 types.tex(,2348) In these cases the denominator and the numerator
 types.tex(,2349) of a number are mapped separately by the usual
@@ -8454,18 +8761,45 @@
 types.tex(,2822) Like vectors they
 types.tex(,2823) can only be defined or accessed with respect to a basering.
 types.tex(,2824) If 
+types.tex(,2828) @tex
+types.tex(,2829) $M$
+types.tex(,2830) @end tex
 types.tex(,2831)  is a submodule of
+types.tex(,2835) @tex
+types.tex(,2836) $R^n$,
+types.tex(,2837) @end tex
 types.tex(,2838) 
+types.tex(,2842) @tex
+types.tex(,2843) $R$
+types.tex(,2844) @end tex
 types.tex(,2845)  the basering, generated by vectors
+types.tex(,2849) @tex
+types.tex(,2850) $v_1, \ldots, v_k$, then $v_1, \ldots, v_k$
+types.tex(,2851) @end tex
 types.tex(,2852) may be considered as the generators of relations of
+types.tex(,2856) @tex
+types.tex(,2857) $R^n/M$
+types.tex(,2858) @end tex
 types.tex(,2859) between the canonical generators 
@code{gen(1)},@dots{},@code{gen(n)}.
 types.tex(,2860) Hence any finitely generated 
+types.tex(,2864) @tex
+types.tex(,2865) $R$
+types.tex(,2866) @end tex
 types.tex(,2867) -module can be represented in @sc{Singular}
 types.tex(,2868) by its module of relations. The assignments
 types.tex(,2869) @code{module M=v1,...,vk; matrix A=M;}
 types.tex(,2870) create the presentation matrix of size
+types.tex(,2874) @tex
+types.tex(,2875) n$\times$k
+types.tex(,2876) @end tex
 types.tex(,2877)  for
+types.tex(,2881) @tex
+types.tex(,2882) R$^n$/M,
+types.tex(,2883) @end tex
 types.tex(,2884) i.e., the columns of A are the vectors
+types.tex(,2888) @tex
+types.tex(,2889) $v_1, \ldots, v_k$
+types.tex(,2890) @end tex
 types.tex(,2891) which generate M (cf. @ref{Representation of mathematical 
objects}).
 types.tex(,2892) 
 types.tex(,2893) @menu
@@ -8620,6 +8954,9 @@
 types.tex(,3058) over a local ring
 types.tex(,3059) @item modulo
 types.tex(,3060) represents
+types.tex(,3061) @tex
+types.tex(,3062) $(h1+h2)/h1=h2/(h1 \cap h2)$
+types.tex(,3063) @end tex
 types.tex(,3067) (see @ref{modulo})
 types.tex(,3068) @item mres
 types.tex(,3069) minimal free resolution of an ideal resp.@: module w.r.t. a 
minimal set of generators of the given module
@@ -9229,11 +9566,17 @@
 types.tex(,3796) @*["help_text"]
 types.tex(,3797) @address@hidden@{}
 types.tex(,3798) @*
+types.tex(,3799) @tex
+types.tex(,3800) \quad
+types.tex(,3801) @end tex
 types.tex(,3802)    procedure_body
 types.tex(,3803) @address@hidden@}}
 types.tex(,3804) @address@hidden
 types.tex(,3805) @address@hidden@{}
 types.tex(,3806) @*
+types.tex(,3807) @tex
+types.tex(,3808) \quad
+types.tex(,3809) @end tex
 types.tex(,3810)    sequence_of_commands;
 types.tex(,3811) @address@hidden@}}]
 types.tex(,3812) @address@hidden proc_name @code{=} proc_name @code{;}
@@ -9548,31 +9891,82 @@
 types.tex(,4145) @table @asis
 types.tex(,4146) @item @code{+}
 types.tex(,4147) construct a new ring 
+types.tex(,4151) @tex
+types.tex(,4152) $k[X,Y]$
+types.tex(,4153) @end tex
 types.tex(,4154)  from 
+types.tex(,4158) @tex
+types.tex(,4159) $k_1[X]$
+types.tex(,4160) @end tex
 types.tex(,4161)   and 
+types.tex(,4165) @tex
+types.tex(,4166) $k_2[Y]$
+types.tex(,4167) @end tex
 types.tex(,4168) .
 types.tex(,4169) @end table
 types.tex(,4170) 
 types.tex(,4171) Concerning the ground fields 
+types.tex(,4175) @tex
+types.tex(,4176) $k_1$
+types.tex(,4177) @end tex
 types.tex(,4178)  and 
+types.tex(,4182) @tex
+types.tex(,4183) $k_2$
+types.tex(,4184) @end tex
 types.tex(,4185)  take the
 types.tex(,4186) following guide lines into consideration:
 types.tex(,4187) @itemize @bullet
 types.tex(,4188) @item Neither 
+types.tex(,4192) @tex
+types.tex(,4193) $k_1$
+types.tex(,4194) @end tex
 types.tex(,4195)  nor 
+types.tex(,4199) @tex
+types.tex(,4200) $k_2$
+types.tex(,4201) @end tex
 types.tex(,4202)  may be 
+types.tex(,4206) @tex
+types.tex(,4207) $R$
+types.tex(,4208) @end tex
 types.tex(,4209)  or 
+types.tex(,4213) @tex
+types.tex(,4214) $C$
+types.tex(,4215) @end tex
 types.tex(,4216) .
 types.tex(,4217) @item If the characteristic of 
+types.tex(,4221) @tex
+types.tex(,4222) $k_1$
+types.tex(,4223) @end tex
 types.tex(,4224)  and 
+types.tex(,4228) @tex
+types.tex(,4229) $k_2$
+types.tex(,4230) @end tex
 types.tex(,4231)  differs, then one of them must be 
+types.tex(,4235) @tex
+types.tex(,4236) $Q$
+types.tex(,4237) @end tex
 types.tex(,4238) .
 types.tex(,4239) @item At most one of 
+types.tex(,4243) @tex
+types.tex(,4244) $k_1$
+types.tex(,4245) @end tex
 types.tex(,4246)  and 
+types.tex(,4250) @tex
+types.tex(,4251) $k_2$
+types.tex(,4252) @end tex
 types.tex(,4253)  may be have parameters.
 types.tex(,4254) @item If one of 
+types.tex(,4258) @tex
+types.tex(,4259) $k_1$
+types.tex(,4260) @end tex
 types.tex(,4261)  and 
+types.tex(,4265) @tex
+types.tex(,4266) $k_2$
+types.tex(,4267) @end tex
 types.tex(,4268)  is an algebraic extension of 
+types.tex(,4272) @tex
+types.tex(,4273) $Z/p$
+types.tex(,4274) @end tex
 types.tex(,4275)  it may not be defined by a @code{charstr} of type 
@code{(p^n,a)}.
 types.tex(,4276) @end itemize
 types.tex(,4277) 
@@ -10468,6 +10862,18 @@
 reference.tex(,418) intmat
 reference.tex(,419) @item @strong{Purpose:}
 reference.tex(,420) with 1 argument: computes the graded Betti numbers of a 
minimal resolution of
+reference.tex(,421) @tex
+reference.tex(,422) $R^n/M$, if $R$ denotes the basering and
+reference.tex(,423) $M$ a homogeneous submodule of $R^n$ and the argument 
represents a
+reference.tex(,424) resolution of
+reference.tex(,425) $R^n/M$.
+reference.tex(,426) @end tex
+reference.tex(,430) @tex
+reference.tex(,431) The entry d of the intmat at place (i,j) is the minimal 
number of
+reference.tex(,432) generators in degree i+j of the j-th syzygy module (= 
module of
+reference.tex(,433) relations) of $R^n/M$ (the 0th (resp.\ 1st) syzygy module 
of $R^n/M$ is
+reference.tex(,434) $R^n$ (resp.\ $M$)).
+reference.tex(,435) @end tex
 reference.tex(,445) The argument is considered to be the result of a 
res/sres/mres/nres/lres
 reference.tex(,446) command. This implies that a zero is only allowed (and 
counted) as a
 reference.tex(,447) generator in the first module.
@@ -10535,6 +10941,15 @@
 reference.tex(,509) where the generators are the columns of the
 reference.tex(,510) displayed matrix and degrees are assigned such that the 
corresponding maps
 reference.tex(,511) have degree 0:
+reference.tex(,512) @tex
+reference.tex(,513) $$
+reference.tex(,514) 0 \longleftarrow r/j \longleftarrow r(1)
+reference.tex(,515) \buildrel{T[1]}\over{\longleftarrow} r(2) \oplus r^3(3)
+reference.tex(,516) \buildrel{T[2]}\over{\longleftarrow} r^4(4)
+reference.tex(,517) \buildrel{T[3]}\over{\longleftarrow} r(5)
+reference.tex(,518) \longleftarrow 0 \quad .
+reference.tex(,519) $$
+reference.tex(,520) @end tex
 reference.tex(,525) 
 reference.tex(,526) @c inserted refs from reference.doc:455
 reference.tex(,551) @c end inserted refs from reference.doc:455
@@ -10848,12 +11263,28 @@
 reference.tex(,919) @end format
 reference.tex(,920) If J is a vector or a module this procedure is repeated 
for each
 reference.tex(,921) component and the resulting matrices are address@hidden
+reference.tex(,926) @tex
+reference.tex(,927) The third argument is used to return the matrix T of 
coefficients
+reference.tex(,928) such that {\tt matrix}(J) = T*M.
+reference.tex(,929) @end tex
 reference.tex(,930) @item @strong{Note:}
 reference.tex(,931) @code{coeffs} returns the coefficient 0 at the appropriate 
place if a monomial
 reference.tex(,932) is not present, while @code{coef} considers only monomials 
which really occur
 reference.tex(,933) in the given expression. @*
 reference.tex(,934) If
+reference.tex(,935) @tex
+reference.tex(,936) $M=(m_{ij})$
+reference.tex(,937) @end tex
 reference.tex(,941) then the j-th generator of an ideal J is equal to
+reference.tex(,942) @tex
+reference.tex(,943) $$J_j = z^0 \cdot m_{1j} + z^1 \cdot m_{2j} + ... + 
z^{d-1} \cdot m_{dj},$$
+reference.tex(,944) while for a module J the i-th component of the j-th 
generator is
+reference.tex(,945) equal to the entry [i,j] of {\tt matrix}(J), and we get
+reference.tex(,946) @end tex
+reference.tex(,956) @tex
+reference.tex(,957) $$ J_{i,j} = z^0 \cdot m_{(i-1)d+1,j} + z^1 \cdot 
m_{(i-1)d+2,j} + ... +
+reference.tex(,958) z^{d-1} \cdot m_{id,j}.$$
+reference.tex(,959) @end tex
 reference.tex(,968) 
 reference.tex(,969) @item @strong{Example:}
 reference.tex(,970) @smallexample
@@ -10932,7 +11363,14 @@
 reference.tex(,1055) producing a m x n matrix.
 reference.tex(,1056) @*Contraction is defined on monomials by:
 reference.tex(,1057) @*
+reference.tex(,1064) @tex
+reference.tex(,1065) $${\rm contract}(x^A ,  x^B) := \cases{ x^{(B-A)}, &if 
$B\ge A$
+reference.tex(,1066) componentwise\cr 0,&otherwise.\cr}$$
+reference.tex(,1067) @end tex
 reference.tex(,1068) where A and B are the multiexponents of the ring 
variables represented by
+reference.tex(,1069) @tex
+reference.tex(,1070) $x$.
+reference.tex(,1071) @end tex
 reference.tex(,1075) @code{contract} is extended bilinearly to all polynomials.
 reference.tex(,1076) @item @strong{Example:}
 reference.tex(,1077) @smallexample
@@ -12365,13 +12803,24 @@
 reference.tex(,2950) @code{highcorner(I)} returns 0 iff @code{dim(I)>0} or 
@code{dim(I)=-1}.
 reference.tex(,2951) Otherwise it returns the smallest monomial m not in I 
which has the following
 reference.tex(,2952) properties (with
+reference.tex(,2956) @tex
+reference.tex(,2957) $x_i$
+reference.tex(,2958) @end tex
 reference.tex(,2959) the variables of the basering):
 reference.tex(,2960) @itemize @bullet
 reference.tex(,2961) @item
 reference.tex(,2962) if
+reference.tex(,2966) @tex
+reference.tex(,2967) $x_i>1$ then $x_i$
+reference.tex(,2968) @end tex
 reference.tex(,2969) does not divide m (e.g., m=1 if the ordering is global)
 reference.tex(,2970) @item
 reference.tex(,2971) given any set of generators
+reference.tex(,2977) @tex
+reference.tex(,2978) $f_1,\dots,f_k$ of I, let $f'_i$ be obtained from
+reference.tex(,2979) $f_i$ by deleting the terms divisible by $x_i\cdot m$ for 
all i with $x_i<1$.
+reference.tex(,2980) Then $f'_1,\dots,f'_k$ generate I.
+reference.tex(,2981) @end tex
 reference.tex(,2982) @end itemize
 reference.tex(,2983) @item @strong{Example:}
 reference.tex(,2984) @smallexample
@@ -12510,11 +12959,22 @@
 reference.tex(,3167) 
 reference.tex(,3168) More precisely, let R be the basering and I be the given 
ideal.
 reference.tex(,3169) Then @code{hres} computes a minimal free resolution of R/I
+reference.tex(,3176) @tex
+reference.tex(,3177) $$...\longrightarrow F_2 
\buildrel{A_2}\over{\longrightarrow} F_1
+reference.tex(,3178) \buildrel{A_1}\over{\longrightarrow} R\longrightarrow R/I
+reference.tex(,3179) \longrightarrow 0.$$
+reference.tex(,3180) @end tex
 reference.tex(,3181) If the int_expression k is not zero then the computation 
stops after
 reference.tex(,3182) k steps and returns a list of modules
+reference.tex(,3183) @tex
+reference.tex(,3184) $M_i={\tt module} (A_i)$, i=1..k.
+reference.tex(,3185) @end tex
 reference.tex(,3189) 
 reference.tex(,3190) @code{list L=hres(I,0);} returns a list L of n modules 
(where n is the
 reference.tex(,3191) number of variables of the basering) such that
+reference.tex(,3192) @tex
+reference.tex(,3193) ${\tt L[i]}=M_i$
+reference.tex(,3194) @end tex
 reference.tex(,3198) in the above notation.
 reference.tex(,3199) @item @strong{Note:}
 reference.tex(,3200) The ideal_expression has to be homogeneous.
@@ -12630,6 +13090,9 @@
 reference.tex(,3364) 
 reference.tex(,3365) @item @strong{Note:}
 reference.tex(,3366) U is a set of independent variables for I if and only if
+reference.tex(,3367) @tex
+reference.tex(,3368) $I \cap K[U]=(0)$,
+reference.tex(,3369) @end tex
 reference.tex(,3373) i.e., eliminating the remaining variables gives (0).
 reference.tex(,3374) U is maximal if dim(I)=#U.
 reference.tex(,3375) @item @strong{Syntax:}
@@ -12727,19 +13190,47 @@
 reference.tex(,3491) @item @strong{Purpose:}
 reference.tex(,3492) interreduces a set of polynomials/vectors.
 reference.tex(,3493) @*
+reference.tex(,3497) @tex
+reference.tex(,3498) input: $f_1,\dots,f_n$
+reference.tex(,3499) @end tex
 reference.tex(,3500) @*
+reference.tex(,3506) @tex
+reference.tex(,3507) output: $g_1,\dots,g_s$ with $s \leq n$ and the properties
+reference.tex(,3508) @end tex
 reference.tex(,3509) @itemize @bullet
 reference.tex(,3510) @item
+reference.tex(,3514) @tex
+reference.tex(,3515) $(f_1,\dots,f_n) = (g_1,\dots,g_s)$
+reference.tex(,3516) @end tex
 reference.tex(,3517) @item
+reference.tex(,3521) @tex
+reference.tex(,3522) $L(g_i)\neq L(g_j)$ for all $i\neq j$
+reference.tex(,3523) @end tex
 reference.tex(,3524) @item
 reference.tex(,3525) in the case of a global ordering (polynomial ring):
 reference.tex(,3526) @*
+reference.tex(,3530) @tex
+reference.tex(,3531) $L(g_i)$
+reference.tex(,3532) @end tex
 reference.tex(,3533)  does not divide m for all monomials m of
+reference.tex(,3537) @tex
+reference.tex(,3538) $\{g_1,\dots,g_{i-1},g_{i+1},\dots,g_s\}$
+reference.tex(,3539) @end tex
 reference.tex(,3540) @item
 reference.tex(,3541) in the case of a local or mixed ordering (localization of 
polynomial ring):
 reference.tex(,3542) @* if
+reference.tex(,3546) @tex
+reference.tex(,3547) $L(g_i) | L(g_j)$ for any $i \neq j$,
+reference.tex(,3548) @end tex
 reference.tex(,3549) then
+reference.tex(,3553) @tex
+reference.tex(,3554) $ecart(g_i) > ecart(g_j)$
+reference.tex(,3555) @end tex
 reference.tex(,3556) @end itemize
+reference.tex(,3557) @tex
+reference.tex(,3558) Here, $L(g)$ denotes the leading term of $g$ and
+reference.tex(,3559) $ecart(g):=deg(g)-deg(L(g))$.
+reference.tex(,3560) @end tex
 reference.tex(,3566) @item @strong{Example:}
 reference.tex(,3567) @smallexample
 reference.tex(,3568) @c reused example interred reference.doc:2557 
@@ -13469,11 +13960,22 @@
 reference.tex(,4704) 
 reference.tex(,4705) More precisely, let R be the basering and I be the given 
ideal.
 reference.tex(,4706) Then @code{lres} computes a minimal free resolution of R/I
+reference.tex(,4713) @tex
+reference.tex(,4714) $$...\longrightarrow F_2 
\buildrel{A_2}\over{\longrightarrow} F_1
+reference.tex(,4715) \buildrel{A_1}\over{\longrightarrow} R\longrightarrow R/I
+reference.tex(,4716) \longrightarrow 0.$$
+reference.tex(,4717) @end tex
 reference.tex(,4718) If the int_expression k is not zero then the computation 
stops after
 reference.tex(,4719) k steps and returns a list of modules
+reference.tex(,4720) @tex
+reference.tex(,4721) $M_i={\tt module}(A_i)$, i=1..k.
+reference.tex(,4722) @end tex
 reference.tex(,4726) 
 reference.tex(,4727) @code{list L=lres(I,0);} returns a list L of n modules 
(where n is the
 reference.tex(,4728) number of variables of the basering) such that
+reference.tex(,4729) @tex
+reference.tex(,4730) ${\tt L[i]}=M_i$
+reference.tex(,4731) @end tex
 reference.tex(,4735) in the above notation.
 reference.tex(,4736) @item @strong{Note:}
 reference.tex(,4737) The ideal_expression has to be homogeneous.
@@ -13727,9 +14229,25 @@
 reference.tex(,5069) module
 reference.tex(,5070) @item @strong{Purpose:}
 reference.tex(,5071) @code{modulo(h1,h2)}
+reference.tex(,5075) @tex
+reference.tex(,5076) represents $h_1/(h_1 \cap h_2) \cong (h_1+h_2)/h_2$
+reference.tex(,5077) @end tex
 reference.tex(,5078) where
+reference.tex(,5079) @tex
+reference.tex(,5080) $h_1$ and $h_2$
+reference.tex(,5081) @end tex
 reference.tex(,5085) are considered as submodules of the same free module
+reference.tex(,5086) @tex
+reference.tex(,5087) $R^l$
+reference.tex(,5088) @end tex
 reference.tex(,5092) (l=1 for ideals). Let
+reference.tex(,5093) @tex
+reference.tex(,5094) $H_1$, resp.\ $H_2$,
+reference.tex(,5095) @end tex
+reference.tex(,5100) @tex
+reference.tex(,5101) be the matrices of size $l \times k$, resp.\ $l \times 
m$, having the
+reference.tex(,5102) generators of $h_1$, resp.\ $h_2$,
+reference.tex(,5103) @end tex
 reference.tex(,5107) as columns.
 reference.tex(,5108) @c @*
 reference.tex(,5109) @c @tex
@@ -13743,7 +14261,14 @@
 reference.tex(,5117) @c @end smallexample
 reference.tex(,5118) @c @end ifinfo
 reference.tex(,5119) Then
+reference.tex(,5120) @tex
+reference.tex(,5121) $h_1/(h_1 \cap h_2) \cong R^k / ker(\overline{H_1})$
+reference.tex(,5122) @end tex
 reference.tex(,5131) where
+reference.tex(,5132) @tex
+reference.tex(,5133) $\overline{H_1}: R^k \rightarrow R^l/Im(H_2)=R^l/h_2$
+reference.tex(,5134) is the induced map.
+reference.tex(,5135) @end tex
 reference.tex(,5144) @address@hidden(h1,h2)} returns generators of
 reference.tex(,5145) the kernel of this induced map.
 reference.tex(,5146) @item @strong{Example:}
@@ -13844,17 +14369,32 @@
 reference.tex(,5261) computes a minimal free resolution of an ideal or module 
M with the
 reference.tex(,5262) standard basis method. More precisely, let 
address@hidden(M), then @code{mres}
 reference.tex(,5263) computes a free resolution of
+reference.tex(,5271) @tex
+reference.tex(,5272) $coker(A)=F_0/M$
+reference.tex(,5273) $$...\longrightarrow F_2 
\buildrel{A_2}\over{\longrightarrow} F_1
+reference.tex(,5274) \buildrel{A_1}\over{\longrightarrow} F_0\longrightarrow 
F_0/M
+reference.tex(,5275) \longrightarrow 0,$$
+reference.tex(,5276) @end tex
 reference.tex(,5277) where the columns of the matrix
+reference.tex(,5278) @tex
+reference.tex(,5279) $A_1$
+reference.tex(,5280) @end tex
 reference.tex(,5284) are a minimal set of generators
 reference.tex(,5285) of M if the basering is local or if M is homogeneous.
 reference.tex(,5286) If the int expression k is not zero then the computation 
stops after k steps
 reference.tex(,5287) and returns a list of modules
+reference.tex(,5288) @tex
+reference.tex(,5289) $M_i={\tt module}(A_i)$, i=1...k.
+reference.tex(,5290) @end tex
 reference.tex(,5294) @address@hidden(M,0)} returns a resolution consisting of 
at most n+2 modules,
 reference.tex(,5295) where n is the number of variables of the basering.
 reference.tex(,5296) Let @code{list L=mres(M,0);}
 reference.tex(,5297)  then @code{L[1]} consists of a minimal set of generators 
of the input, @code{L[2]}
 reference.tex(,5298) consists of a minimal set of generators for the first 
syzygy module of
 reference.tex(,5299) @code{L[1]}, etc., until @code{L[p+1]}, such that
+reference.tex(,5303) @tex
+reference.tex(,5304) ${\tt L[i]}\neq 0$ for $i \le p$,
+reference.tex(,5305) @end tex
 reference.tex(,5306)  but @code{L[p+1]}, the first syzygy module of 
@code{L[p]},
 reference.tex(,5307) is 0 (if the basering is not a qring).
 reference.tex(,5308) @item @strong{Note:}
@@ -14145,16 +14685,32 @@
 reference.tex(,5781) the second module on (by the standard basis method).
 reference.tex(,5782) 
 reference.tex(,5783) More precisely, let
+reference.tex(,5784) @tex
+reference.tex(,5785) $A_1$=matrix(M),
+reference.tex(,5786) @end tex
 reference.tex(,5790) then @code{nres} computes a free resolution of
+reference.tex(,5798) @tex
+reference.tex(,5799) $coker(A_1)=F_0/M$
+reference.tex(,5800) $$...\longrightarrow F_2 
\buildrel{A_2}\over{\longrightarrow} F_1 \buildrel{A_1}\over{\longrightarrow} 
F_0\longrightarrow F_0/M\longrightarrow 0,$$
+reference.tex(,5801) @end tex
 reference.tex(,5802) @*where the columns of the matrix
+reference.tex(,5803) @tex
+reference.tex(,5804) $A_1$
+reference.tex(,5805) @end tex
 reference.tex(,5809) are the given set of generators of M.
 reference.tex(,5810) If the int expression k is not zero then the computation 
stops after k steps
 reference.tex(,5811) and returns a list of modules
+reference.tex(,5812) @tex
+reference.tex(,5813) $M_i={\tt module}(A_i)$, i=1..k.
+reference.tex(,5814) @end tex
 reference.tex(,5818) @address@hidden(M,0)} returns a list of n modules where n 
is the number of
 reference.tex(,5819) variables of the basering.
 reference.tex(,5820) Let @code{list L=nres(M,0);} then @code{L[1]=M} is 
identical to the input,
 reference.tex(,5821) @code{L[2]} is a minimal set of generators for the first 
syzygy
 reference.tex(,5822) module of  @code{L[1]}, etc.
+reference.tex(,5826) @tex
+reference.tex(,5827) (${\tt L[i]}=M_i$
+reference.tex(,5828) @end tex
 reference.tex(,5829) in the notations from above).
 reference.tex(,5830) @item @strong{Example:}
 reference.tex(,5831) @smallexample
@@ -14773,9 +15329,18 @@
 reference.tex(,6638) @table @code
 reference.tex(,6639) @item "betti"
 reference.tex(,6640) The Betti numbers are printed in a matrix-like format 
where the entry
+reference.tex(,6641) @tex
+reference.tex(,6642) $d$ in row $i$ and column $j$
+reference.tex(,6643) @end tex
 reference.tex(,6647) is the minimal number of generators in
 reference.tex(,6648) degree
+reference.tex(,6649) @tex
+reference.tex(,6650) $i+j$ of the $j$-th
+reference.tex(,6651) @end tex
 reference.tex(,6655)  syzygy module of
+reference.tex(,6656) @tex
+reference.tex(,6657) $R^n/M$ (the 0th and 1st syzygy module of $R^n/M$ is 
$R^n$ and $M$, resp.).
+reference.tex(,6658) @end tex
 reference.tex(,6662) @item "%s"
 reference.tex(,6663) returns @code{string(} expression @code{)}
 reference.tex(,6664) @item "%2s"
@@ -15160,12 +15725,21 @@
 reference.tex(,7133) @item @strong{Purpose:}
 reference.tex(,7134) computes the ideal quotient, resp.@: module quotient. Let 
@code{R} be the
 reference.tex(,7135) basering, @code{I,J} ideals and @code{M} a module in
+reference.tex(,7139) @tex
+reference.tex(,7140) ${\tt R}^n$.
+reference.tex(,7141) @end tex
 reference.tex(,7142) Then
 reference.tex(,7143) @itemize
 reference.tex(,7144) @item
 reference.tex(,7145) @code{quotient(I,J)}=
+reference.tex(,7149) @tex
+reference.tex(,7150) $\{a \in R \mid aJ \subset I\}$,
+reference.tex(,7151) @end tex
 reference.tex(,7152) @item
 reference.tex(,7153) @code{quotient(M,J)}=
+reference.tex(,7157) @tex
+reference.tex(,7158) $\{b \in R^n \mid bJ \subset M\}$.
+reference.tex(,7159) @end tex
 reference.tex(,7160) @end itemize
 reference.tex(,7161) @item @strong{Example:}
 reference.tex(,7162) @smallexample
@@ -15355,6 +15929,15 @@
 reference.tex(,7410) computes the regularity of a homogeneous ideal, resp.@: 
module, from a
 reference.tex(,7411) minimal resolution given by the list expression.
 reference.tex(,7412) @*
+reference.tex(,7422) @tex
+reference.tex(,7423) \noindent
+reference.tex(,7424) Let $0 \rightarrow\ \bigoplus_a K[x]e_{a,n}\ \rightarrow\ 
\dots
+reference.tex(,7425)   \rightarrow\ \bigoplus_a K[x]e_{a,0}\ \rightarrow\
+reference.tex(,7426)   I\ \rightarrow\ 0$
+reference.tex(,7427) be a minimal resolution of I considered with homogeneous 
maps of degree 0.
+reference.tex(,7428) The regularity is the smallest number $s$ with the 
property deg($e_{a,i})
+reference.tex(,7429)  \leq s+i$ for all $i$.
+reference.tex(,7430) @end tex
 reference.tex(,7431) @item @strong{Note:}
 reference.tex(,7432) If applied to a non minimal resolution only an upper 
bound is returned.
 reference.tex(,7433) @*If the input to the commands @code{res} and @code{mres} 
is homogeneous
@@ -15921,6 +16504,12 @@
 reference.tex(,8160) @item @strong{Type:}
 reference.tex(,8161) intvec
 reference.tex(,8162) @item @strong{Purpose:}
+reference.tex(,8163) @tex
+reference.tex(,8164) computes the permutation {\tt v}
+reference.tex(,8165) which orders the ideal, resp.\ module, {\tt I} by its 
initial terms,
+reference.tex(,8166) starting with the smallest, that is, {\tt I(v[i]) < 
I(v[i+1])} for all
+reference.tex(,8167) {\tt i}.
+reference.tex(,8168) @end tex
 reference.tex(,8175) @item @strong{Example:}
 reference.tex(,8176) @smallexample
 reference.tex(,8177) @c reused example sortvec reference.doc:5565 
@@ -16049,10 +16638,20 @@
 reference.tex(,8326) computes a free resolution of an ideal or module with 
Schreyer's
 reference.tex(,8327) method. The ideal, resp.@: module, has to be a standard 
basis.
 reference.tex(,8328) More precisely, let M be given by a standard basis and
+reference.tex(,8329) @tex
+reference.tex(,8330) $A_1={\tt matrix}(M)$.
+reference.tex(,8331) @end tex
 reference.tex(,8335) Then @code{sres}
 reference.tex(,8336) computes a free resolution of
+reference.tex(,8344) @tex
+reference.tex(,8345) $coker(A_1)=F_0/M$
+reference.tex(,8346) $$...\longrightarrow F_2 
\buildrel{A_2}\over{\longrightarrow} F_1 \buildrel{A_1}\over{\longrightarrow} 
F_0\longrightarrow F_0/M\longrightarrow 0.$$
+reference.tex(,8347) @end tex
 reference.tex(,8348) If the int expression k is not zero then the computation 
stops after k steps
 reference.tex(,8349) and returns a list of modules (given by standard bases)
+reference.tex(,8350) @tex
+reference.tex(,8351) $M_i={\tt module}(A_i)$, i=1..k.
+reference.tex(,8352) @end tex
 reference.tex(,8356) @address@hidden(M,0)}
 reference.tex(,8357) returns a list of n modules where n is the number of 
variables of the basering.
 reference.tex(,8358) 
@@ -16063,6 +16662,9 @@
 reference.tex(,8363) @code{L[2]} is a standard basis with respect to the 
Schreyer ordering of
 reference.tex(,8364) the first syzygy
 reference.tex(,8365) module of @code{L[1]}, etc.
+reference.tex(,8369) @tex
+reference.tex(,8370) (${\tt L[i]}=M_i$
+reference.tex(,8371) @end tex
 reference.tex(,8372)  in the notations from above.)
 reference.tex(,8373) @item @strong{Note:}
 reference.tex(,8374) Accessing single elements of a resolution may require 
that some partial
@@ -16775,7 +17377,29 @@
 reference.tex(,9287) @item @strong{Type:}
 reference.tex(,9288) poly
 reference.tex(,9289) @item @strong{Purpose:}
+reference.tex(,9303) @tex
+reference.tex(,9304) {\tt vandermonde(p,v,d)} computes the (unique) polynomial 
of degree
+reference.tex(,9305) @code{d} with prescribed values {\tt v[1],...,v[N]} at 
the points
+reference.tex(,9306) {\tt p}$^0,\dots,$ {\tt p}$^{N-1}$, {\tt N=(d+1)}$^n$, 
$n$ the
+reference.tex(,9307) number of ring variables.
+reference.tex(,9308) 
+reference.tex(,9309) The returned polynomial is $\sum
+reference.tex(,9310) c_{\alpha_1\ldots\alpha_n}\cdot x_1^{\alpha_1} \cdot 
\dots \cdot
+reference.tex(,9311) x_n^{\alpha_n}$, where the coefficients
+reference.tex(,9312) $c_{\alpha_1\ldots\alpha_n}$ are the solution of the 
(transposed)
+reference.tex(,9313) Vandermonde system of linear equations
+reference.tex(,9314) $$ \sum_{\alpha_1+\ldots+\alpha_n\leq d} 
c_{\alpha_1\ldots\alpha_n} \cdot
+reference.tex(,9315) {\tt p}_1^{(k-1)\alpha_1}\cdot\dots\cdot {\tt 
p}_n^{(k-1)\alpha_n} =
+reference.tex(,9316) {\tt v}[k], \quad  k=1,\dots,{\tt N}.$$
+reference.tex(,9317) @end tex
 reference.tex(,9318) @item @strong{Note:}
+reference.tex(,9326) @tex
+reference.tex(,9327) the ground field has to be the field of rational
+reference.tex(,9328) numbers. Moreover, {\tt ncols(p)==}$n$, the number of 
variables in the
+reference.tex(,9329) basering, and all the given generators have to be numbers 
different from
+reference.tex(,9330) 0,1 or -1. Finally, {\tt ncols(v)==(d+1)$^n$}, and all 
given generators have
+reference.tex(,9331) to be numbers.
+reference.tex(,9332) @end tex
 reference.tex(,9333) @item @strong{Example:}
 reference.tex(,9334) @smallexample
 reference.tex(,9335) @c reused example vandermonde reference.doc:6304 
@@ -18421,7 +19045,20 @@
 examples.tex(,100) 
 examples.tex(,101) The Milnor number, resp.@: the Tjurina number, of a power
 examples.tex(,102) series f in
+examples.tex(,103) @tex
+examples.tex(,104) $K[[x_1,\ldots,x_n]]$
+examples.tex(,105) @end tex
 examples.tex(,109) is
+examples.tex(,116) @tex
+examples.tex(,117) $$
+examples.tex(,118) \hbox{milnor}(f) = 
\hbox{dim}_K(K[[x_1,\ldots,x_n]]/\hbox{jacob}(f)),
+examples.tex(,119) $$
+examples.tex(,120) respectively
+examples.tex(,121) $$
+examples.tex(,122) \hbox{tjurina}(f) = 
\hbox{dim}_K(K[[x_1,\ldots,x_n]]/((f)+\hbox{jacob}(f)))
+examples.tex(,123) $$
+examples.tex(,124) where
+examples.tex(,125) @end tex
 examples.tex(,126) @code{jacob(f)} is the ideal generated by the partials
 examples.tex(,127) of @code{f}. @code{tjurina(f)} is finite, if and only if 
@code{f} has an
 examples.tex(,128) isolated singularity. The same holds for @code{milnor(f)} if
@@ -18430,8 +19067,17 @@
 examples.tex(,131) 
 examples.tex(,132) @sc{Singular} cannot compute with infinite power series. 
But it can
 examples.tex(,133) work in
+examples.tex(,134) @tex
+examples.tex(,135) $\hbox{Loc}_{(x)}K[x_1,\ldots,x_n]$,
+examples.tex(,136) @end tex
 examples.tex(,140) the localization of
+examples.tex(,141) @tex
+examples.tex(,142) $K[x_1,\ldots,x_n]$
+examples.tex(,143) @end tex
 examples.tex(,147) at the maximal ideal
+examples.tex(,148) @tex
+examples.tex(,149) $(x_1,\ldots,x_n)$.
+examples.tex(,150) @end tex
 examples.tex(,154) To do this one has to define an
 examples.tex(,155) s-ordering like ds, Ds, ls, ws, Ws or an appropriate matrix
 examples.tex(,156) ordering (look at the manual to get information about the 
possible
@@ -18628,7 +19274,13 @@
 examples.tex(,349) 
 examples.tex(,350) The same computation which computes the Milnor, resp.@: the 
Tjurina,
 examples.tex(,351) number, but with ordering @code{dp} instead of @code{ds} 
(i.e., in
+examples.tex(,352) @tex
+examples.tex(,353) $K[x_1,\ldots,x_n]$
+examples.tex(,354) @end tex
 examples.tex(,358) instead of
+examples.tex(,359) @tex
+examples.tex(,360) $\hbox{Loc}_{(x)}K[x_1,\ldots,x_n])$
+examples.tex(,361) @end tex
 examples.tex(,365) gives:
 examples.tex(,366) @itemize @bullet
 examples.tex(,367) @item
@@ -18666,11 +19318,23 @@
 examples.tex(,399) @item
 examples.tex(,400) The result of the computation here (together with the 
previous one in
 examples.tex(,401)  @ref{Milnor and Tjurina}) shows that (for @code{t}=0)
+examples.tex(,402) @tex
+examples.tex(,403) $\hbox{dim}_K(\hbox{Loc}_{(x,y,z)}K[x,y,z]/\hbox{jacob}(f))$
+examples.tex(,404) @end tex
 examples.tex(,408) = 250 (previously computed) while
+examples.tex(,409) @tex
+examples.tex(,410) $\hbox{dim}_K(K[x,y,z]/\hbox{jacob}(f))$
+examples.tex(,411) @end tex
 examples.tex(,415) = 536. Hence @code{f} has 286 critical points,
 examples.tex(,416)   counted with multiplicity, outside the origin.
 examples.tex(,417)   Moreover, since
+examples.tex(,418) @tex
+examples.tex(,419) 
$\hbox{dim}_K(\hbox{Loc}_{(x,y,z)}K[x,y,z]/(\hbox{jacob}(f)+(f)))$
+examples.tex(,420) @end tex
 examples.tex(,424) = 195 =
+examples.tex(,425) @tex
+examples.tex(,426) $\hbox{dim}_K(K[x,y,z]/(\hbox{jacob}(f)+(f)))$,
+examples.tex(,427) @end tex
 examples.tex(,431) the affine surface @code{f}=0 is smooth outside the origin.
 examples.tex(,432) @end itemize
 examples.tex(,433) 
@@ -18699,27 +19363,72 @@
 examples.tex(,461) @cindex Saturation
 examples.tex(,462) 
 examples.tex(,463) Since in the example above, the ideal 
+examples.tex(,467) @tex
+examples.tex(,468) $j+(f)$
+examples.tex(,469) @end tex
 examples.tex(,470)  has the same @code{vdim}
 examples.tex(,471) in the polynomial ring and in the localization at 0 (each 
195),
 examples.tex(,472) 
+examples.tex(,476) @tex
+examples.tex(,477) $f=0$
+examples.tex(,478) @end tex
 examples.tex(,479)  is smooth outside 0.
 examples.tex(,480) Hence 
+examples.tex(,484) @tex
+examples.tex(,485) $j+(f)$
+examples.tex(,486) @end tex
 examples.tex(,487)  contains some power of the maximal ideal 
+examples.tex(,491) @tex
+examples.tex(,492) $m$
+examples.tex(,493) @end tex
 examples.tex(,494) . We shall
 examples.tex(,495) check this in a different manner:
 examples.tex(,496) For any two ideals 
+examples.tex(,500) @tex
+examples.tex(,501) $i, j$
+examples.tex(,502) @end tex
 examples.tex(,503)  in the basering 
+examples.tex(,507) @tex
+examples.tex(,508) $R$
+examples.tex(,509) @end tex
 examples.tex(,510)  let
+examples.tex(,511) @tex
+examples.tex(,512) $$
+examples.tex(,513) \hbox{sat}(i,j)=\{x\in R\;|\; \exists\;n\hbox{ s.t. }
+examples.tex(,514) x\cdot(j^n)\subseteq i\}
+examples.tex(,515) = \bigcup_{n=1}^\infty i:j^n$$
+examples.tex(,516) @end tex
 examples.tex(,521) @*denote the saturation of 
+examples.tex(,525) @tex
+examples.tex(,526) $i$
+examples.tex(,527) @end tex
 examples.tex(,528)  with respect to 
+examples.tex(,532) @tex
+examples.tex(,533) $j$
+examples.tex(,534) @end tex
 examples.tex(,535) . This defines,
 examples.tex(,536) geometrically, the closure of the complement of V(
+examples.tex(,540) @tex
+examples.tex(,541) $j$
+examples.tex(,542) @end tex
 examples.tex(,543) ) in V(
+examples.tex(,547) @tex
+examples.tex(,548) $i$
+examples.tex(,549) @end tex
 examples.tex(,550) )
 examples.tex(,551) (V(
+examples.tex(,555) @tex
+examples.tex(,556) $i$
+examples.tex(,557) @end tex
 examples.tex(,558) ) denotes the variety defined by 
+examples.tex(,562) @tex
+examples.tex(,563) $i$
+examples.tex(,564) @end tex
 examples.tex(,565) ).
 examples.tex(,566) In our case, 
+examples.tex(,570) @tex
+examples.tex(,571) $sat(j+(f),m)$
+examples.tex(,572) @end tex
 examples.tex(,573)  must be the whole ring, hence
 examples.tex(,574) generated by 1.
 examples.tex(,575) 
@@ -18859,13 +19568,25 @@
 examples.tex(,717) and compute over the ground field Q(t).
 examples.tex(,718) We compute the dimension at the generic point,
 examples.tex(,725) i.e.,
+examples.tex(,726) @tex
+examples.tex(,727) $dim_{Q(t)}Q(t)[x,y]/j$.
+examples.tex(,728) @end tex
 examples.tex(,733) (This gives the
 examples.tex(,734) same result as for the deformed ideal above. Hence, the 
above small
 examples.tex(,735) deformation was "generic".)
 examples.tex(,737) 
 examples.tex(,738) For almost all
+examples.tex(,739) @tex
+examples.tex(,740) $a \in Q$
+examples.tex(,741) @end tex
 examples.tex(,745) this is the same as
+examples.tex(,746) @tex
+examples.tex(,747) $dim_Q Q[x,y]/j_0$,
+examples.tex(,748) @end tex
 examples.tex(,752) where
+examples.tex(,753) @tex
+examples.tex(,754) $j_0=j|_{t=a}$.
+examples.tex(,755) @end tex
 examples.tex(,759) 
 examples.tex(,760) @smallexample
 examples.tex(,761) @c computed example Parameters examples.doc:579 
@@ -18899,8 +19620,17 @@
 examples.tex(,790) @cindex T2
 examples.tex(,791) 
 examples.tex(,792) 
+examples.tex(,796) @tex
+examples.tex(,797) $T^1$
+examples.tex(,798) @end tex
 examples.tex(,799) , resp.@: 
+examples.tex(,803) @tex
+examples.tex(,804) $T^2$
+examples.tex(,805) @end tex
 examples.tex(,806) , of an ideal 
+examples.tex(,810) @tex
+examples.tex(,811) $j$
+examples.tex(,812) @end tex
 examples.tex(,813)  usually denote the modules of
 examples.tex(,814) infinitesimal deformations, resp.@: of obstructions.
 examples.tex(,815) In @sc{Singular} there are procedures @code{T_1} and 
@code{T_2} in
@@ -19070,7 +19800,16 @@
 examples.tex(,985) singularity.
 examples.tex(,986) @item
 examples.tex(,987) The procedure @code{deform} in @code{sing.lib} returns a 
matrix whose columns
+examples.tex(,991) @tex
+examples.tex(,992) $h_1,\ldots,h_r$
+examples.tex(,993) @end tex
 examples.tex(,994) represent all 1st order deformations. More precisely, if
+examples.tex(,1000) @tex
+examples.tex(,1001) $I \subset R$ is the ideal generated by $f_1,...,f_s$, 
then any infinitesimal
+examples.tex(,1002) deformation of $R/I$ over $K[\varepsilon]/(\varepsilon^2)$ 
is given
+examples.tex(,1003) by $f+\varepsilon g$,
+examples.tex(,1004) where $f=(f_1,...,f_s)$, $g$ a $K$-linear combination of 
the $h_i$.
+examples.tex(,1005) @end tex
 examples.tex(,1006) 
 examples.tex(,1007) @item
 examples.tex(,1008) The procedure @code{versal} in @code{deform.lib} computes 
a formal
@@ -19190,12 +19929,24 @@
 examples.tex(,1130) @cindex Finite fields
 examples.tex(,1131) 
 examples.tex(,1132) We define a variety in 
+examples.tex(,1136) @tex
+examples.tex(,1137) $n$
+examples.tex(,1138) @end tex
 examples.tex(,1139) -space of codimension 2 defined by
 examples.tex(,1140) polynomials of degree 
+examples.tex(,1144) @tex
+examples.tex(,1145) $d$
+examples.tex(,1146) @end tex
 examples.tex(,1147)  with generic coefficients over the prime
 examples.tex(,1148) field 
+examples.tex(,1152) @tex
+examples.tex(,1153) $Z/p$
+examples.tex(,1154) @end tex
 examples.tex(,1155)  and look for zeros on the torus. First over the prime
 examples.tex(,1156) field and then in the finite extension field with
+examples.tex(,1157) @tex
+examples.tex(,1158) $p^k$
+examples.tex(,1159) @end tex
 examples.tex(,1163) elements.
 examples.tex(,1164) In general there will be many more solutions in the second 
case.
 examples.tex(,1165) (Since the @sc{Singular} language is interpreted, the 
evaluation of many
@@ -19372,9 +20123,24 @@
 examples.tex(,1342) 
 examples.tex(,1343) Elimination is the algebraic counterpart of the geometric 
concept of
 examples.tex(,1344) projection. If
+examples.tex(,1345) @tex
+examples.tex(,1346) $f=(f_1,\ldots,f_n):k^r\rightarrow k^n$
+examples.tex(,1347) @end tex
 examples.tex(,1351) is a polynomial map,
 examples.tex(,1352) the Zariski-closure of the image is the zero-set of the 
ideal
+examples.tex(,1353) @tex
+examples.tex(,1354) $$
+examples.tex(,1355) \displaylines{
+examples.tex(,1356) j=J \cap k[x_1,\ldots,x_n], \;\quad\hbox{\rm where}\cr
+examples.tex(,1357) 
J=(x_1-f_1(t_1,\ldots,t_r),\ldots,x_n-f_n(t_1,\ldots,t_r))\subseteq
+examples.tex(,1358) k[t_1,\ldots,t_r,x_1,\ldots,x_n]
+examples.tex(,1359) }
+examples.tex(,1360) $$
+examples.tex(,1361) @end tex
 examples.tex(,1370) i.e, of the ideal j obtained from J by eliminating the 
variables
+examples.tex(,1371) @tex
+examples.tex(,1372) $t_1,\ldots,t_r$.
+examples.tex(,1373) @end tex
 examples.tex(,1377) This can be done by computing a standard basis of J with 
respect to a product
 examples.tex(,1378) ordering where the block of t-variables precedes the block 
of
 examples.tex(,1379) x-variables and then selecting those polynomials which do 
not contain
@@ -19386,13 +20152,23 @@
 examples.tex(,1385) 
 examples.tex(,1386) @strong{WARNING:} In the case of a local or a mixed 
ordering, elimination needs special
 examples.tex(,1387) care. f may be considered as a map of germs
+examples.tex(,1388) @tex
+examples.tex(,1389) $f:(k^r,0)\rightarrow(k^n,0)$,
+examples.tex(,1390) @end tex
 examples.tex(,1394) but even
 examples.tex(,1395) if this map germ is finite, we are in general not able to 
compute the image
 examples.tex(,1396) germ because for this we would need an implementation of 
the Weierstrass
 examples.tex(,1397) preparation theorem. What we can compute, and what 
@code{eliminate} actually does,
 examples.tex(,1398) is the following: let V(J) be the zero-set of J in
+examples.tex(,1399) @tex
+examples.tex(,1400) $k^r\times(k^n,0)$,
+examples.tex(,1401) @end tex
 examples.tex(,1405) then the
 examples.tex(,1406) closure of the image of V(J) under the projection
+examples.tex(,1407) @tex
+examples.tex(,1408) $$\hbox{pr}:k^r\times(k^n,0)\rightarrow(k^n,0)$$
+examples.tex(,1409) can be computed.
+examples.tex(,1410) @end tex
 examples.tex(,1415) Note that this germ contains also those components
 examples.tex(,1416) of V(J) which meet the fiber of pr outside the origin.
 examples.tex(,1417) This is achieved by an ordering with the block of 
t-variables having a
@@ -19415,6 +20191,9 @@
 examples.tex(,1434) @enumerate
 examples.tex(,1435) @item
 examples.tex(,1436) First we compute the equations of the simple space curve
+examples.tex(,1437) @tex
+examples.tex(,1438) $\hbox{T}[7]^\prime$
+examples.tex(,1439) @end tex
 examples.tex(,1443)    consisting of two tangential cusps given in parametric 
form.
 examples.tex(,1444) @item
 examples.tex(,1445) We compute weights for the equations such that the
@@ -19422,6 +20201,9 @@
 examples.tex(,1447) @item
 examples.tex(,1448) Then we compute the tangent developable of the rational
 examples.tex(,1449)    normal curve in
+examples.tex(,1450) @tex
+examples.tex(,1451) $P^4$.
+examples.tex(,1452) @end tex
 examples.tex(,1456) @end enumerate
 examples.tex(,1457) 
 examples.tex(,1458) @smallexample
@@ -19571,11 +20353,20 @@
 examples.tex(,1621) 
 examples.tex(,1622) Now let's look at an example which uses resolutions: The 
Hilbert-Burch
 examples.tex(,1623) theorem says that the ideal i of a reduced curve in
+examples.tex(,1624) @tex
+examples.tex(,1625) $K^3$
+examples.tex(,1626) @end tex
 examples.tex(,1630) has a free resolution of length 2 and that i is given by 
the 2x2 minors
 examples.tex(,1631) of the 2nd matrix in the resolution.
 examples.tex(,1632) We test this for two transversal cusps in
+examples.tex(,1633) @tex
+examples.tex(,1634) $K^3$.
+examples.tex(,1635) @end tex
 examples.tex(,1639) Afterwards we compute the resolution of the ideal j of the 
tangent developable
 examples.tex(,1640) of the rational normal curve in
+examples.tex(,1641) @tex
+examples.tex(,1642) $P^4$
+examples.tex(,1643) @end tex
 examples.tex(,1647) from above.
 examples.tex(,1648) Finally we demonstrate the use of the type 
@code{resolution} in connection with
 examples.tex(,1649) the @code{lres} command.
@@ -19696,24 +20487,45 @@
 examples.tex(,1765) @cindex  Ext
 examples.tex(,1766) 
 examples.tex(,1767) We start by showing how to calculate the 
+examples.tex(,1771) @tex
+examples.tex(,1772) $n$
+examples.tex(,1773) @end tex
 examples.tex(,1774) -th Ext group of an
 examples.tex(,1775) ideal. The ingredients to do this are by the definition of 
Ext the
 examples.tex(,1776) following: calculate a (minimal) resolution at least up to 
length
 examples.tex(,1777) 
+examples.tex(,1781) @tex
+examples.tex(,1782) $n$
+examples.tex(,1783) @end tex
 examples.tex(,1784) , apply the Hom-functor, and calculate the 
+examples.tex(,1788) @tex
+examples.tex(,1789) $n$
+examples.tex(,1790) @end tex
 examples.tex(,1791) -th homology
 examples.tex(,1792) group, that is form the quotient
+examples.tex(,1793) @tex
+examples.tex(,1794) $\hbox{\rm ker} / \hbox{\rm Im}$
+examples.tex(,1795) @end tex
 examples.tex(,1799) in the resolution sequence.
 examples.tex(,1800) 
 examples.tex(,1801) The Hom functor is given simply by transposing (hence 
dualizing) the
 examples.tex(,1802) module or the corresponding matrix with the command 
@code{transpose}.
 examples.tex(,1803) The image of the 
+examples.tex(,1807) @tex
+examples.tex(,1808) $(n-1)$
+examples.tex(,1809) @end tex
 examples.tex(,1810) -st map is generated by the columns of the
 examples.tex(,1811) corresponding matrix. To calculate the kernel apply the 
command
 examples.tex(,1812) @code{syz} at the 
+examples.tex(,1816) @tex
+examples.tex(,1817) $(n-1)$
+examples.tex(,1818) @end tex
 examples.tex(,1819) -st transposed entry of the resolution.
 examples.tex(,1820) Finally, the quotient is obtained by the command 
@code{modulo}, which
 examples.tex(,1821) gives for two modules A = ker, B = Im the module of 
relations of
+examples.tex(,1822) @tex
+examples.tex(,1823) $A/(A \cap B)$
+examples.tex(,1824) @end tex
 examples.tex(,1828) in the usual way. As we have a chain complex this is 
obviously the same
 examples.tex(,1829) as ker/Im.
 examples.tex(,1830) 
@@ -19752,17 +20564,44 @@
 examples.tex(,1863) example.
 examples.tex(,1864) 
 examples.tex(,1865) If 
+examples.tex(,1869) @tex
+examples.tex(,1870) $M$
+examples.tex(,1871) @end tex
 examples.tex(,1872)  is a module, then
+examples.tex(,1873) @tex
+examples.tex(,1874) $\hbox{Ext}^1(M,M)$, resp.\ $\hbox{Ext}^2(M,M)$,
+examples.tex(,1875) @end tex
 examples.tex(,1879) are the modules of infinitesimal deformations, resp.@: of 
obstructions, of
 examples.tex(,1880) 
+examples.tex(,1884) @tex
+examples.tex(,1885) $M$
+examples.tex(,1886) @end tex
 examples.tex(,1887)  (like T1 and T2 for a singularity).  Similar to the 
treatment
 examples.tex(,1888) for singularities, the semiuniversal deformation of 
+examples.tex(,1892) @tex
+examples.tex(,1893) $M$
+examples.tex(,1894) @end tex
 examples.tex(,1895)  can be
 examples.tex(,1896) computed (if
+examples.tex(,1897) @tex
+examples.tex(,1898) $\hbox{Ext}^1$
+examples.tex(,1899) @end tex
 examples.tex(,1903) is finite dimensional) with the help of
+examples.tex(,1904) @tex
+examples.tex(,1905) $\hbox{Ext}^1$, $\hbox{Ext}^2$
+examples.tex(,1906) @end tex
 examples.tex(,1910) and the cup product. There is an extra procedure for
+examples.tex(,1911) @tex
+examples.tex(,1912) $\hbox{Ext}^k(R/J,R)$
+examples.tex(,1913) @end tex
 examples.tex(,1917) if 
+examples.tex(,1921) @tex
+examples.tex(,1922) $J$
+examples.tex(,1923) @end tex
 examples.tex(,1924)  is an ideal in 
+examples.tex(,1928) @tex
+examples.tex(,1929) $R$
+examples.tex(,1930) @end tex
 examples.tex(,1931)  since this is faster than the
 examples.tex(,1932) general Ext.
 examples.tex(,1933) 
@@ -19770,15 +20609,42 @@
 examples.tex(,1935) @itemize @bullet
 examples.tex(,1936) @item
 examples.tex(,1937) the infinitesimal deformations
+examples.tex(,1938) @tex
+examples.tex(,1939) ($=\hbox{Ext}^1(K,K)$)
+examples.tex(,1940) @end tex
 examples.tex(,1944) and obstructions
+examples.tex(,1945) @tex
+examples.tex(,1946) ($=\hbox{Ext}^2(K,K)$)
+examples.tex(,1947) @end tex
 examples.tex(,1951) of the residue field 
+examples.tex(,1955) @tex
+examples.tex(,1956) $K=R/m$
+examples.tex(,1957) @end tex
 examples.tex(,1958)  of an ordinary cusp,
+examples.tex(,1959) @tex
+examples.tex(,1960) $R=Loc_m K[x,y]/(x^2-y^3)$, $m=(x,y)$.
+examples.tex(,1961) @end tex
 examples.tex(,1965) To compute
+examples.tex(,1966) @tex
+examples.tex(,1967) $\hbox{Ext}^1(m,m)$
+examples.tex(,1968) @end tex
 examples.tex(,1972) we have to apply @code{Ext(1,syz(m),syz(m))} with
 examples.tex(,1973) @code{syz(m)} the first syzygy module of 
+examples.tex(,1977) @tex
+examples.tex(,1978) $m$
+examples.tex(,1979) @end tex
 examples.tex(,1980) , which is isomorphic to
+examples.tex(,1981) @tex
+examples.tex(,1982) $\hbox{Ext}^2(K,K)$.
+examples.tex(,1983) @end tex
 examples.tex(,1987) @item
+examples.tex(,1988) @tex
+examples.tex(,1989) $\hbox{Ext}^k(R/i,R)$
+examples.tex(,1990) @end tex
 examples.tex(,1994) for some ideal 
+examples.tex(,1998) @tex
+examples.tex(,1999) $i$
+examples.tex(,2000) @end tex
 examples.tex(,2001)  and with an extra option.
 examples.tex(,2002) @end itemize
 examples.tex(,2003) 
@@ -19874,18 +20740,45 @@
 examples.tex(,2095) @cindex Polar curves
 examples.tex(,2096) 
 examples.tex(,2097) The polar curve of a hypersurface given by a polynomial
+examples.tex(,2098) @tex
+examples.tex(,2099) $f\in k[x_1,\ldots,x_n,t]$
+examples.tex(,2100) @end tex
 examples.tex(,2104) with respect to 
+examples.tex(,2108) @tex
+examples.tex(,2109) $t$
+examples.tex(,2110) @end tex
 examples.tex(,2111)  (we may consider 
+examples.tex(,2115) @tex
+examples.tex(,2116) $f=0$
+examples.tex(,2117) @end tex
 examples.tex(,2118)  as a family of
 examples.tex(,2119) hypersurfaces parametrized by 
+examples.tex(,2123) @tex
+examples.tex(,2124) $t$
+examples.tex(,2125) @end tex
 examples.tex(,2126) ) is defined as the Zariski
 examples.tex(,2127) closure of
+examples.tex(,2128) @tex
+examples.tex(,2129) $V(\partial f/\partial x_1,\ldots,\partial f/\partial x_n) 
\setminus V(f)$
+examples.tex(,2130) @end tex
 examples.tex(,2134) if this happens to be a curve.  Some authors consider
+examples.tex(,2135) @tex
+examples.tex(,2136) $V(\partial f/\partial x_1,\ldots,\partial f/\partial x_n)$
+examples.tex(,2137) @end tex
 examples.tex(,2141) itself as polar curve.
 examples.tex(,2142) 
 examples.tex(,2143) We may consider projective hypersurfaces
+examples.tex(,2144) @tex
+examples.tex(,2145) (in $P^n$),
+examples.tex(,2146) @end tex
 examples.tex(,2150) affine hypersurfaces
+examples.tex(,2151) @tex
+examples.tex(,2152) (in $k^n$)
+examples.tex(,2153) @end tex
 examples.tex(,2157) or germs of hypersurfaces
+examples.tex(,2158) @tex
+examples.tex(,2159) (in $(k^n,0)$),
+examples.tex(,2160) @end tex
 examples.tex(,2164) getting in this way
 examples.tex(,2165) projective, affine or local polar curves.
 examples.tex(,2166) 
@@ -19998,12 +20891,24 @@
 examples.tex(,2275) @cindex Depth
 examples.tex(,2276) 
 examples.tex(,2277) We compute the depth of the module of Kaehler differentials
+examples.tex(,2278) @tex
+examples.tex(,2279) D$_k$(R)
+examples.tex(,2280) @end tex
 examples.tex(,2284) of the variety defined by the 
+examples.tex(,2288) @tex
+examples.tex(,2289) $(m+1)$
+examples.tex(,2290) @end tex
 examples.tex(,2291) -minors of a generic symmetric
+examples.tex(,2292) @tex
+examples.tex(,2293) $(n \times n)$-matrix.
+examples.tex(,2294) @end tex
 examples.tex(,2298) We do this by computing the resolution over the polynomial
 examples.tex(,2299) ring.  Then, by the Auslander-Buchsbaum formula, the depth 
is equal to
 examples.tex(,2300) the number of variables minus the length of a minimal 
resolution.  This
 examples.tex(,2301) example was suggested by U.@: Vetter in order to check 
whether his bound
+examples.tex(,2302) @tex
+examples.tex(,2303) $\hbox{depth}(\hbox{D}_k(R))\geq m(m+1)/2 + m-1$
+examples.tex(,2304) @end tex
 examples.tex(,2308) could be improved.
 examples.tex(,2309) 
 examples.tex(,2310) @smallexample
@@ -20172,6 +21077,9 @@
 examples.tex(,2482) 
 examples.tex(,2483) We work in characteristic 0 and use the Lie algebra 
generated by one
 examples.tex(,2484) vector field of the form
+examples.tex(,2485) @tex
+examples.tex(,2486) $\sum x_i \partial /\partial x_{i+1}$.
+examples.tex(,2487) @end tex
 examples.tex(,2491) @smallexample
 examples.tex(,2492) @c computed example G_a_-Invariants examples.doc:1783 
 examples.tex(,2493)   LIB "ainvar.lib";
@@ -20337,6 +21245,9 @@
 examples.tex(,2662) 
 examples.tex(,2663) We compute the Hamburger-Noether expansion of a plane curve
 examples.tex(,2664) singularity given by a polynomial 
+examples.tex(,2668) @tex
+examples.tex(,2669) $f$
+examples.tex(,2670) @end tex
 examples.tex(,2671)  in two variables. This is a
 examples.tex(,2672) matrix which allows to compute the parametrization (up to 
a given order)
 examples.tex(,2673) and all numerical invariants like the
@@ -20354,7 +21265,13 @@
 examples.tex(,2685) @end itemize
 examples.tex(,2686) Besides this, the library contains procedures to compute 
the Newton
 examples.tex(,2687) polygon of 
+examples.tex(,2691) @tex
+examples.tex(,2692) $f$
+examples.tex(,2693) @end tex
 examples.tex(,2694) , the squarefree part of 
+examples.tex(,2698) @tex
+examples.tex(,2699) $f$
+examples.tex(,2700) @end tex
 examples.tex(,2701)  and a procedure to
 examples.tex(,2702) convert one set of invariants to another.
 examples.tex(,2703) 
@@ -20579,9 +21496,15 @@
 examples.tex(,2926) @section Normalization
 examples.tex(,2927) @cindex Normalization
 examples.tex(,2928) The normalization will be computed for a reduced ring 
+examples.tex(,2932) @tex
+examples.tex(,2933) $R/I$
+examples.tex(,2934) @end tex
 examples.tex(,2935) . The
 examples.tex(,2936) result is a list of rings; ideals are always called 
@code{norid} in the
 examples.tex(,2937) rings of this list. The normalization of 
+examples.tex(,2941) @tex
+examples.tex(,2942) $R/I$
+examples.tex(,2943) @end tex
 examples.tex(,2944)  is the product of
 examples.tex(,2945) the factor rings of the rings in the list divided out by 
the ideals
 examples.tex(,2946) @code{norid}.
@@ -20785,12 +21708,41 @@
 examples.tex(,3152) @section Kernel of module homomorphisms
 examples.tex(,3153) @cindex Kernel of module homomorphisms
 examples.tex(,3154) Let 
+examples.tex(,3158) @tex
+examples.tex(,3159) $A$
+examples.tex(,3160) @end tex
 examples.tex(,3161) , 
+examples.tex(,3165) @tex
+examples.tex(,3166) $B$
+examples.tex(,3167) @end tex
 examples.tex(,3168)  be two matrices of size
+examples.tex(,3169) @tex
+examples.tex(,3170) $m\times r$ and $m\times s$
+examples.tex(,3171) @end tex
 examples.tex(,3175) over the ring 
+examples.tex(,3179) @tex
+examples.tex(,3180) $R$
+examples.tex(,3181) @end tex
 examples.tex(,3182)  and consider the corresponding maps
+examples.tex(,3183) @tex
+examples.tex(,3184) $$
+examples.tex(,3185) R^r \buildrel{A}\over{\longrightarrow}
+examples.tex(,3186) R^m \buildrel{B}\over{\longleftarrow} R^s\;.
+examples.tex(,3187) $$
+examples.tex(,3188) @end tex
 examples.tex(,3202) We want to compute the kernel of the map
+examples.tex(,3203) @tex
+examples.tex(,3204) $R^r \buildrel{A}\over{\longrightarrow}
+examples.tex(,3205) R^m\longrightarrow
+examples.tex(,3206) R^m/\hbox{Im}(B) \;.$
+examples.tex(,3207) @end tex
 examples.tex(,3216) This can be done using the @code{modulo} command:
+examples.tex(,3217) @tex
+examples.tex(,3218) $$
+examples.tex(,3219) \hbox{\tt modulo}(A,B)=\hbox{ker}(R^r
+examples.tex(,3220) \buildrel{A}\over{\longrightarrow}R^m/\hbox{Im}(B)) \; .
+examples.tex(,3221) $$
+examples.tex(,3222) @end tex
 examples.tex(,3231) 
 examples.tex(,3232) @smallexample
 examples.tex(,3233) @c computed example Kernel_of_module_homomorphisms 
examples.doc:2196 
@@ -20808,22 +21760,56 @@
 examples.tex(,3250) @section Algebraic dependence
 examples.tex(,3251) @cindex Algebraic dependence
 examples.tex(,3252) Let
+examples.tex(,3253) @tex
+examples.tex(,3254) $g$, $f_1$, \dots, $f_r\in K[x_1,\ldots,x_n]$.
+examples.tex(,3255) @end tex
 examples.tex(,3259) We want to check whether
 examples.tex(,3260) @enumerate
 examples.tex(,3261) @item
+examples.tex(,3262) @tex
+examples.tex(,3263) $f_1$, \dots, $f_r$
+examples.tex(,3264) @end tex
 examples.tex(,3268) are algebraically dependent.
 examples.tex(,3269) 
 examples.tex(,3270) Let
+examples.tex(,3271) @tex
+examples.tex(,3272) $I=\langle Y_1-f_1,\ldots,Y_r-f_r \rangle \subseteq
+examples.tex(,3273) K[x_1,\ldots,x_n,Y_1,\ldots,Y_r]$.
+examples.tex(,3274) @end tex
 examples.tex(,3282) Then
+examples.tex(,3283) @tex
+examples.tex(,3284) $I \cap K[Y_1,\ldots,Y_r]$
+examples.tex(,3285) @end tex
 examples.tex(,3289) are the algebraic relations between
+examples.tex(,3290) @tex
+examples.tex(,3291) $f_1$, \dots, $f_r$.
+examples.tex(,3292) @end tex
 examples.tex(,3296) 
 examples.tex(,3297) @item
+examples.tex(,3298) @tex
+examples.tex(,3299) $g \in K [f_1,\ldots,f_r]$.
+examples.tex(,3300) @end tex
 examples.tex(,3304) 
+examples.tex(,3305) @tex
+examples.tex(,3306) $g \in K[f_1,\ldots,f_r]$
+examples.tex(,3307) @end tex
 examples.tex(,3311) if and only if the normal form of 
+examples.tex(,3315) @tex
+examples.tex(,3316) $g$
+examples.tex(,3317) @end tex
 examples.tex(,3318)  with respect to 
+examples.tex(,3322) @tex
+examples.tex(,3323) $I$
+examples.tex(,3324) @end tex
 examples.tex(,3325)  and a
 examples.tex(,3326) block ordering with respect to
+examples.tex(,3327) @tex
+examples.tex(,3328) $X=(x_1,\ldots,x_n)$ and $Y=(Y_1,\ldots,Y_r)$ with $X>Y$
+examples.tex(,3329) @end tex
 examples.tex(,3333) is in 
+examples.tex(,3337) @tex
+examples.tex(,3338) $K[Y]$
+examples.tex(,3339) @end tex
 examples.tex(,3340) .
 examples.tex(,3341) @end enumerate
 examples.tex(,3342) 
@@ -21164,35 +22150,83 @@
 pdata.tex(,53) A vector  in @sc{Singular} is always an element of a free 
module over the
 pdata.tex(,54) basering. It is given as a list of polynomials in one of the 
following
 pdata.tex(,55) formats
+pdata.tex(,56) @tex
+pdata.tex(,57) $[f_1,...,f_n]$ or $f_1*gen(1)+...+f_n*gen(n)$, where $gen(i)$
+pdata.tex(,58) @end tex
 pdata.tex(,62) denotes the i-th canonical generator of a free module (with 1 
at place i and
 pdata.tex(,63) 0 everywhere else).
 pdata.tex(,64) Both forms are equivalent. A vector is internally represented in
 pdata.tex(,65) the second form with the
+pdata.tex(,66) @tex
+pdata.tex(,67) $gen(i)$
+pdata.tex(,68) @end tex
 pdata.tex(,72) being "special" ring variables, ordered accordingly to the 
monomial ordering.
 pdata.tex(,73) Therefore, the form
+pdata.tex(,74) @tex
+pdata.tex(,75) $[f_1,...,f_n]$
+pdata.tex(,76) @end tex
 pdata.tex(,80) is given as output only if the monomial ordering gives priority 
to the
 pdata.tex(,81) component, i.e@:., is of the form @code{(c,...)} (see 
@ref{Module
 pdata.tex(,82) orderings}).  However, in any case the procedure @code{show} 
from the
 pdata.tex(,83) library @code{inout.lib} displays the bracket format.
 pdata.tex(,84) 
 pdata.tex(,85) A vector
+pdata.tex(,86) @tex
+pdata.tex(,87) $v=[f_1,...,f_n]$
+pdata.tex(,88) @end tex
 pdata.tex(,92) should always be considered as a column vector in a free module
 pdata.tex(,93) of rank equal to
+pdata.tex(,94) @tex
+pdata.tex(,95) nrows($v$)
+pdata.tex(,96) @end tex
 pdata.tex(,100) where 
+pdata.tex(,101) @tex
+pdata.tex(,102) nrows($v$)
+pdata.tex(,103) @end tex
 pdata.tex(,107) is equal to the maximal index 
+pdata.tex(,108) @tex
+pdata.tex(,109) $r$
+pdata.tex(,110) @end tex
 pdata.tex(,114) such that
+pdata.tex(,115) @tex
+pdata.tex(,116) $f_r \not= 0$.
+pdata.tex(,117) @end tex
 pdata.tex(,121) This is due to the fact, that internally 
+pdata.tex(,122) @tex
+pdata.tex(,123) $v$
+pdata.tex(,124) @end tex
 pdata.tex(,128) is a polynomial in a sparse representation, i.e.,
+pdata.tex(,129) @tex
+pdata.tex(,130) $f_i*gen(i)$
+pdata.tex(,131) @end tex
 pdata.tex(,135) is not stored if
+pdata.tex(,136) @tex
+pdata.tex(,137) $f_i=0$
+pdata.tex(,138) @end tex
 pdata.tex(,142) (for reasons of efficiency), hence the last 0-entries of 
+pdata.tex(,143) @tex
+pdata.tex(,144) $v$
+pdata.tex(,145) @end tex
 pdata.tex(,149) are lost.
 pdata.tex(,150) Only more complex structures are able to keep the rank.
 pdata.tex(,151) 
 pdata.tex(,152) A module 
+pdata.tex(,153) @tex
+pdata.tex(,154) $M$
+pdata.tex(,155) @end tex
 pdata.tex(,159) in @sc{Singular} is given by a list of vectors
+pdata.tex(,160) @tex
+pdata.tex(,161) $v_1,...,v_k$
+pdata.tex(,162) @end tex
 pdata.tex(,166) which generate the module as a submodule of the free module of 
rank
 pdata.tex(,167) equal to 
+pdata.tex(,168) @tex
+pdata.tex(,169) nrows($M$)
+pdata.tex(,170) @end tex
 pdata.tex(,174) which is the maximum of
+pdata.tex(,175) @tex
+pdata.tex(,176) nrows($v_i$).
+pdata.tex(,177) @end tex
 pdata.tex(,181) 
 pdata.tex(,182) If one wants to create a module with a larger rank than given 
by its
 pdata.tex(,183) generators, one has to use the command 
@code{attrib(M,"rank",r)} (see
@@ -21207,33 +22241,84 @@
 pdata.tex(,192) By the above remarks it might appear that @sc{Singular} is 
only able to handle
 pdata.tex(,193) submodules of a free module. However, this is not true. 
@sc{Singular}
 pdata.tex(,194) can compute with any finitely generated module over the 
basering 
+pdata.tex(,195) @tex
+pdata.tex(,196) $R$.
+pdata.tex(,197) @end tex 
 pdata.tex(,201) Such a module, say 
+pdata.tex(,202) @tex
+pdata.tex(,203) $N$,
+pdata.tex(,204) @end tex
 pdata.tex(,208) is not represented by its generators but by its
 pdata.tex(,209) (generators and) relations. This means that
+pdata.tex(,210) @tex
+pdata.tex(,211) $N = R^n/M$ where $n$ 
+pdata.tex(,212) @end tex
 pdata.tex(,216) is the number of generators of 
+pdata.tex(,217) @tex
+pdata.tex(,218) $N$ and $M \subseteq R^n$
+pdata.tex(,219) @end tex
 pdata.tex(,223) is the module of relations.
 pdata.tex(,224) In other words, defining  a module 
+pdata.tex(,225) @tex
+pdata.tex(,226) $M$
+pdata.tex(,227) @end tex
 pdata.tex(,231) as a submodule of a free module
+pdata.tex(,232) @tex
+pdata.tex(,233) $R^n$
+pdata.tex(,234) @end tex
 pdata.tex(,238) can also be considered as the definition of
+pdata.tex(,239) @tex
+pdata.tex(,240) $N = R^n/M$.
+pdata.tex(,241) @end tex
 pdata.tex(,245) 
 pdata.tex(,246) Note that most functions, when applied to a module 
+pdata.tex(,247) @tex
+pdata.tex(,248) $M$,
+pdata.tex(,249) @end tex
 pdata.tex(,253) really deal with
+pdata.tex(,254) @tex
+pdata.tex(,255) $M$.
+pdata.tex(,256) @end tex
 pdata.tex(,260) However, there are some functions which deal with 
+pdata.tex(,261) @tex
+pdata.tex(,262) $N = R^n/M$ instead of $M$.
+pdata.tex(,263) @end tex
 pdata.tex(,267) 
 pdata.tex(,268) For example, @code{std(M)} computes a standard basis of 
+pdata.tex(,269) @tex
+pdata.tex(,270) $M$
+pdata.tex(,271) @end tex
 pdata.tex(,275) (and thus gives another representation of 
+pdata.tex(,276) @tex
+pdata.tex(,277) $N$ as $N = R^n/$std($M$)).
+pdata.tex(,278) @end tex
 pdata.tex(,282) However, @code{dim(M)}, resp.@: @code{vdim(M)}, returns
+pdata.tex(,283) @tex
+pdata.tex(,284) dim$(R^n/M)$, resp.@: dim$_k(R^n/M)$
+pdata.tex(,285) @end tex
 pdata.tex(,289) (if M is given by a standard basis).
 pdata.tex(,290) 
 pdata.tex(,291) The function @code{syz(M)}  returns the first syzygy module of 
+pdata.tex(,292) @tex
+pdata.tex(,293) $M$,
+pdata.tex(,294) @end tex
 pdata.tex(,298) i.e@:., the module 
 pdata.tex(,299) of relations of the given generators of 
+pdata.tex(,300) @tex
+pdata.tex(,301) $M$
+pdata.tex(,302) @end tex
 pdata.tex(,306) which is equal to the second syzygy module of 
+pdata.tex(,307) @tex
+pdata.tex(,308) $N$.
+pdata.tex(,309) @end tex
 pdata.tex(,313) Refer to the description of each function in
 pdata.tex(,314) @ref{Functions} to get information which module the function 
deals with.
 pdata.tex(,315) 
 pdata.tex(,316) The numbering in @code{res} and other commands for computing 
resolutions
 pdata.tex(,317) refers to a resolution of
+pdata.tex(,318) @tex
+pdata.tex(,319) $N = R^n/M$
+pdata.tex(,320) @end tex
 pdata.tex(,324) (see @ref{res}; @ref{Syzygies and resolutions}).
 pdata.tex(,325) 
 pdata.tex(,326) It is possible to compute in any field which is a valid ground 
field in
@@ -21277,13 +22362,28 @@
 pdata.tex(,364) flexibility might also be confusing for the novice user.  
Therefore, we
 pdata.tex(,365) recommend to those not familiar with monomial orderings to 
generally use
 pdata.tex(,366) the ordering @code{dp} for computations in the polynomial ring
+pdata.tex(,367) @tex
+pdata.tex(,368) $K[x_1,\ldots,x_n]$, 
+pdata.tex(,369) @end tex
 pdata.tex(,373) resp.@:  @code{ds} for computations in the localization 
+pdata.tex(,374) @tex
+pdata.tex(,375) $\hbox{Loc}_{(x)}K[x_1,\ldots,x_n]$.
+pdata.tex(,376) @end tex
 pdata.tex(,380) 
 pdata.tex(,381) For inhomogeneous input ideals,  standard (resp.@: groebner) 
bases
 pdata.tex(,382) computations are generally faster 
 pdata.tex(,383) with the orderings 
+pdata.tex(,384) @tex
+pdata.tex(,385) $\hbox{Wp}(w_1, \ldots, w_n)$
+pdata.tex(,386) @end tex
 pdata.tex(,390) (resp.@: 
+pdata.tex(,391) @tex
+pdata.tex(,392) $\hbox{Ws}(w_1, \ldots, w_n)$)
+pdata.tex(,393) @end tex
 pdata.tex(,397) if the input is quasihomogeneous w.r.t. the weights 
+pdata.tex(,398) @tex
+pdata.tex(,399) $w_1$, $\ldots$, $w_n$ of $x_1$, $\ldots$, $x_n$. 
+pdata.tex(,400) @end tex
 pdata.tex(,404) 
 pdata.tex(,405) If the output needs to be "triangular" (resp.@: 
"block-triangular"), the
 pdata.tex(,406) lexicographical ordering @code{lp} (resp.@: lexicographical
@@ -21298,12 +22398,39 @@
 pdata.tex(,415) @cindex term orderings
 pdata.tex(,416) @cindex monomial orderings
 pdata.tex(,417) 
+pdata.tex(,418) @tex
+pdata.tex(,419) A monomial ordering (term ordering) on $K[x_1, \ldots, x_n]$ is
+pdata.tex(,420) a total ordering $<$ on the
+pdata.tex(,421) set of monomials (power products) $\{x^\alpha \mid \alpha \in 
\bf{N}^n\}$
+pdata.tex(,422) which is compatible with the
+pdata.tex(,423) natural semigroup structure, i.e., $x^\alpha < x^\beta$ 
implies $x^\gamma
+pdata.tex(,424) x^\alpha < x^\gamma x^\beta$ for any $\gamma \in \bf{N}^n$.
+pdata.tex(,425) We do not require
+pdata.tex(,426) $<$ to be  a well ordering.
+pdata.tex(,427) @end tex
 pdata.tex(,439)  See the literature cited in @ref{References}.
 pdata.tex(,441) 
 pdata.tex(,442) It is known that any monomial ordering can be represented by a 
matrix 
+pdata.tex(,443) @tex
+pdata.tex(,444) $M$ in $GL(n,R)$,
+pdata.tex(,445) @end tex
 pdata.tex(,449) but, of course, only integer coefficients are of relevance in
 pdata.tex(,450) practice.
 pdata.tex(,451) 
+pdata.tex(,452) @tex
+pdata.tex(,453) Global orderings are well orderings (i.e.,  \hbox{$1 < x_i$} 
for each variable
+pdata.tex(,454) $x_i$), local orderings satisfy $1 > x_i$ for each variable.   
If some variables are ordered globally and others locally we
+pdata.tex(,455) call it a mixed ordering.   Local or mixed orderings are not 
well orderings.
+pdata.tex(,456) 
+pdata.tex(,457) Let $K$ be the ground field, \hbox{$x = (x_1, \ldots, x_n)$} 
the
+pdata.tex(,458) variables and $<$ a monomial ordering, then Loc $K[x]$ denotes 
the
+pdata.tex(,459) localization of $K[x]$ with respect to the multiplicatively 
closed set $$\{1 +
+pdata.tex(,460) g \mid g = 0 \hbox{ or } g \in K[x]\backslash \{0\} \hbox{ and 
}L(g) <
+pdata.tex(,461) 1\}.$$   Here, $L(g)$ 
+pdata.tex(,462) denotes the leading monomial of $g$, i.e., the biggest 
monomial of $g$ with
+pdata.tex(,463) respect to $<$.   The result of any computation which uses 
standard basis
+pdata.tex(,464) computations has to be interpreted in Loc $K[x]$.
+pdata.tex(,465) @end tex
 pdata.tex(,480) 
 pdata.tex(,481) Note that the definition of a ring includes the definition of 
its
 pdata.tex(,482) monomial ordering (see 
@@ -21317,6 +22444,9 @@
 pdata.tex(,490) @cindex Global orderings
 pdata.tex(,491) @cindex orderings, global
 pdata.tex(,492) 
+pdata.tex(,493) @tex
+pdata.tex(,494) For all these orderings: Loc $K[x]$ = $K[x]$
+pdata.tex(,495) @end tex
 pdata.tex(,499) 
 pdata.tex(,500) @table @asis
 pdata.tex(,501) @item lp:
@@ -21324,35 +22454,81 @@
 pdata.tex(,503) @cindex lp, global ordering
 pdata.tex(,504) @cindex lexicographical ordering
 pdata.tex(,505) @*
+pdata.tex(,510) @tex
+pdata.tex(,511) $x^\alpha < x^\beta  \Leftrightarrow  \exists\; 1 \le i \le n :
+pdata.tex(,512) \alpha_1 = \beta_1, \ldots, \alpha_{i-1} = \beta_{i-1}, 
\alpha_i <
+pdata.tex(,513) \beta_i$.
+pdata.tex(,514) @end tex
 pdata.tex(,515) @item rp:
 pdata.tex(,516) reverse lexicographical ordering:
 pdata.tex(,517) @cindex rp, global ordering
 pdata.tex(,518) @cindex reverse lexicographical ordering
 pdata.tex(,519) @*
+pdata.tex(,524) @tex
+pdata.tex(,525) $x^\alpha < x^\beta  \Leftrightarrow  \exists\; 1 \le i \le n :
+pdata.tex(,526) \alpha_n = \beta_n,
+pdata.tex(,527)     \ldots, \alpha_{i+1} = \beta_{i+1}, \alpha_i > \beta_i.$
+pdata.tex(,528) @end tex
 pdata.tex(,529) @item dp:
 pdata.tex(,530) degree reverse lexicographical ordering:
 pdata.tex(,531) @cindex degree reverse lexicographical ordering
 pdata.tex(,532) @cindex dp, global ordering
 pdata.tex(,533) @*
+pdata.tex(,537) @tex
+pdata.tex(,538) let $\deg(x^\alpha) = \alpha_1 + \cdots + \alpha_n,$ then
+pdata.tex(,539) @end tex
+pdata.tex(,547) @tex
+pdata.tex(,548)     $x^\alpha < x^\beta \Leftrightarrow \deg(x^\alpha) < 
\deg(x^\beta)$ or
+pdata.tex(,549) @end tex
+pdata.tex(,553) @tex
+pdata.tex(,554)     \phantom{$x^\alpha < x^\beta \Leftrightarrow $}$ 
\deg(x^\alpha) =
+pdata.tex(,555)     \deg(x^\beta)$ and $\exists\ 1 \le i \le n: \alpha_n = 
\beta_n,
+pdata.tex(,556)     \ldots, \alpha_{i+1} = \beta_{i+1}, \alpha_i > \beta_i.$
+pdata.tex(,557) @end tex
 pdata.tex(,558) @item Dp:
 pdata.tex(,559) degree lexicographical ordering:
 pdata.tex(,560) @cindex degree lexicographical ordering
 pdata.tex(,561) @cindex Dp, global ordering
 pdata.tex(,562) @*
+pdata.tex(,566) @tex
+pdata.tex(,567) let $\deg(x^\alpha) = \alpha_1 + \cdots + \alpha_n,$ then
+pdata.tex(,568) @end tex
+pdata.tex(,576) @tex
+pdata.tex(,577)     $x^\alpha < x^\beta \Leftrightarrow \deg(x^\alpha) < 
\deg(x^\beta)$ or
+pdata.tex(,578) @end tex
+pdata.tex(,582) @tex
+pdata.tex(,583)     \phantom{ $x^\alpha < x^\beta \Leftrightarrow $} 
$\deg(x^\alpha) =
+pdata.tex(,584)     \deg(x^\beta)$ and $\exists\ 1 \le i \le n:\alpha_1 = 
\beta_1,
+pdata.tex(,585)     \ldots, \alpha_{i-1} = \beta_{i-1}, \alpha_i < \beta_i.$
+pdata.tex(,586) @end tex
 pdata.tex(,587) @item wp:
 pdata.tex(,588) weighted reverse lexicographical ordering:
 pdata.tex(,589) @cindex weighted reverse lexicographical ordering
 pdata.tex(,590) @cindex wp, global ordering
 pdata.tex(,591) @*
+pdata.tex(,595) @tex
+pdata.tex(,596) let $w_1, \ldots, w_n$ be positive integers. Then ${\tt 
wp}(w_1, \ldots,
+pdata.tex(,597) w_n)$ 
+pdata.tex(,598) @end tex
 pdata.tex(,599)  is defined as @code{dp}
 pdata.tex(,600)  but with
+pdata.tex(,604) @tex
+pdata.tex(,605) $\deg(x^\alpha) = w_1 \alpha_1 + \cdots + w_n\alpha_n.$
+pdata.tex(,606) @end tex
 pdata.tex(,607) @item Wp:
 pdata.tex(,608) weighted lexicographical ordering:
 pdata.tex(,609) @cindex weighted lexicographical ordering
 pdata.tex(,610) @cindex WP, global ordering
 pdata.tex(,611) @*
+pdata.tex(,615) @tex
+pdata.tex(,616) let $w_1, \ldots, w_n$ be positive integers. Then ${\tt 
Wp}(w_1, \ldots,
+pdata.tex(,617) w_n)$ 
+pdata.tex(,618) @end tex
 pdata.tex(,619)  is defined as @code{Dp}
 pdata.tex(,620)  but with
+pdata.tex(,624) @tex
+pdata.tex(,625) $\deg(x^\alpha) = w_1 \alpha_1 + \cdots + w_n\alpha_n.$
+pdata.tex(,626) @end tex
 pdata.tex(,627) @end table
 pdata.tex(,628) @c 
--------------------------------------------------------------------------
 pdata.tex(,629) @node Local orderings, Module orderings, Global orderings, 
Monomial orderings
@@ -21362,8 +22538,17 @@
 pdata.tex(,633) 
 pdata.tex(,634) For ls, ds, Ds and, if the weights are positive integers, also 
for ws and
 pdata.tex(,635) Ws,  we have
+pdata.tex(,639) @tex
+pdata.tex(,640) Loc $K[x]$ = $K[x]_{(x)}$,
+pdata.tex(,641) @end tex
 pdata.tex(,642)  the localization of 
+pdata.tex(,643) @tex
+pdata.tex(,644) $K[x]$
+pdata.tex(,645) @end tex
 pdata.tex(,649) at the maximal ideal
+pdata.tex(,653) @tex
+pdata.tex(,654) \ $(x_1, ..., x_n)$.
+pdata.tex(,655) @end tex
 pdata.tex(,656) 
 pdata.tex(,657) @table @asis
 pdata.tex(,658) @item ls:
@@ -21371,36 +22556,81 @@
 pdata.tex(,660) @cindex negative lexicographical ordering
 pdata.tex(,661) @cindex ls, local ordering
 pdata.tex(,662) @*
+pdata.tex(,667) @tex
+pdata.tex(,668) $x^\alpha < x^\beta  \Leftrightarrow  \exists\; 1 \le i \le n :
+pdata.tex(,669) \alpha_1 = \beta_1, \ldots, \alpha_{i-1} = \beta_{i-1}, 
\alpha_i >
+pdata.tex(,670) \beta_i$.
+pdata.tex(,671) @end tex
 pdata.tex(,672) @item ds:
 pdata.tex(,673) negative degree reverse lexicographical ordering:
 pdata.tex(,674) @cindex negative degree reverse lexicographical ordering
 pdata.tex(,675) @cindex ds, local ordering
 pdata.tex(,676) @*
+pdata.tex(,680) @tex
+pdata.tex(,681) let $\deg(x^\alpha) = \alpha_1 + \cdots + \alpha_n,$ then
+pdata.tex(,682) @end tex
+pdata.tex(,690) @tex
+pdata.tex(,691)     $x^\alpha < x^\beta \Leftrightarrow \deg(x^\alpha) > 
\deg(x^\beta)$ or
+pdata.tex(,692) @end tex
+pdata.tex(,696) @tex
+pdata.tex(,697)     \phantom{ $x^\alpha < x^\beta \Leftrightarrow$}$ 
\deg(x^\alpha) =
+pdata.tex(,698)     \deg(x^\beta)$ and $\exists\ 1 \le i \le n: \alpha_n = 
\beta_n,
+pdata.tex(,699)     \ldots, \alpha_{i+1} = \beta_{i+1}, \alpha_i > \beta_i.$
+pdata.tex(,700) @end tex
 pdata.tex(,701) @item Ds:
 pdata.tex(,702) negative degree lexicographical ordering:
 pdata.tex(,703) @cindex negative degree lexicographical ordering
 pdata.tex(,704) @cindex Ds, local ordering
 pdata.tex(,705) @*
+pdata.tex(,709) @tex
+pdata.tex(,710) let $\deg(x^\alpha) = \alpha_1 + \cdots + \alpha_n,$ then
+pdata.tex(,711) @end tex
+pdata.tex(,719) @tex
+pdata.tex(,720)     $x^\alpha < x^\beta \Leftrightarrow \deg(x^\alpha) > 
\deg(x^\beta)$ or 
+pdata.tex(,721) @end tex
+pdata.tex(,725) @tex
+pdata.tex(,726)     \phantom{ $ x^\alpha < x^\beta \Leftrightarrow$}$ 
\deg(x^\alpha) =
+pdata.tex(,727)     \deg(x^\beta)$ and $\exists\ 1 \le i \le n:\alpha_1 = 
\beta_1,
+pdata.tex(,728)     \ldots, \alpha_{i-1} = \beta_{i-1}, \alpha_i < \beta_i.$
+pdata.tex(,729) @end tex
 pdata.tex(,730) @item ws:
 pdata.tex(,731) (general) weighted reverse lexicographical ordering:
 pdata.tex(,732) @cindex general weighted reverse lexicographical ordering
 pdata.tex(,733) @cindex local weighted reverse lexicographical ordering
 pdata.tex(,734) @cindex ws, local ordering
 pdata.tex(,735) @*
+pdata.tex(,739) @tex
+pdata.tex(,740) ${\tt ws}(w_1, \ldots, w_n),\; w_1$
+pdata.tex(,741) @end tex
 pdata.tex(,742)  a nonzero integer,
+pdata.tex(,746) @tex
+pdata.tex(,747) $w_2,\ldots,w_n$
+pdata.tex(,748) @end tex
 pdata.tex(,749)  any integer (including 0),
 pdata.tex(,750)  is defined as @code{ds}
 pdata.tex(,751)  but with
+pdata.tex(,755) @tex
+pdata.tex(,756) $\deg(x^\alpha) = w_1 \alpha_1 + \cdots + w_n\alpha_n.$
+pdata.tex(,757) @end tex
 pdata.tex(,758) @item Ws:
 pdata.tex(,759) (general) weighted lexicographical ordering:
 pdata.tex(,760) @cindex general weighted lexicographical ordering
 pdata.tex(,761) @cindex local weighted lexicographical ordering
 pdata.tex(,762) @cindex Ws, local ordering
 pdata.tex(,763) @*
+pdata.tex(,767) @tex
+pdata.tex(,768) ${\tt Ws}(w_1, \ldots, w_n),\; w_1$
+pdata.tex(,769) @end tex
 pdata.tex(,770)  a nonzero integer,
+pdata.tex(,774) @tex
+pdata.tex(,775) $w_2,\ldots,w_n$
+pdata.tex(,776) @end tex
 pdata.tex(,777)  any integer (including 0),
 pdata.tex(,778)  is defined as @code{Ds}
 pdata.tex(,779)  but with
+pdata.tex(,783) @tex
+pdata.tex(,784) $\deg(x^\alpha) = w_1 \alpha_1 + \cdots + w_n\alpha_n.$
+pdata.tex(,785) @end tex
 pdata.tex(,786) @end table
 pdata.tex(,787) 
 pdata.tex(,788) @c 
--------------------------------------------------------------------------
@@ -21409,22 +22639,42 @@
 pdata.tex(,791) @cindex Module orderings
 pdata.tex(,792) 
 pdata.tex(,793) @sc{Singular} offers also orderings on the set of ``monomials''
+pdata.tex(,799) @tex
+pdata.tex(,800) $\{ x^a e_i  \mid  a \in N^n, 1 \leq i \leq r \}$ in Loc 
$K[x]^r$ = Loc
+pdata.tex(,801) $K[x]e_1 
+pdata.tex(,802) + \ldots +$Loc $K[x]e_r$, where $e_1, \ldots, e_r$ denote the 
canonical
+pdata.tex(,803) generators of Loc $K[x]^r$, the r-fold direct sum of Loc 
$K[x]$.
+pdata.tex(,804) (The function {\tt gen(i)} yields $e_i$).
+pdata.tex(,805) @end tex
 pdata.tex(,806) 
 pdata.tex(,807) We have two possibilities: either to give priority to the 
component of a
 pdata.tex(,808) vector in 
+pdata.tex(,812) @tex
+pdata.tex(,813)  Loc $K[x]^r$
+pdata.tex(,814) @end tex
 pdata.tex(,815) or (which is the default in @sc{Singular}) to give priority
 pdata.tex(,816) to the coefficients.
 pdata.tex(,817) The orderings @code{(<,c)} and @code{(<,C)} give priority to 
the
 pdata.tex(,818) coefficients; whereas
 pdata.tex(,819) @code{(c,<)} and @code{(C,<)} give priority to the components.
 pdata.tex(,820) @*Let < be any of the monomial orderings of 
+pdata.tex(,821) @tex
+pdata.tex(,822) Loc $K[x]$
+pdata.tex(,823) @end tex
 pdata.tex(,827) as above.
 pdata.tex(,828) 
 pdata.tex(,829) @table @asis
 pdata.tex(,830) @item (<,C):
 pdata.tex(,831) @cindex C, module ordering
 pdata.tex(,832) @cindex module ordering C
+pdata.tex(,840) @tex
+pdata.tex(,841) $<_m = (<,C)$ denotes the module ordering (giving priority to 
the coefficients):
+pdata.tex(,842) @end tex
 pdata.tex(,843) @*
+pdata.tex(,844) @tex
+pdata.tex(,845) \quad  \quad  $x^\alpha e_i <_m x^\beta e_j \Leftrightarrow 
x^\alpha <
+pdata.tex(,846) x^\beta$ or ($x^\alpha = x^\beta $ and $ i < j$).
+pdata.tex(,847) @end tex
 pdata.tex(,848) 
 pdata.tex(,849) @strong{Example:}
 pdata.tex(,850) @smallexample
@@ -21439,6 +22689,13 @@
 pdata.tex(,859) @end smallexample
 pdata.tex(,860) 
 pdata.tex(,861) @item (C,<):
+pdata.tex(,870) @tex
+pdata.tex(,871) $<_m = (C, <)$ denotes the module ordering (giving priority to 
the component):
+pdata.tex(,872) @end tex
+pdata.tex(,876) @tex
+pdata.tex(,877) \quad \quad   $x^\alpha e_i <_m x^\beta e_j \Leftrightarrow i 
< j$ or ($
+pdata.tex(,878) i = j $ and $ x^\alpha < x^\beta $). 
+pdata.tex(,879) @end tex
 pdata.tex(,880) 
 pdata.tex(,881) @strong{Example:}
 pdata.tex(,882) @smallexample
@@ -21454,6 +22711,13 @@
 pdata.tex(,892) @item (<,c):
 pdata.tex(,893) @cindex c, module ordering
 pdata.tex(,894) @cindex module ordering c
+pdata.tex(,902) @tex
+pdata.tex(,903) $<_m = (<,c)$ denotes the module ordering (giving priority to 
the coefficients):
+pdata.tex(,904) @end tex
+pdata.tex(,908) @tex
+pdata.tex(,909) \quad \quad $x^\alpha e_i <_m x^\beta e_j \Leftrightarrow 
x^\alpha <
+pdata.tex(,910) x^\beta$ or ($x^\alpha = x^\beta $ and $ i > j$).
+pdata.tex(,911) @end tex
 pdata.tex(,912) 
 pdata.tex(,913) @strong{Example:}
 pdata.tex(,914) @smallexample
@@ -21467,6 +22731,13 @@
 pdata.tex(,922) @end smallexample
 pdata.tex(,923) 
 pdata.tex(,924) @item (c,<):
+pdata.tex(,933) @tex
+pdata.tex(,934) $<_m = (c, <)$ denotes the module ordering (giving priority to 
the component):
+pdata.tex(,935) @end tex
+pdata.tex(,939) @tex
+pdata.tex(,940) \quad \quad   $x^\alpha e_i <_m x^\beta e_j \Leftrightarrow i 
> j$ or ($
+pdata.tex(,941) i = j $ and $ x^\alpha < x^\beta $). 
+pdata.tex(,942) @end tex
 pdata.tex(,943) 
 pdata.tex(,944) @strong{Example:}
 pdata.tex(,945) @smallexample
@@ -21480,7 +22751,14 @@
 pdata.tex(,953) @end smallexample
 pdata.tex(,954) @end table
 pdata.tex(,955) 
+pdata.tex(,960) @tex
+pdata.tex(,961) The output of a vector $v$ in $K[x]^r$ with components $v_1,
+pdata.tex(,962) \ldots, v_r$ has the format $v_1 * gen(1) + \ldots + v_r * 
gen(r)$
+pdata.tex(,963) @end tex
 pdata.tex(,964) (up to permutation) unless the ordering starts with @code{c}.
+pdata.tex(,968) @tex
+pdata.tex(,969) In this case a vector is written as $[v_1, \ldots, v_r]$.
+pdata.tex(,970) @end tex
 pdata.tex(,971) In all cases @sc{Singular} can read input in both formats.
 pdata.tex(,972) 
 pdata.tex(,973) @c 
--------------------------------------------------------------------------
@@ -21491,25 +22769,152 @@
 pdata.tex(,978) @cindex M, ordering
 pdata.tex(,979) 
 pdata.tex(,980) Let 
+pdata.tex(,981) @tex
+pdata.tex(,982) $M$
+pdata.tex(,983) @end tex
 pdata.tex(,987) be an invertible 
+pdata.tex(,988) @tex
+pdata.tex(,989) $(n \times n)$-matrix
+pdata.tex(,990) @end tex
 pdata.tex(,994)  with integer coefficients and
+pdata.tex(,998) @tex
+pdata.tex(,999) $M_1, \ldots, M_n$ the rows of $M$.
+pdata.tex(,1000) @end tex
 pdata.tex(,1001) 
 pdata.tex(,1002) The M-ordering < is defined as follows:
 pdata.tex(,1003) @*
+pdata.tex(,1008) @tex
+pdata.tex(,1009) \quad \quad $x^a < x^b \Leftrightarrow \exists\  1 \leq i 
\leq n :
+pdata.tex(,1010) M_1 a = \; M_1 b, \ldots, M_{i-1} a = \; M_{i-1} b$ and $M_i 
a < \; M_i b$.
+pdata.tex(,1011) @end tex
 pdata.tex(,1012) 
 pdata.tex(,1013) Thus,
+pdata.tex(,1018) @tex
+pdata.tex(,1019) $x^a < x^b$
+pdata.tex(,1020) if and only if $M a$ is smaller than $M b$
+pdata.tex(,1021) @end tex
 pdata.tex(,1022) with respect to the lexicographical ordering.
 pdata.tex(,1023) 
 pdata.tex(,1024) The following matrices represent (for 3 variables) the global 
and
 pdata.tex(,1025) local orderings defined above (note that the matrix is not 
uniquely determined
 pdata.tex(,1026) by the ordering):
 pdata.tex(,1027) 
+pdata.tex(,1072) @tex
+pdata.tex(,1073) 
+pdata.tex(,1074) $\quad$ lp:
+pdata.tex(,1075) $\left(\matrix{
+pdata.tex(,1076)  1 & 0 & 0 \cr
+pdata.tex(,1077)  0 & 1 & 0 \cr
+pdata.tex(,1078)  0 & 0 & 1 \cr
+pdata.tex(,1079)  }\right)$
+pdata.tex(,1080) \quad dp:
+pdata.tex(,1081) $\left(\matrix{
+pdata.tex(,1082)  1 & 1 & 1 \cr
+pdata.tex(,1083)  0 & 0 &-1 \cr
+pdata.tex(,1084)  0 &-1 & 0 \cr
+pdata.tex(,1085)  }\right)$
+pdata.tex(,1086) \quad Dp:
+pdata.tex(,1087) $\left(\matrix{
+pdata.tex(,1088)  1 & 1 & 1 \cr
+pdata.tex(,1089)  1 & 0 & 0 \cr
+pdata.tex(,1090)  0 & 1 & 0 \cr
+pdata.tex(,1091)  }\right)$
+pdata.tex(,1092) 
+pdata.tex(,1093) $\quad$ wp(1,2,3):
+pdata.tex(,1094) $\left(\matrix{
+pdata.tex(,1095)  1 & 2 & 3 \cr
+pdata.tex(,1096)  0 & 0 &-1 \cr
+pdata.tex(,1097)  0 &-1 & 0 \cr
+pdata.tex(,1098)  }\right)$
+pdata.tex(,1099) \quad Wp(1,2,3):
+pdata.tex(,1100) $\left(\matrix{
+pdata.tex(,1101)  1 & 2 & 3 \cr
+pdata.tex(,1102)  1 & 0 & 0 \cr
+pdata.tex(,1103)  0 & 1 & 0 \cr
+pdata.tex(,1104)  }\right)$
+pdata.tex(,1105) 
+pdata.tex(,1106) $\quad$ ls:
+pdata.tex(,1107) $\left(\matrix{
+pdata.tex(,1108) -1 & 0 & 0 \cr
+pdata.tex(,1109)  0 &-1 & 0 \cr
+pdata.tex(,1110)  0 & 0 &-1 \cr
+pdata.tex(,1111)  }\right)$
+pdata.tex(,1112) \quad ds:
+pdata.tex(,1113) $\left(\matrix{
+pdata.tex(,1114) -1 &-1 &-1 \cr
+pdata.tex(,1115)  0 & 0 &-1 \cr
+pdata.tex(,1116)  0 &-1 & 0 \cr
+pdata.tex(,1117)  }\right)$
+pdata.tex(,1118) \quad Ds:
+pdata.tex(,1119) $\left(\matrix{
+pdata.tex(,1120) -1 &-1 &-1 \cr
+pdata.tex(,1121)  1 & 0 & 0 \cr
+pdata.tex(,1122)  0 & 1 & 0 \cr
+pdata.tex(,1123)  }\right)$
+pdata.tex(,1124) 
+pdata.tex(,1125) $\quad$ ws(1,2,3):
+pdata.tex(,1126) $\left(\matrix{
+pdata.tex(,1127) -1 &-2 &-3 \cr
+pdata.tex(,1128)  0 & 0 &-1 \cr
+pdata.tex(,1129)  0 &-1 & 0 \cr
+pdata.tex(,1130)  }\right)$
+pdata.tex(,1131) \quad Ws(1,2,3):
+pdata.tex(,1132) $\left(\matrix{
+pdata.tex(,1133) -1 &-2 &-3 \cr
+pdata.tex(,1134)  1 & 0 & 0 \cr
+pdata.tex(,1135)  0 & 1 & 0 \cr
+pdata.tex(,1136)  }\right)$
+pdata.tex(,1137) @end tex
 pdata.tex(,1138) 
 pdata.tex(,1139) Product orderings (see next section) represented by  a matrix:
 pdata.tex(,1140) 
+pdata.tex(,1159) @tex
+pdata.tex(,1160) $\quad$ (dp(3), wp(1,2,3)):
+pdata.tex(,1161) $\left(\matrix{
+pdata.tex(,1162) 1&  1&  1&  0&  0&  0 \cr
+pdata.tex(,1163) 0&  0&  -1&  0&  0&  0 \cr
+pdata.tex(,1164) 0&  -1&  0&  0&  0&  0 \cr
+pdata.tex(,1165) 0&  0&  0&  1&  2&  3 \cr
+pdata.tex(,1166) 0&  0&  0&  0&  0&  -1 \cr
+pdata.tex(,1167) 0&  0&  0&  0&  -1&  0 \cr
+pdata.tex(,1168)  }\right)$
+pdata.tex(,1169) 
+pdata.tex(,1170) $\quad$ (Dp(3), ds(3)):
+pdata.tex(,1171) $\left(\matrix{
+pdata.tex(,1172) 1&  1&  1&  0&  0&  0 \cr
+pdata.tex(,1173) 1&  0&  0&  0&  0&  0 \cr
+pdata.tex(,1174) 0&  1&  0&  0&  0&  0 \cr
+pdata.tex(,1175) 0&  0&  0&  -1&  -1&  -1 \cr
+pdata.tex(,1176) 0&  0&  0&  0&  0&  -1 \cr
+pdata.tex(,1177) 0&  0&  0&  0&  -1&  0 \cr
+pdata.tex(,1178)  }\right)$
+pdata.tex(,1179) @end tex
 pdata.tex(,1180) 
 pdata.tex(,1181) Orderings with extra weight vector (see below) represented by 
 a matrix:
 pdata.tex(,1182) 
+pdata.tex(,1203) @tex
+pdata.tex(,1204) $\quad$ (dp(3), a(1,2,3),dp(3)):
+pdata.tex(,1205) $\left(\matrix{
+pdata.tex(,1206) 1&  1&  1&  0&  0&  0 \cr
+pdata.tex(,1207) 0&  0&  -1&  0&  0&  0 \cr
+pdata.tex(,1208) 0&  -1&  0&  0&  0&  0 \cr
+pdata.tex(,1209) 0&  0&  0&  1&  2&  3 \cr
+pdata.tex(,1210) 0&  0&  0&  1&  1&  1 \cr
+pdata.tex(,1211) 0&  0&  0&  0&  0&  -1 \cr
+pdata.tex(,1212) 0&  0&  0&  0&  -1&  0 \cr
+pdata.tex(,1213)  }\right)$
+pdata.tex(,1214) 
+pdata.tex(,1215) $\quad$ (a(1,2,3,4,5),Dp(3), ds(3)):
+pdata.tex(,1216) $\left(\matrix{
+pdata.tex(,1217) 1&  2&  3&  4&  5&  0 \cr
+pdata.tex(,1218) 1&  1&  1&  0&  0&  0 \cr
+pdata.tex(,1219) 1&  0&  0&  0&  0&  0 \cr
+pdata.tex(,1220) 0&  1&  0&  0&  0&  0 \cr
+pdata.tex(,1221) 0&  0&  0&  -1&  -1&  -1 \cr
+pdata.tex(,1222) 0&  0&  0&  0&  0 & -1 \cr
+pdata.tex(,1223) 0&  0&  0&  0&  -1&  0 \cr
+pdata.tex(,1224)  }\right)$
+pdata.tex(,1225) @end tex
 pdata.tex(,1226) 
 pdata.tex(,1227) @address@hidden:
 pdata.tex(,1228) @smallexample
@@ -21539,7 +22944,13 @@
 pdata.tex(,1252) @end smallexample
 pdata.tex(,1253) 
 pdata.tex(,1254) If the ring has 
+pdata.tex(,1255) @tex
+pdata.tex(,1256) $n$
+pdata.tex(,1257) @end tex
 pdata.tex(,1261) variables and the matrix contains less than 
+pdata.tex(,1262) @tex
+pdata.tex(,1263) $n \times n$
+pdata.tex(,1264) @end tex
 pdata.tex(,1268) entries an error message is given, if there are more entries,
 pdata.tex(,1269) the last ones are ignored.
 pdata.tex(,1270) 
@@ -21560,6 +22971,9 @@
 pdata.tex(,1285) @cindex orderings, product
 pdata.tex(,1286) 
 pdata.tex(,1287) Let
+pdata.tex(,1292) @tex
+pdata.tex(,1293) $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_m)$
+pdata.tex(,1294) @end tex
 pdata.tex(,1295) be two ordered sets of variables,
 pdata.tex(,1317) 
 pdata.tex(,1318) Inductively one defines the product ordering of more than two 
monomial
@@ -21581,9 +22995,24 @@
 pdata.tex(,1334) @cindex a, ordering
 pdata.tex(,1335) @cindex orderings, a 
 pdata.tex(,1336) 
+pdata.tex(,1340) @tex
+pdata.tex(,1341) ${\tt a}(w_1, \ldots, w_n),\; $
+pdata.tex(,1342) @end tex
+pdata.tex(,1346) @tex
+pdata.tex(,1347) $w_1,\ldots,w_n$
+pdata.tex(,1348) @end tex
 pdata.tex(,1349) any integers (including 0), defines
+pdata.tex(,1353) @tex
+pdata.tex(,1354) $\deg(x^\alpha) = w_1 \alpha_1 + \cdots + w_n\alpha_n$
+pdata.tex(,1355) @end tex
 pdata.tex(,1356) and
 pdata.tex(,1357) @*
+pdata.tex(,1361) @tex
+pdata.tex(,1362)     $$\deg(x^\alpha) < \deg(x^\beta) \Rightarrow x^\alpha < 
x^\beta,$$
+pdata.tex(,1363) @end tex
+pdata.tex(,1368) @tex
+pdata.tex(,1369)     $$\deg(x^\alpha) > \deg(x^\beta) \Rightarrow x^\alpha > 
x^\beta. $$
+pdata.tex(,1370) @end tex
 pdata.tex(,1371) @*An extra weight vector does not define a monomial ordering 
by itself:
 pdata.tex(,1372) it can only be used in combination with other orderings
 pdata.tex(,1373) to insert an extra line of weights into the ordering
@@ -21632,14 +23061,44 @@
 math.tex(,42) @cindex Standard bases
 math.tex(,43) 
 math.tex(,44) @subheading Definition
+math.tex(,45) @tex
+math.tex(,46) Let $R = \hbox{Loc}_< K[\underline{x}]$ and let $I$ be a 
submodule of $R^r$.
+math.tex(,47) Note that for r=1 this means that $I$ is an ideal in $R$.
+math.tex(,48) Denote by $L(I)$ the submodule of $R^r$ generated by the leading 
terms 
+math.tex(,49) of elements of $I$, i.e. by $\left\{L(f) \mid f \in I\right\}$.
+math.tex(,50) Then $f_1, \ldots, f_s \in I$ is called a {\bf standard basis} 
of $I$ 
+math.tex(,51) if $L(f_1), \ldots, L(f_s)$ generate $L(I)$.
+math.tex(,52) @end tex
 math.tex(,60) 
 math.tex(,61) @subheading Properties
 math.tex(,62) @table @asis
 math.tex(,63) @item normal form:
 math.tex(,64) @cindex Normal form
+math.tex(,65) @tex
+math.tex(,66) A function $\hbox{NF} : R^r \times \{G \mid G\ \hbox{ a standard
+math.tex(,67) basis}\} \to R^r, (p,G) \mapsto \hbox{NF}(p|G)$, is called a 
{\bf normal
+math.tex(,68) form} if for any $p \in R^r$ and any standard basis $G$ the 
following
+math.tex(,69) holds: if $\hbox{NF}(p|G) \not= 0$ then $L(g)$ does not divide
+math.tex(,70) $L(\hbox{NF}(p|G))$ for all $g \in G$.
+math.tex(,71) 
+math.tex(,72) \noindent
+math.tex(,73) $\hbox{NF}(p|G)$ is called a {\bf normal form of} $p$ {\bf with
+math.tex(,74) respect to} $G$ (note that such a function is not unique).
+math.tex(,75) @end tex
 math.tex(,84) @item ideal membership:
 math.tex(,85) @cindex Ideal membership
+math.tex(,86) @tex
+math.tex(,87) For a standard basis $G$ of $I$ the following holds: 
+math.tex(,88) $f \in I$ if and only if $\hbox{NF}(f,G) = 0$.
+math.tex(,89) @end tex
 math.tex(,94) @item Hilbert function:
+math.tex(,95) @tex
+math.tex(,96) Let \hbox{$I \subseteq K[\underline{x}]^r$} be a homogeneous 
module, then the Hilbert function
+math.tex(,97) $H_I$ of $I$ (see below)
+math.tex(,98) and the Hilbert function $H_{L(I)}$ of the leading module $L(I)$
+math.tex(,99) coincide, i.e.,
+math.tex(,100) $H_I=H_{L(I)}$.
+math.tex(,101) @end tex
 math.tex(,106) @end table
 math.tex(,107) 
 math.tex(,108) @c 
---------------------------------------------------------------------------
@@ -21647,8 +23106,32 @@
 math.tex(,110) @section Hilbert function
 math.tex(,111) @cindex Hilbert function
 math.tex(,112) @cindex Hilbert series
+math.tex(,113) @tex
+math.tex(,114) Let M $=\bigoplus_i M_i$ be a graded module over 
$K[x_1,..,x_n]$ with 
+math.tex(,115) respect to weights $(w_1,..w_n)$.
+math.tex(,116) The {\bf Hilbert function} of $M$, $H_M$, is defined (on the 
integers) by
+math.tex(,117) $$H_M(k) :=dim_K M_k.$$
+math.tex(,118) The {\bf Hilbert-Poincare series}  of $M$ is the power series
+math.tex(,119) $$\hbox{HP}_M(t) :=\sum_{i=-\infty}^\infty
+math.tex(,120) H_M(i)t^i=\sum_{i=-\infty}^\infty dim_K M_i \cdot t^i.$$
+math.tex(,121) It turns out that $\hbox{HP}_M(t)$ can be written in two useful 
ways
+math.tex(,122) for weights $(1,..,1)$:
+math.tex(,123) $$\hbox{HP}_M(t)={Q(t)\over (1-t)^n}={P(t)\over 
(1-t)^{dim(M)}}$$
+math.tex(,124) where $Q(t)$ and $P(t)$ are polynomials in ${\bf Z}[t]$.
+math.tex(,125) $Q(t)$ is called the {\bf first Hilbert series},
+math.tex(,126) and $P(t)$ the {\bf second Hilbert series}.
+math.tex(,127) If \hbox{$P(t)=\sum_{k=0}^N a_k t^k$}, and \hbox{$d = dim(M)$},
+math.tex(,128) then \hbox{$H_M(s)=\sum_{k=0}^N a_k$ ${d+s-k-1}\choose{d-1}$}
+math.tex(,129) (the {\bf Hilbert polynomial}) for $s \ge N$.
+math.tex(,130) @end tex
 math.tex(,156) @*
 math.tex(,157) @*
+math.tex(,158) @tex
+math.tex(,159) Generalizing these to quasihomogeneous modules we get
+math.tex(,160) $$\hbox{HP}_M(t)={Q(t)\over {\Pi_{i=1}^n(1-t^{w_i})}}$$
+math.tex(,161) where $Q(t)$ is a polynomial in ${\bf Z}[t]$.
+math.tex(,162) $Q(t)$ is called the {\bf first (weighted) Hilbert series} of M.
+math.tex(,163) @end tex
 math.tex(,172) 
 math.tex(,173) @c 
---------------------------------------------------------------------------
 math.tex(,174) @node Syzygies and resolutions, Characteristic sets, Hilbert 
function, Mathematical background
@@ -21656,11 +23139,22 @@
 math.tex(,176) @cindex Syzygies and resolutions
 math.tex(,177) 
 math.tex(,178) @subheading Syzygies
+math.tex(,179) @tex
+math.tex(,180) Let $R$ be a quotient of $\hbox{Loc}_< K[\underline{x}]$ and 
let \hbox{$I=(g_1, ..., g_s)$} be a submodule of $R^r$.
+math.tex(,181) Then the {\bf module of syzygies} (or {\bf 1st syzygy module}, 
{\bf module of relations}) of $I$, syz($I$), is defined to be the kernel of the 
map \hbox{$R^s \rightarrow R^r,\; \sum_{i=1}^s w_ie_i \mapsto \sum_{i=1}^s 
w_ig_i$.}
+math.tex(,182) @end tex
 math.tex(,192) 
 math.tex(,193) The @strong{k-th syzygy module} is defined inductively to be 
the module
 math.tex(,194) of syzygies of the
+math.tex(,195) @tex
+math.tex(,196) $(k-1)$-st 
+math.tex(,197) @end tex
 math.tex(,201)  syzygy module.
 math.tex(,202) 
+math.tex(,203) @tex
+math.tex(,204) Note, that the syzygy modules of $I$ depend on a choice of 
generators $g_1, ..., g_s$.
+math.tex(,205) But one can show that they depend on $I$ uniquely up to direct 
summands.
+math.tex(,206) @end tex
 math.tex(,211) 
 math.tex(,212) @table @code
 math.tex(,213) @item @strong{Example:}
@@ -21678,10 +23172,26 @@
 math.tex(,225) @end table
 math.tex(,226) 
 math.tex(,227) @subheading Free resolutions
+math.tex(,228) @tex
+math.tex(,229) Let $I=(g_1,...,g_s)\subseteq R^r$ and $M= R^r/I$.
+math.tex(,230) A {\bf free resolution of $M$} is a long exact sequence
+math.tex(,231) $$...\longrightarrow F_2 \buildrel{A_2}\over{\longrightarrow} 
F_1
+math.tex(,232) \buildrel{A_1}\over{\longrightarrow} F_0\longrightarrow 
M\longrightarrow
+math.tex(,233) 0,$$
+math.tex(,234) @end tex
 math.tex(,242) @*where the columns of the matrix
+math.tex(,243) @tex
+math.tex(,244) $A_1$
+math.tex(,245) @end tex
 math.tex(,249) generate 
+math.tex(,253) @tex
+math.tex(,254) $I$
+math.tex(,255) @end tex
 math.tex(,256) . Note, that resolutions need not to be finite (i.e., of
 math.tex(,257) finite length). The Hilbert Syzygy Theorem states, that for 
+math.tex(,258) @tex
+math.tex(,259) $R=\hbox{Loc}_< K[\underline{x}]$
+math.tex(,260) @end tex
 math.tex(,264) there exists a ("minimal") resolution of length not exceeding 
the number of
 math.tex(,265) variables.
 math.tex(,266) 
@@ -21714,11 +23224,37 @@
 math.tex(,293) @subheading Betti numbers and regularity
 math.tex(,294) @cindex Betti number
 math.tex(,295) @cindex regularity
+math.tex(,296) @tex
+math.tex(,297) Let $R$ be a graded ring (e.g., $R = \hbox{Loc}_< 
K[\underline{x}]$) and
+math.tex(,298) let $I \subset R^r$ be a graded submodule. Let
+math.tex(,299) $$
+math.tex(,300)   R^r = \bigoplus_a R\cdot e_{a,0} \buildrel A_1 \over 
\longleftarrow
+math.tex(,301)         \bigoplus_a R\cdot e_{a,1} \longleftarrow \ldots 
\longleftarrow
+math.tex(,302)         \bigoplus_a R\cdot e_{a,n} \longleftarrow 0
+math.tex(,303) $$
+math.tex(,304) be a minimal free resolution of $R^n/I$ considered with 
homogeneous maps
+math.tex(,305) of degree 0. Then the {\bf graded Betti number} $b_{i,j}$ of 
$R^r/I$ is
+math.tex(,306) the minimal number of generators $e_{a,j}$ in degree $i+j$ of 
the $j$-th
+math.tex(,307) syzygy module of $R^r/I$ (i.e., the $(j-1)$-st syzygy module of
+math.tex(,308) $I$). Note, that by definition the $0$-th syzygy module of 
$R^r/I$ is $R^r$
+math.tex(,309) and the 1st syzygy module of $R^r/I$ is $I$.
+math.tex(,310) @end tex
 math.tex(,325) 
 math.tex(,326) The @strong{regularity} of 
+math.tex(,330) @tex
+math.tex(,331) $I$
+math.tex(,332) @end tex
 math.tex(,333)  is the smallest integer 
+math.tex(,337) @tex
+math.tex(,338) $s$
+math.tex(,339) @end tex
 math.tex(,340) 
 math.tex(,341) such that
+math.tex(,342) @tex
+math.tex(,343) $$
+math.tex(,344)     \hbox{deg}(e_{a,j}) \le s+j-1 \quad \hbox{for all $j$.}
+math.tex(,345) $$
+math.tex(,346) @end tex
 math.tex(,352) 
 math.tex(,353) @table @code
 math.tex(,354) @item @strong{Example:}
@@ -21751,6 +23287,43 @@
 math.tex(,381) @section Characteristic sets
 math.tex(,382) @cindex Characteristic sets
 math.tex(,383) 
+math.tex(,384) @tex
+math.tex(,385) Let $<$ be the lexicographical ordering on $R=K[x_1,...,x_n]$ 
with $x_1
+math.tex(,386) < ... < x_n$.
+math.tex(,387) For $f \in R$ let lvar($f$) (the leading variable of $f$) be 
the largest
+math.tex(,388) variable in $f$,
+math.tex(,389) i.e., if $f=a_s(x_1,...,x_{k-1})x_k^s+...+a_0(x_1,...,x_{k-1})$ 
for some
+math.tex(,390) $k \leq n$ then lvar$(f)=x_k$.
+math.tex(,391) 
+math.tex(,392) Moreover, let
+math.tex(,393) \hbox{ini}$(f):=a_s(x_1,...,x_{k-1})$. The pseudo remainder
+math.tex(,394) $r=\hbox{prem}(g,f)$ of $g$ with respect to $f$ is
+math.tex(,395) defined by the equality $\hbox{ini}(f)^a\cdot g = qf+r$ with
+math.tex(,396) $\hbox{deg}_{lvar(f)}(r)<\hbox{deg}_{lvar(f)}(f)$ and $a$
+math.tex(,397) minimal.
+math.tex(,398) 
+math.tex(,399) A set $T=\{f_1,...,f_r\} \subset R$ is called triangular if
+math.tex(,400) $\hbox{lvar}(f_1)<...<\hbox{lvar}(f_r)$. Moreover, let $ U 
\subset T $,
+math.tex(,401) then $(T,U)$ is called a triangular system, if $T$ is a 
triangular set
+math.tex(,402) such that $\hbox{ini}(T)$ does not vanish on $V(T) \setminus 
V(U)
+math.tex(,403) (=:V(T\setminus U))$.
+math.tex(,404) 
+math.tex(,405) $T$ is called irreducible if for every $i$ there are no
+math.tex(,406) $d_i$,$f_i'$,$f_i''$ such that
+math.tex(,407) $$   \hbox{lvar}(d_i)<\hbox{lvar}(f_i) =
+math.tex(,408) \hbox{lvar}(f_i')=\hbox{lvar}(f_i''),$$
+math.tex(,409) $$   0 \not\in \hbox{prem}(\{ d_i, \hbox{ini}(f_i'),
+math.tex(,410) \hbox{ini}(f_i'')\},\{ f_1,...,f_{i-1}\}),$$
+math.tex(,411) $$\hbox{prem}(d_if_i-f_i'f_i'',\{f_1,...,f_{i-1}\})=0.$$
+math.tex(,412) Furthermore, $(T,U)$ is called irreducible if $T$ is 
irreducible.
+math.tex(,413) 
+math.tex(,414) The main result on triangular sets is the following:
+math.tex(,415) let $G=\{g_1,...,g_s\} \subset R$ then there are irreducible 
triangular sets $T_1,...,T_l$
+math.tex(,416) such that $V(G)=\bigcup_{i=1}^{l}(V(T_i\setminus I_i))$
+math.tex(,417) where $I_i=\{\hbox{ini}(f) \mid f \in T_i \}$. Such a set
+math.tex(,418) $\{T_1,...,T_l\}$ is called an {\bf irreducible characteristic 
series} of
+math.tex(,419) the ideal $(G)$.
+math.tex(,420) @end tex
 math.tex(,456) 
 math.tex(,457) @table @code
 math.tex(,458) @item @strong{Example:}
@@ -21775,14 +23348,61 @@
 math.tex(,477) @c tex and info versions of it. It end just before the 
introducing text
 math.tex(,478) @c to the first example.
 math.tex(,479) 
+math.tex(,480) @tex
+math.tex(,481) Let $f\colon(C^{n+1},0)\rightarrow(C,0)$ be a complex isolated 
hypersurface singularity given by a polynomial with algebraic coefficients 
which we also denote by $f$.
+math.tex(,482) Let $O=C[x_0,\ldots,x_n]_{(x_0,\ldots,x_n)}$ be the local ring 
at the origin and $J_f$ the Jacobian ideal of $f$.
+math.tex(,483) 
+math.tex(,484) A {\bf Milnor representative} of $f$ defines a differentiable 
fibre bundle over the punctured disc with fibres of homotopy type of $\mu$ 
$n$-spheres.
+math.tex(,485) The $n$-th cohomology bundle is a flat vector bundle of 
dimension $n$ and carries a natural flat connection with covariant derivative 
$\partial_t$.
+math.tex(,486) The {\bf monodromy operator} is the action of a positively 
oriented generator of the fundamental group of the puctured disc on the Milnor 
fibre.
+math.tex(,487) Sections in the cohomology bundle of {\bf moderate growth} at 
$0$ form a regular $D=C\{t\}[\partial_t]$-module $G$, the {\bf Gauss-Manin 
connection}.
+math.tex(,488) 
+math.tex(,489) By integrating along flat multivalued families of cycles, one 
can consider fibrewise global holomorphic differential forms as elements of $G$.
+math.tex(,490) This factors through an inclusion of the {\bf Brieskorn 
lattice} $H'':=\Omega^{n+1}_{C^{n+1},0}/df\wedge d\Omega^{n-1}_{C^{n+1},0}$ in 
$G$.
+math.tex(,491) 
+math.tex(,492) The $D$-module structure defines the {\bf V-filtration} $V$ on 
$G$ by $V^\alpha:=\sum_{\beta\ge\alpha}C\{t\}ker(t\partial_t-\beta)^{n+1}$.
+math.tex(,493) The Brieskorn lattice defines the {\bf Hodge filtration} $F$ on 
$G$ by $F_k=\partial_t^kH''$ which comes from the {\bf mixed Hodge structure} 
on the Milnor fibre.
+math.tex(,494) Note that $F_{-1}=H'$.
+math.tex(,495) 
+math.tex(,496) The induced V-filtration on the Brieskorn lattice determines 
the {\bf singularity spectrum} $Sp$ by $Sp(\alpha):=\dim_CGr_V^\alpha Gr^F_0G$.
+math.tex(,497) The spectrum consists of $\mu$ rational numbers 
$\alpha_1,\dots,\alpha_\mu$ such that $e^{2\pi i\alpha_1},\dots,e^{2\pi 
i\alpha_\mu}$ are the eigenvalues of the monodromy.
+math.tex(,498) These {\bf spectral numbers} lie in the open interval $(-1,n)$, 
symmetric about the midpoint $(n-1)/2$.
+math.tex(,499) 
+math.tex(,500) The spectrum is constant under $\mu$-constant deformations and 
has the following semicontinuity property:
+math.tex(,501) The number of spectral numbers in an interval $(a,a+1]$ of all 
singularities of a small deformation of $f$ is greater or equal to that of f in 
this interval.
+math.tex(,502) For semiquasihomogeneous singularities, this also holds for 
intervals of the form $(a,a+1)$.
+math.tex(,503) 
+math.tex(,504) Two given isolated singularities $f$ and $g$ determine two 
spectra and from these spectra we get an integer.
+math.tex(,505) This integer is the maximal positive integer $k$ such that the 
semicontinuity holds for the spectrum of $f$ and $k$ times the spectrum of $g$.
+math.tex(,506) These numbers give bounds for the maximal number of isolated 
singularities of a specific type on a hypersurface $X\subset{P}^n$ of degree 
$d$: 
+math.tex(,507) such a hypersurface has a smooth hyperplane section, and the 
complement is a small deformation of a cone over this hyperplane section.
+math.tex(,508) The cone itself being a $\mu$-constant deformation of 
$x_0^d+\dots+x_n^d=0$, the singularities are bounded by the spectrum of 
$x_0^d+\dots+x_n^d$.
+math.tex(,509) 
+math.tex(,510) Using the library {\tt gaussman.lib} one can compute the {\bf 
monodromy}, the V-filtration on $H''/H'$, and the spectrum.
+math.tex(,511) @end tex
 math.tex(,512) 
 math.tex(,545) 
 math.tex(,546) Let us consider as an example 
+math.tex(,550) @tex
+math.tex(,551) $f=x^5+x^2y^2+y^5$
+math.tex(,552) @end tex
 math.tex(,553) .
 math.tex(,554) First, we compute a matrix 
+math.tex(,558) @tex
+math.tex(,559) $M$
+math.tex(,560) @end tex
 math.tex(,561)  such that
+math.tex(,562) @tex
+math.tex(,563) $\exp(2\pi iM)$
+math.tex(,564) @end tex
 math.tex(,568) is a monodromy matrix of 
+math.tex(,572) @tex
+math.tex(,573) $f$
+math.tex(,574) @end tex
 math.tex(,575)  and the Jordan normal form of 
+math.tex(,579) @tex
+math.tex(,580) $M$
+math.tex(,581) @end tex
 math.tex(,582) :
 math.tex(,583) @smallexample
 math.tex(,584) @c reused example Gauss-Manin_connection math.doc:505 
@@ -21807,6 +23427,9 @@
 math.tex(,603) @end smallexample
 math.tex(,604) 
 math.tex(,605) Now, we compute the V-filtration on 
+math.tex(,609) @tex
+math.tex(,610) $H''/H'$
+math.tex(,611) @end tex
 math.tex(,612)  and the spectrum:
 math.tex(,613) @smallexample
 math.tex(,614) @c reused example Gauss-Manin_connection_1 math.doc:517 
@@ -21858,17 +23481,36 @@
 math.tex(,660) @c end example Gauss-Manin_connection_1 math.doc:517
 math.tex(,661) @end smallexample
 math.tex(,662) Here @code{l[1]} contains the spectral numbers, @code{l[2]} the 
corresponding multiplicities, @code{l[3]} a 
+math.tex(,666) @tex
+math.tex(,667) $C$
+math.tex(,668) @end tex
 math.tex(,669) -basis of the V-filtration on 
+math.tex(,673) @tex
+math.tex(,674) $H''/H'$
+math.tex(,675) @end tex
 math.tex(,676)  in terms of the monomial basis of
+math.tex(,677) @tex
+math.tex(,678) $O/J_f\cong H''/H'$
+math.tex(,679) @end tex
 math.tex(,683) in @code{l[4]}.
 math.tex(,684) 
+math.tex(,685) @tex
+math.tex(,686) If the principal part of $f$ is $C$-nondegenerate, one can 
compute the spectrum using the library {\tt spectrum.lib}.
+math.tex(,687) In this case, the V-filtration on $H''$ coincides with the 
Newton-filtration on $H''$ which allows to compute the spectrum more 
efficiently.
+math.tex(,688) @end tex
 math.tex(,689) 
 math.tex(,694) 
 math.tex(,695) Let us calculate one specific example, the maximal number 
 math.tex(,696) of triple points of type
+math.tex(,697) @tex
+math.tex(,698) $\tilde{E}_6$ on a surface $X\subset{P}^3$
+math.tex(,699) @end tex
 math.tex(,703) of degree seven.
 math.tex(,704) This calculation can be done over the rationals.
 math.tex(,705) So choose a local ordering on 
+math.tex(,709) @tex
+math.tex(,710) $Q[x,y,z]$
+math.tex(,711) @end tex
 math.tex(,712) . Here we take the
 math.tex(,713) negative degree lexicographical ordering which is denoted
 math.tex(,714) @code{ds} in @sc{Singular}:
@@ -21903,21 +23545,44 @@
 math.tex(,743) @end smallexample
 math.tex(,744) 
 math.tex(,745) The command @code{spectrumnd(f)} computes the spectrum of 
+math.tex(,749) @tex
+math.tex(,750) $f$
+math.tex(,751) @end tex
 math.tex(,752)  and
 math.tex(,753) returns a list with six entries:
 math.tex(,754) The Milnor number
+math.tex(,755) @tex
+math.tex(,756) $\mu(f)$, the geometric genus $p_g(f)$
+math.tex(,757) @end tex
 math.tex(,761) and the number of different spectrum numbers.
 math.tex(,762) The other three entries are of type @code{intvec}.
 math.tex(,763) They contain the numerators, denominators and
 math.tex(,764) multiplicities of the spectrum numbers. So
+math.tex(,765) @tex
+math.tex(,766) $x^7+y^7+z^7=0$
+math.tex(,767) @end tex
 math.tex(,771) has Milnor number 216 and geometrical
 math.tex(,772) genus 35. Its spectrum consists of the 16 different rationals
 math.tex(,773) @*
+math.tex(,774) @tex
+math.tex(,775) ${3 \over 7}, {4 \over 7}, {5 \over 7}, {6 \over 7}, {1 \over 
1},
+math.tex(,776) {8 \over 7}, {9 \over 7}, {10 \over 7}, {11 \over 7}, {12 \over 
7},
+math.tex(,777) {13 \over 7}, {2 \over 1}, {15 \over 7}, {16 \over 7}, {17 
\over 7},
+math.tex(,778) {18 \over 7}$
+math.tex(,779) @end tex
 math.tex(,784) @*appearing with multiplicities
 math.tex(,785) @*1,3,6,10,15,21,25,27,27,25,21,15,10,6,3,1.
 math.tex(,786) 
+math.tex(,787) @tex
+math.tex(,788) The singularities of type $\tilde{E}_6$ form a
+math.tex(,789) $\mu$-constant one parameter family given by
+math.tex(,790) $x^3+y^3+z^3+\lambda xyz=0,\quad \lambda^3\neq-27$.
+math.tex(,791) @end tex
 math.tex(,797) Therefore they have all the same spectrum, which we compute
 math.tex(,798) for 
+math.tex(,799) @tex
+math.tex(,800) $x^3+y^3+z^3$.
+math.tex(,801) @end tex
 math.tex(,805) 
 math.tex(,806) @smallexample
 math.tex(,807) poly g=x^3+y^3+z^3;
@@ -21943,6 +23608,9 @@
 math.tex(,827) @end smallexample
 math.tex(,828) 
 math.tex(,829) This tells us that there are at most 18 singularities of type
+math.tex(,830) @tex
+math.tex(,831) $\tilde{E}_6$ on a septic in $P^3$. But $x^7+y^7+z^7$
+math.tex(,832) @end tex
 math.tex(,836) is semiquasihomogeneous (sqh), so we can also apply the stronger
 math.tex(,837) form of semicontinuity:
 math.tex(,838) 
@@ -21952,12 +23620,21 @@
 math.tex(,842) @end smallexample
 math.tex(,843) 
 math.tex(,844) So in fact a septic has at most 17 triple points of type
+math.tex(,845) @tex
+math.tex(,846) $\tilde{E}_6$.
+math.tex(,847) @end tex
 math.tex(,851) 
 math.tex(,852) Note that @code{spectrumnd(f)} works only if 
+math.tex(,856) @tex
+math.tex(,857) $f$
+math.tex(,858) @end tex
 math.tex(,859)  has nondegenerate
 math.tex(,860) principal part. In fact @code{spectrumnd} will detect a 
degenerate
 math.tex(,861) principal part in many cases and print out an error message.
 math.tex(,862) However if it is known in advance that 
+math.tex(,866) @tex
+math.tex(,867) $f$
+math.tex(,868) @end tex
 math.tex(,869)  has nondegenerate
 math.tex(,870) principal part, then the spectrum may be computed much faster
 math.tex(,871) using @code{spectrumnd(f,1)}.
@@ -21981,10 +23658,33 @@
 ti_ip.tex(,12) @comment DO NOT EDIT DIRECTLY, BUT EDIT ti_ip.doc INSTEAD
 ti_ip.tex(,13) @cindex ideal, toric
 ti_ip.tex(,14) 
+ti_ip.tex(,15) @tex
+ti_ip.tex(,16) Let $A$ denote an $m\times n$ matrix with integral 
coefficients. For $u
+ti_ip.tex(,17) \in Z\!\!\! Z^n$, we define $u^+,u^-$ to be the uniquely 
determined
+ti_ip.tex(,18) vectors with nonnegative coefficients and disjoint support 
(i.e.,
+ti_ip.tex(,19) $u_i^+=0$ or $u_i^-=0$ for each component $i$) such that
+ti_ip.tex(,20) $u=u^+-u^-$. For $u\geq 0$ component-wise, let $x^u$ denote the 
monomial
+ti_ip.tex(,21) $x_1^{u_1}\cdot\ldots\cdot x_n^{u_n}\in K[x_1,\ldots,x_n]$.
+ti_ip.tex(,22) 
+ti_ip.tex(,23) The ideal
+ti_ip.tex(,24) $$ I_A:=<x^{u^+}-x^{u^-} | u\in\ker(A)\cap Z\!\!\! Z^n>\ \subset
+ti_ip.tex(,25) K[x_1,\ldots,x_n] $$
+ti_ip.tex(,26) is called a \bf toric ideal. \rm
+ti_ip.tex(,27) 
+ti_ip.tex(,28) The first problem in computing toric ideals is to find a finite
+ti_ip.tex(,29) generating set: Let $v_1,\ldots,v_r$ be a lattice basis of 
$\ker(A)\cap
+ti_ip.tex(,30) Z\!\!\! Z^n$ (i.e, a basis of the $Z\!\!\! Z$-module). Then
+ti_ip.tex(,31) $$ I_A:=I:(x_1\cdot\ldots\cdot x_n)^\infty $$
+ti_ip.tex(,32) where
+ti_ip.tex(,33) $$ I=<x^{v_i^+}-x^{v_i^-}|i=1,\ldots,r> $$
+ti_ip.tex(,34) @end tex
 ti_ip.tex(,35) 
 ti_ip.tex(,61) 
 ti_ip.tex(,62) The required lattice basis can be computed using the 
LLL-algorithm (@pxref{[Coh93]}). For the computation of the saturation, there 
are various
 ti_ip.tex(,63) possibilities described in the
+ti_ip.tex(,64) @tex
+ti_ip.tex(,65) section Algorithms.
+ti_ip.tex(,66) @end tex
 ti_ip.tex(,70) 
 ti_ip.tex(,71) @menu
 ti_ip.tex(,72) * Algorithms::             Various algorithms for computing 
toric ideals.
@@ -22012,6 +23712,23 @@
 ti_ip.tex(,94) 
 ti_ip.tex(,95) 
 ti_ip.tex(,96) The algorithm of Conti and Traverso (@pxref{[CoTr91]})
+ti_ip.tex(,97) @tex
+ti_ip.tex(,98) computes $I_A$ via the
+ti_ip.tex(,99) extended matrix $B=(I_m|A)$,
+ti_ip.tex(,100) where $I_m$ is the $m\times m$ unity matrix. A lattice basis 
of $B$ is
+ti_ip.tex(,101) given by the set of vectors $(a^j,-e_j)\in Z\!\!\! Z^{m+n}$, 
where $a^j$
+ti_ip.tex(,102) is the $j$-th row of $A$ and $e_j$ the $j$-th coordinate 
vector. We
+ti_ip.tex(,103) look at the ideal in $K[y_1,\ldots,y_m,x_1,\ldots,x_n]$ 
corresponding to
+ti_ip.tex(,104) these vectors, namely
+ti_ip.tex(,105) $$ I_1=<y^{a_j^+}- x_j y^{a_j^-} | j=1,\ldots, n>.$$
+ti_ip.tex(,106) We introduce a further variable $t$ and adjoin the binomial 
$t\cdot
+ti_ip.tex(,107) y_1\cdot\ldots\cdot y_m -1$ to the generating set of $I_1$, 
obtaining
+ti_ip.tex(,108) an ideal $I_2$ in the polynomial ring $K[t,
+ti_ip.tex(,109) y_1,\ldots,y_m,x_1,\ldots,x_n]$. $I_2$ is saturated w.r.t. all
+ti_ip.tex(,110) variables because all variables are invertible modulo $I_2$. 
Now $I_A$
+ti_ip.tex(,111) can be computed from $I_2$ by eliminating the variables
+ti_ip.tex(,112) $t,y_1,\ldots,y_m$.
+ti_ip.tex(,113) @end tex
 ti_ip.tex(,131) 
 ti_ip.tex(,132) Because of the big number of auxiliary variables needed to 
compute a
 ti_ip.tex(,133) toric ideal, this algorithm is rather slow in practice. 
However, it has
@@ -22026,6 +23743,16 @@
 ti_ip.tex(,142) 
 ti_ip.tex(,143) 
 ti_ip.tex(,144) The algorithm of Pottier (@pxref{[Pot94]}) starts by computing 
a lattice
+ti_ip.tex(,145) @tex
+ti_ip.tex(,146) basis $v_1,\ldots,v_r$ for the integer kernel of $A$ using the
+ti_ip.tex(,147) LLL-algorithm. The ideal corresponding to the lattice basis 
vectors
+ti_ip.tex(,148) $$ I_1=<x^{v_i^+}-x^{v_i^-}|i=1,\ldots,r> $$
+ti_ip.tex(,149) is saturated -- as in the algorithm of Conti and Traverso -- by
+ti_ip.tex(,150) inversion of all variables: One adds an auxiliary variable $t$ 
and the
+ti_ip.tex(,151) generator $t\cdot x_1\cdot\ldots\cdot x_n -1$ to obtain an 
ideal $I_2$
+ti_ip.tex(,152) in $K[t,x_1,\ldots,x_n]$ from which one computes $I_A$ by 
elimination of
+ti_ip.tex(,153) $t$.
+ti_ip.tex(,154) @end tex
 ti_ip.tex(,167) 
 ti_ip.tex(,168) 
 ti_ip.tex(,169) @node Hosten and Sturmfels, Di Biase and Urbanke, Pottier, 
Algorithms
@@ -22036,6 +23763,33 @@
 ti_ip.tex(,174) 
 ti_ip.tex(,175) 
 ti_ip.tex(,176) The algorithm of Hosten and Sturmfels (@pxref{[HoSt95]}) 
allows to
+ti_ip.tex(,177) @tex
+ti_ip.tex(,178) compute $I_A$ without any auxiliary variables, provided that 
$A$ contains a vector $w$
+ti_ip.tex(,179) with positive coefficients in its row space. This is a real 
restriction,
+ti_ip.tex(,180) i.e., the algorithm will not necessarily work in the general 
case.
+ti_ip.tex(,181) 
+ti_ip.tex(,182) A lattice basis $v_1,\ldots,v_r$ is again computed via the
+ti_ip.tex(,183) LLL-algorithm. The saturation step is performed in the 
following way:
+ti_ip.tex(,184) First note that $w$ induces a positive grading w.r.t. which 
the ideal
+ti_ip.tex(,185) $$ I=<x^{v_i^+}-x^{v_i^-}|i=1,\ldots,r> $$
+ti_ip.tex(,186) corresponding to our lattice basis is homogeneous. We use the 
following
+ti_ip.tex(,187) lemma:
+ti_ip.tex(,188) 
+ti_ip.tex(,189) Let $I$ be a homogeneous ideal w.r.t. the weighted reverse
+ti_ip.tex(,190) lexicographical ordering with weight vector $w$ and variable 
order $x_1
+ti_ip.tex(,191) > x_2 > \ldots > x_n$. Let $G$ denote a Groebner basis of $I$ 
w.r.t. to
+ti_ip.tex(,192) this ordering.  Then a Groebner basis of $(I:x_n^\infty)$ is 
obtained by
+ti_ip.tex(,193) dividing each element of $G$ by the highest possible power of 
$x_n$.
+ti_ip.tex(,194) 
+ti_ip.tex(,195) From this fact, we can successively compute
+ti_ip.tex(,196) $$ I_A= I:(x_1\cdot\ldots\cdot x_n)^\infty
+ti_ip.tex(,197) =(((I:x_1^\infty):x_2^\infty):\ldots :x_n^\infty); $$
+ti_ip.tex(,198) in the $i$-th step we take $x_i$ as the cheapest variable and 
apply the
+ti_ip.tex(,199) lemma with $x_i$ instead of $x_n$.
+ti_ip.tex(,200) 
+ti_ip.tex(,201) This procedure involves $n$ Groebner basis computations. 
Actually, this
+ti_ip.tex(,202) number can be reduced to at most $n/2$
+ti_ip.tex(,203) @end tex
 ti_ip.tex(,235) (@pxref{[HoSh98]}), and the single
 ti_ip.tex(,236) computations -- except from the first one -- show to be easy 
and fast in
 ti_ip.tex(,237) practice.
@@ -22048,6 +23802,38 @@
 ti_ip.tex(,244) 
 ti_ip.tex(,245) Like the algorithm of Hosten and Sturmfels, the algorithm of 
Di Biase
 ti_ip.tex(,246) and Urbanke (@pxref{[DBUr95]}) performs up
+ti_ip.tex(,247) @tex
+ti_ip.tex(,248) to $n/2$ Groebner basis
+ti_ip.tex(,249) computations. It needs no auxiliary variables, but a 
supplementary
+ti_ip.tex(,250) precondition; namely, the existence of a vector without zero 
components
+ti_ip.tex(,251) in the kernel of $A$.
+ti_ip.tex(,252) 
+ti_ip.tex(,253) The main idea comes from the following observation:
+ti_ip.tex(,254) 
+ti_ip.tex(,255) Let $B$ be an integer matrix, $u_1,\ldots,u_r$ a lattice basis 
of the
+ti_ip.tex(,256) integer kernel of $B$. Assume that all components of $u_1$ are
+ti_ip.tex(,257) positive. Then
+ti_ip.tex(,258) $$ I_B=<x^{u_i^+}-x^{u_i^-}|i=1,\ldots,r>, $$
+ti_ip.tex(,259) i.e., the ideal on the right is already saturated w.r.t. all 
variables.
+ti_ip.tex(,260) 
+ti_ip.tex(,261) The algorithm starts by finding a lattice basis 
$v_1,\ldots,v_r$ of the
+ti_ip.tex(,262) kernel of $A$ such that $v_1$ has no zero component. Let
+ti_ip.tex(,263) $\{i_1,\ldots,i_l\}$ be the set of indices $i$ with
+ti_ip.tex(,264) $v_{1,i}<0$. Multiplying the components $i_1,\ldots,i_l$ of
+ti_ip.tex(,265) $v_1,\ldots,v_r$ and the columns $i_1,\ldots,i_l$ of $A$ by 
$-1$ yields
+ti_ip.tex(,266) a matrix $B$ and a lattice basis $u_1,\ldots,u_r$ of the 
kernel of $B$
+ti_ip.tex(,267) that fulfill the assumption of the observation above. We are 
then able
+ti_ip.tex(,268) to compute a generating set of $I_A$ by applying the following
+ti_ip.tex(,269) ``variable flip'' successively to $i=i_1,\ldots,i_l$:
+ti_ip.tex(,270) 
+ti_ip.tex(,271) Let $>$ be an elimination ordering for $x_i$. Let $A_i$ be the 
matrix
+ti_ip.tex(,272) obtained by multiplying the $i$-th column of $A$ with $-1$. Let
+ti_ip.tex(,273) $$\{x_i^{r_j} x^{a_j} - x^{b_j} | j\in J \}$$
+ti_ip.tex(,274) be a Groebner basis of $I_{A_i}$ w.r.t. $>$ (where $x_i$ is 
neither
+ti_ip.tex(,275) involved in $x^{a_j}$ nor in $x^{b_j}$). Then
+ti_ip.tex(,276) $$\{x^{a_j} - x_i^{r_j} x^{b_j} | j\in J \}$$
+ti_ip.tex(,277) is a generating set for $I_A$.
+ti_ip.tex(,278) @end tex
 ti_ip.tex(,316) 
 ti_ip.tex(,317) @node Bigatti and La Scala and Robbiano, , Di Biase and 
Urbanke, Algorithms
 ti_ip.tex(,318) 
@@ -22058,6 +23844,12 @@
 ti_ip.tex(,323) The algorithm of Bigatti, La Scala and Robbiano 
(@pxref{[BLR98]}) combines the ideas of
 ti_ip.tex(,324) the algorithms of Pottier and of Hosten and Sturmfels. The
 ti_ip.tex(,325) computations are performed on a graded ideal with one auxiliary
+ti_ip.tex(,326) @tex
+ti_ip.tex(,327) variable $u$ and one supplementary generator 
$x_1\cdot\ldots\cdot x_n -
+ti_ip.tex(,328) u$ (instead of the generator $t\cdot x_1\cdot\ldots\cdot x_n 
-1$ in
+ti_ip.tex(,329) the algorithm of Pottier). The algorithm uses a quite unusual 
technique to
+ti_ip.tex(,330) get rid of the variable $u$ again.
+ti_ip.tex(,331) @end tex
 ti_ip.tex(,338) 
 ti_ip.tex(,339) There is another algorithm of the authors which tries to 
parallelize
 ti_ip.tex(,340) the computations (but which is not implemented in this 
library).
@@ -22082,6 +23874,25 @@
 ti_ip.tex(,359) @subsection Integer programming
 ti_ip.tex(,360) @cindex integer programming
 ti_ip.tex(,361) 
+ti_ip.tex(,362) @tex
+ti_ip.tex(,363) Let $A$ be an $m\times n$ matrix with integral coefficients, 
$b\in
+ti_ip.tex(,364) Z\!\!\! Z^m$ and $c\in Z\!\!\! Z^n$. The problem
+ti_ip.tex(,365) $$ \min\{c^T x | x\in Z\!\!\! Z^n, Ax=b, x\geq 0\hbox{
+ti_ip.tex(,366) component-wise}\} $$
+ti_ip.tex(,367) is called an instance of the \bf integer programming problem 
\rm or
+ti_ip.tex(,368) \bf IP problem. \rm
+ti_ip.tex(,369) 
+ti_ip.tex(,370) The IP problem is very hard; namely, it is NP-complete.
+ti_ip.tex(,371) 
+ti_ip.tex(,372) For the following discussion let $c\geq 0$ (component-wise). We
+ti_ip.tex(,373) consider $c$ as a weight vector; because of its 
non-negativity, $c$ can
+ti_ip.tex(,374) be refined into a monomial ordering $>_c$. It turns out that 
we can
+ti_ip.tex(,375) solve such an IP instance with the help of toric ideals:
+ti_ip.tex(,376) 
+ti_ip.tex(,377) First we assume that an initial solution $v$ (i.e., $v\in 
Z\!\!\!
+ti_ip.tex(,378) Z^n, v\geq 0, Av=b$) is already known. We obtain the optimal 
solution
+ti_ip.tex(,379) $v_0$ (i.e., with $c^T v_0$ minimal) by the following 
procedure:
+ti_ip.tex(,380) @end tex
 ti_ip.tex(,381) @c \begin{itemize}
 ti_ip.tex(,382) @c \item (1) Compute the toric ideal $I_A$ using one of the 
algorithms in the
 ti_ip.tex(,383) @c       previous section.
@@ -22096,11 +23907,23 @@
 ti_ip.tex(,412) @itemize @bullet
 ti_ip.tex(,413) @item (1) Compute the toric ideal I(A) using one of the 
algorithms in the previous section.
 ti_ip.tex(,414) @item (2) Compute the reduced Groebner basis G(c) of I(A) 
w.r.t.@: 
+ti_ip.tex(,418) @tex
+ti_ip.tex(,419) $>_c$
+ti_ip.tex(,420) @end tex
 ti_ip.tex(,421) .
 ti_ip.tex(,422) @item (3) Reduce 
+ti_ip.tex(,426) @tex
+ti_ip.tex(,427) $x^v$
+ti_ip.tex(,428) @end tex
 ti_ip.tex(,429)  modulo G(c) using the Hironaka division algorithm.
 ti_ip.tex(,430) If the result of this reduction is 
+ti_ip.tex(,434) @tex
+ti_ip.tex(,435) $x^(v_0)$
+ti_ip.tex(,436) @end tex
 ti_ip.tex(,437) , then 
+ti_ip.tex(,441) @tex
+ti_ip.tex(,442) $v_0$
+ti_ip.tex(,443) @end tex
 ti_ip.tex(,444)  is an optimal
 ti_ip.tex(,445) solution of the given instance.
 ti_ip.tex(,446) @end itemize
@@ -22120,6 +23943,9 @@
 ti_ip.tex(,460) methods seem to be faster in general than the methods using 
toric
 ti_ip.tex(,461) ideals. But the latter have one great advantage: If one wants 
to solve
 ti_ip.tex(,462) various instances that differ only by the vector 
+ti_ip.tex(,466) @tex
+ti_ip.tex(,467) $b$
+ti_ip.tex(,468) @end tex
 ti_ip.tex(,469) , one has to
 ti_ip.tex(,470) perform steps (1) and (2) above only once. As the running time 
of step (3)
 ti_ip.tex(,471) is very short, solving all the instances is not much harder 
than
@@ -22262,6 +24088,9 @@
 math.tex(,959) Symbolic Computation
 math.tex(,960) 
 math.tex(,961) @item
+math.tex(,962) @tex
+math.tex(,963) Faug\`ere,
+math.tex(,964) @end tex
 math.tex(,968) J. C.; Gianni, P.; Lazard, D.; Mora, T.: Efficient computation
 math.tex(,969) of zero-dimensional
 math.tex(,970) Gr@"obner bases by change of ordering. Journal of Symbolic 
Computation, 1989
@@ -47812,6 +49641,9 @@
 brnoeth_lib.tex(,685) 
 brnoeth_lib.tex(,686) @item @strong{Warnings:}
 brnoeth_lib.tex(,687) G should satisfy 
+brnoeth_lib.tex(,691) @tex
+brnoeth_lib.tex(,692) $ 2*genus-2 < deg(G) < size(D) $
+brnoeth_lib.tex(,693) @end tex
 brnoeth_lib.tex(,694) , which is
 brnoeth_lib.tex(,695) not checked by the algorithm.
 brnoeth_lib.tex(,696) @*G and D should have disjoint supports (checked by the 
algorithm).
@@ -47876,10 +49708,16 @@
 brnoeth_lib.tex(,771) for more details)address@hidden
 brnoeth_lib.tex(,772) The code computes the residues of a vector space basis of
 brnoeth_lib.tex(,773) 
+brnoeth_lib.tex(,777) @tex
+brnoeth_lib.tex(,778) $\Omega(G-D)$
+brnoeth_lib.tex(,779) @end tex
 brnoeth_lib.tex(,780)  at the rational places given by D.
 brnoeth_lib.tex(,781) 
 brnoeth_lib.tex(,782) @item @strong{Warnings:}
 brnoeth_lib.tex(,783) G should satisfy 
+brnoeth_lib.tex(,787) @tex
+brnoeth_lib.tex(,788) $ 2*genus-2 < deg(G) < size(D) $
+brnoeth_lib.tex(,789) @end tex
 brnoeth_lib.tex(,790) , which is
 brnoeth_lib.tex(,791) not checked by the algorithm.
 brnoeth_lib.tex(,792) @*G and D should have disjoint supports (checked by the 
algorithm).
@@ -47936,8 +49774,14 @@
 brnoeth_lib.tex(,859)    E[2] ... E[n+2]:  matrices used in the procedure 
decodeSV
 brnoeth_lib.tex(,860)    E[n+3]:  intvec with
 brnoeth_lib.tex(,861)        E[n+3][1]: correction capacity 
+brnoeth_lib.tex(,865) @tex
+brnoeth_lib.tex(,866) $epsilon$
+brnoeth_lib.tex(,867) @end tex
 brnoeth_lib.tex(,868)  of the algorithm
 brnoeth_lib.tex(,869)        E[n+3][2]: designed Goppa distance 
+brnoeth_lib.tex(,873) @tex
+brnoeth_lib.tex(,874) $delta$
+brnoeth_lib.tex(,875) @end tex
 brnoeth_lib.tex(,876)  of the current AG code
 brnoeth_lib.tex(,877)    @end format
 brnoeth_lib.tex(,878) 
@@ -47953,6 +49797,9 @@
 brnoeth_lib.tex(,888) The current AG code is 
@code{AGcode_Omega(G,D,EC)address@hidden
 brnoeth_lib.tex(,889) If you know the exact minimum distance d and you want to 
use it in
 brnoeth_lib.tex(,890) @code{decodeSV} instead of 
+brnoeth_lib.tex(,894) @tex
+brnoeth_lib.tex(,895) $delta$
+brnoeth_lib.tex(,896) @end tex
 brnoeth_lib.tex(,897) , you can change the value
 brnoeth_lib.tex(,898) of E[n+3][2] to d before applying decodeSV.
 brnoeth_lib.tex(,899) @*If you have a systematic encoding for the current code 
and want to
@@ -47963,10 +49810,19 @@
 brnoeth_lib.tex(,904) @item @strong{Warnings:}
 brnoeth_lib.tex(,905) F must be a divisor with support disjoint from the 
support of D and
 brnoeth_lib.tex(,906) with degree 
+brnoeth_lib.tex(,910) @tex
+brnoeth_lib.tex(,911) $epsilon + genus$
+brnoeth_lib.tex(,912) @end tex
 brnoeth_lib.tex(,913) , where
 brnoeth_lib.tex(,914) 
+brnoeth_lib.tex(,918) @tex
+brnoeth_lib.tex(,919) $epsilon:=[(deg(G)-3*genus+1)/2]$
+brnoeth_lib.tex(,920) @end tex
 brnoeth_lib.tex(,921) address@hidden
 brnoeth_lib.tex(,922) G should satisfy 
+brnoeth_lib.tex(,926) @tex
+brnoeth_lib.tex(,927) $ 2*genus-2 < deg(G) < size(D) $
+brnoeth_lib.tex(,928) @end tex
 brnoeth_lib.tex(,929) , which is
 brnoeth_lib.tex(,930) not checked by the algorithm.
 brnoeth_lib.tex(,931) @*G and D should also have disjoint supports (checked by 
the

Index: test/singular_manual/res/texi_singular/singular.texi
===================================================================
RCS file: 
/cvsroot/texi2html/texi2html/test/singular_manual/res/texi_singular/singular.texi,v
retrieving revision 1.2
retrieving revision 1.3
diff -u -b -r1.2 -r1.3
--- test/singular_manual/res/texi_singular/singular.texi        19 Aug 2008 
16:53:01 -0000      1.2
+++ test/singular_manual/res/texi_singular/singular.texi        9 Jan 2009 
21:20:59 -0000       1.3
@@ -333,6 +333,9 @@
 @sc{Singular}'s development started in 1984 with an implementation of
 Mora's Tangent Cone algorithm in Modula-2 on an Atari computer (K.P.
 Neuendorf, G. Pfister,
address@hidden
+H.\ Sch\"onemann; Humboldt-Universit\"at
address@hidden tex
  zu Berlin).  The need for a new system arose from the investigation of
 mathematical problems coming from singularity theory which none of the
 existing systems was able to compute.
@@ -575,6 +578,9 @@
 @noindent This shows the text of @ref{intmat}, in the printed manual.
 
 Next, we define a
address@hidden
+$3 \times 3$
address@hidden tex
  matrix of integers and initialize it with some values, row by row
 from left to right:
 
@@ -651,6 +657,9 @@
 ring variables, and the third part determines the monomial ordering to
 be used. So the example above declares a polynomial ring called @code{r}
 with a ground field of characteristic 
address@hidden
+$0$
address@hidden tex
  (i.e., the rational
 numbers) and ring variables called @code{x}, @code{y}, and @code{z}. The
 @code{dp} at the end means that the degree reverse lexicographical
@@ -673,7 +682,13 @@
 
 @item ring r4=(0,a),(mu,nu),lp;
 transcendental extension of 
address@hidden
+$Q$
address@hidden tex
  by 
address@hidden
+$a$
address@hidden tex
 , variable names
 @code{mu} and @code{nu}.
 
@@ -702,6 +717,9 @@
 @c
 Typing the name of a ring prints its definition. The example below
 shows that the default ring in @sc{Singular} is 
address@hidden
+$Z/32003[x,y,z]$
address@hidden tex
 
 with degree reverse lexicographical ordering:
 
@@ -731,6 +749,9 @@
 @end smallexample
 
 Once a ring is active, we can define polynomials. A monomial, say
address@hidden
+$x^3$
address@hidden tex
 may be entered in two ways: either using the power operator @code{^},
 saying @code{x^3}, or in short-hand notation without operator, saying
 @code{x3}. Note that the short-hand notation is forbidden if the name
@@ -849,6 +870,9 @@
 @end smallexample
 
 @noindent gives the desired vector space dimension
address@hidden
+$K[x,y,z]/\hbox{\rm jacob}(f)$.
address@hidden tex
 As in @sc{Singular} the functions may take the input directly from
 earlier calculations, the whole sequence of commands may be written
 in one single statement.
@@ -1022,6 +1046,9 @@
 
 This shows that @code{f} has outside the origin in affine 3-space
 singularities with local Milnor number adding up to
address@hidden
+$12-4=8$.
address@hidden tex
 Using global and local orderings as above is a convenient way to check
 whether a variety has singularities outside the origin.
 
@@ -1068,6 +1095,9 @@
 The algorithm of the standard basis computations may be
 affected by the command @code{option}. For example, a reduced standard
 basis of the ideal generated by the
address@hidden
+$1 \times 1$-minors
address@hidden tex
  of H  is obtained in the following way:
 @smallexample
 option(redSB);
@@ -1076,6 +1106,9 @@
 @end smallexample
 
 This shows that 1 is contained in the ideal of the
address@hidden
+$1 \times 1$-minors,
address@hidden tex
 hence the corresponding variety is empty.
 @c Coming back to some mathematical considerations, we study the problem how
 @c to calculate some ....
@@ -1131,13 +1164,22 @@
 @end smallexample
 
 However the submodule 
address@hidden
+$MD$
address@hidden tex
  may also be considered as the module
 of relations of the factor module
address@hidden
+$r^3/MD$.
address@hidden tex
 In this way, @sc{Singular} can treat arbitrary finitely generated modules
 over the
 basering (@pxref{Representation of mathematical objects}).
 
 In order to get the module of relations of 
address@hidden
+$MD$
address@hidden tex
 ,
 we use the command @code{syz}.
 
@@ -1148,15 +1190,30 @@
 
 We want to calculate, as an application, the annihilator of a given module.
 Let
address@hidden
+$M = r^3/U$,
address@hidden tex
 where U is our defining module of relations for the module
address@hidden
+$M$.
address@hidden tex
 
 @smallexample
 module U = [z3,xy2,x3],[yz2,1,xy5z+z3],[y2z,0,x3],[xyz+x2,y2,0],[xyz,x2y,1];
 @end smallexample
 
 Then, by definition, the annihilator of M is the ideal
address@hidden
+$\hbox{ann}(M) = \{a \mid aM = 0 \}$
address@hidden tex
 which is by the description of M the same as
address@hidden
+$\{ a \mid ar^3 \in U \}$.
address@hidden tex
 Hence we have to calculate the quotient
address@hidden
+$U \colon r^3 $.
address@hidden tex
 The rank of the free module is determined by the choice of U and is the
 number of rows of the corresponding matrix. This may be determined by
 the function @code{nrows}. All we have to do now is the following:
@@ -1176,7 +1233,13 @@
 The most general command is @code{res(... ,n)} which determines heuristically
 what method to use for the given problem. It computes the free resolution
 up to the length 
address@hidden
+$n$
address@hidden tex
 , where 
address@hidden
+$n=0$
address@hidden tex
  corresponds to the full resolution.
 
 Here we use the possibility to inspect the calculation process using the
@@ -1248,7 +1311,13 @@
 
 In this case, the output is to be interpreted as follows: the 3rd syzygy
 module of R/I, @code{rs[3]}, is the rank-2-submodule of
address@hidden
+$R^5$
address@hidden tex
 generated by the vectors
address@hidden
+$(z^3,0,-y+4z,x+2z,0)$ and $(-xyz-y^2z-4xz^2+16z^3,-y^2,48z,48z,x+y-z)$.
address@hidden tex
 
 @c ----------------------------------------------------------------------------
 @node General concepts, Data types, Introduction, Top
@@ -2663,16 +2732,37 @@
 @enumerate
 @item
 the field of rational numbers 
address@hidden
+$Q$
address@hidden tex
 ,
 @item
address@hidden
address@hidden
+finite fields $Z/p$, $p$ a prime $\le 2147483629$,
address@hidden tex
address@hidden
address@hidden
+finite fields $\hbox{GF}(p^n)$ with $p^n$ elements, $p$ a prime, $p^n \le 
2^{15}$,
address@hidden tex
 @item
 transcendental extension of 
address@hidden
+$Q$
address@hidden tex
  or 
address@hidden
+$Z/p$
address@hidden tex
 ,
 @item
 simple algebraic extension of 
address@hidden
+$Q$
address@hidden tex
  or 
address@hidden
+$Z/p$
address@hidden tex
 ,
 @item
 the field of real numbers represented by floating point
@@ -2723,6 +2813,9 @@
 @itemize @bullet
 @item
 the ring 
address@hidden
+$Z/32003[x,y,z]$
address@hidden tex
  with degree reverse lexicographical
 ordering.  The exact ring declaration may be omitted in the first
 example since this is the default ring:
@@ -2734,6 +2827,9 @@
 
 @item
 the ring 
address@hidden
+$Q[a,b,c,d]$
address@hidden tex
  with lexicographical ordering:
 
 @smallexample
@@ -2742,6 +2838,9 @@
 
 @item
 the ring 
address@hidden
+$Z/7[x,y,z]$
address@hidden tex
  with local degree reverse lexicographical
 ordering.  The non-prime 10 is converted to the next lower prime in the
 second example:
@@ -2753,8 +2852,17 @@
 
 @item
 the ring
address@hidden
+$Z/7[x_1,\ldots,x_6]$
address@hidden tex
 with lexicographical ordering for
address@hidden
+$x_1,x_2,x_3$
address@hidden tex
 and degree reverse lexicographical ordering for
address@hidden
+$x_4,x_5,x_6$:
address@hidden tex
 
 @smallexample
 ring r = 7,(x(1..6)),(lp(3),dp);
@@ -2762,8 +2870,14 @@
 
 @item
 the localization of 
address@hidden
+$(Q[a,b,c])[x,y,z]$
address@hidden tex
  at the maximal ideal
 
address@hidden
+$(x,y,z)$
address@hidden tex
 :
 
 @smallexample
@@ -2772,10 +2886,22 @@
 
 @item
 the ring 
address@hidden
+$Q[x,y,z]$
address@hidden tex
  with weighted reverse lexicographical ordering.
 The variables 
address@hidden
+$x$
address@hidden tex
 , 
address@hidden
+$y$
address@hidden tex
 , and 
address@hidden
+$z$
address@hidden tex
  have the weights 2, 1,
 and 3, respectively, and  vectors are first ordered by components (in
 descending order) and then by monomials:
@@ -2787,12 +2913,30 @@
 
 @item
 the ring 
address@hidden
+$K[x,y,z]$
address@hidden tex
 , where 
address@hidden
+$K=Z/7(a,b,c)$
address@hidden tex
  denotes the transcendental
 extension of 
address@hidden
+$Z/7$
address@hidden tex
  by 
address@hidden
+$a$
address@hidden tex
 , 
address@hidden
+$b$
address@hidden tex
  and 
address@hidden
+$c$
address@hidden tex
  with degree
 lexicographical ordering:
 
@@ -2802,19 +2946,49 @@
 
 @item
 the ring 
address@hidden
+$K[x,y,z]$
address@hidden tex
 , where 
address@hidden
+$K=Z/7[a]$
address@hidden tex
  denotes the algebraic extension of
 degree 2 of 
address@hidden
+$Z/7$
address@hidden tex
  by 
address@hidden
+$a.$
address@hidden tex
  In other words, 
address@hidden
+$K$
address@hidden tex
  is the finite field with
 49 elements.  In the first case, 
address@hidden
+$a$
address@hidden tex
  denotes an algebraic
 element over 
address@hidden
+$Z/7$
address@hidden tex
  with minimal polynomial
address@hidden
+$\mu_a=a^2+a+3$,
address@hidden tex
 in the second case, 
address@hidden
+$a$
address@hidden tex
 
 refers to some generator of the cyclic group of units of 
address@hidden
+$K$
address@hidden tex
 :
 
 @smallexample
@@ -2824,7 +2998,13 @@
 
 @item
 the ring 
address@hidden
+$R[x,y,z]$
address@hidden tex
 , where 
address@hidden
+$R$
address@hidden tex
  denotes the field of real
 numbers represented by simple precision floating point numbers. This is
 a special case:
@@ -2835,7 +3015,13 @@
 
 @item
 the ring 
address@hidden
+$R[x,y,z]$
address@hidden tex
 , where 
address@hidden
+$R$
address@hidden tex
  denotes the field of real
 numbers represented by floating point numbers of 50 valid decimal digits
 and the same number of digits for the rest:
@@ -2846,7 +3032,13 @@
 
 @item
 the ring 
address@hidden
+$R[x,y,z]$
address@hidden tex
 , where 
address@hidden
+$R$
address@hidden tex
  denotes the field of real
 numbers represented by floating point numbers of 10 valid decimal digits
 and with 50 digits for the rest:
@@ -2857,10 +3049,19 @@
 
 @item
 the ring 
address@hidden
+$R(j)[x,y,z]$
address@hidden tex
 , where 
address@hidden
+$R$
address@hidden tex
  denotes the field of real
 numbers represented by floating point numbers of 30 valid decimal digits
 and the same number for the rest. 
address@hidden
+$j$
address@hidden tex
  denotes the imaginary unit.
 
 @smallexample
@@ -2869,10 +3070,19 @@
 
 @item
 the ring 
address@hidden
+$R(i)[x,y,z]$
address@hidden tex
 , where 
address@hidden
+$R$
address@hidden tex
  denotes the field of real
 numbers represented by floating point numbers of 6 valid decimal digits
 and the same number for the rest. 
address@hidden
+$i$
address@hidden tex
  is the default for the imaginary unit.
 
 @smallexample
@@ -2881,8 +3091,14 @@
 
 @item
 the quotient ring 
address@hidden
+$Z/7[x,y,z]$
address@hidden tex
  modulo the square of the maximal
 ideal 
address@hidden
+$(x,y,z)$
address@hidden tex
 :
 
 @smallexample
@@ -2935,7 +3151,13 @@
 an expression_list of an int_expression and a name.
 @* The int_expression has to be a prime number p to the power of a
 positive integer n. This defines the Galois field
address@hidden
+$\hbox{GF}(p^n)$ with $p^n$ elements, where $p^n$ has to be smaller or equal 
$2^{15}$.
address@hidden tex
 The given name refers to a primitive element of
address@hidden
+$\hbox{GF}(p^n)$
address@hidden tex
 generating the multiplicative group.  Due to a different internal
 representation, the arithmetic operations in these coefficient fields
 are faster than arithmetic operations in algebraic extensions as
@@ -3061,7 +3283,13 @@
 
 @strong{Remark:} The novice user should generally use the ordering
 @code{dp} for computations in the polynomial ring
address@hidden
+$K[x_1,\ldots,x_n]$,
address@hidden tex
 resp.@:  @code{ds} for computations in the localization
address@hidden
+$\hbox{Loc}_{(x)}K[x_1,\ldots,x_n])$.
address@hidden tex
 For more details, see @ref{Polynomial data}.
 
 In a ring declaration, @sc{Singular} offers the following orderings:
@@ -3087,8 +3315,14 @@
 @end table
 
 Global orderings are well-orderings, i.e., 
address@hidden
+$1 < x$
address@hidden tex
  for each ring
 variable 
address@hidden
+$x$
address@hidden tex
 . They are denoted by a @code{p} as the second
 character in their name.
 
@@ -3981,6 +4215,9 @@
 by the size of expression.
 @* But @code{matrix(} expression @code{,} m @code{,} n @code{)} may also be
 used - the result is a
address@hidden
+$ m \times n $
address@hidden tex
 matrix (@pxref{matrix type cast})
 @item
 @    @tab  @code{module} @tab expression lists of @code{int}, @code{number},
@@ -4294,11 +4531,17 @@
 @*["help_text"]
 @address@hidden@{}
 @*
address@hidden
+\quad
address@hidden tex
    procedure_body
 @address@hidden@}}
 @address@hidden
 @address@hidden@{}
 @*
address@hidden
+\quad
address@hidden tex
    sequence_of_commands;
 @address@hidden@}}]
 @item Purpose:
@@ -5130,6 +5373,9 @@
 @code{@@address@hidden@}}
 @address@hidden
 @*
address@hidden
+$\alpha$
address@hidden tex
 
 @item Note:
 Mathematical expressions inside @code{@@address@hidden@}} may
@@ -5229,6 +5475,9 @@
 @address@hidden
 @*Among others, within a texinfo environment one can use the tex environment
 to typeset more complex mathematical like
address@hidden
+$ i_{1,1} $
address@hidden tex
 @end table
 
 @end table
@@ -5523,12 +5772,18 @@
 
 @item @strong{Return:}
 int: 
address@hidden
+$i+i+i$
address@hidden tex
 
 @item @strong{Note:}
 Help is in pure Texinfo
 @*This help string is written in texinfo, which enables you to use,
 among others, the @@math command for mathematical typesetting (like
 
address@hidden
+$\alpha, \beta$
address@hidden tex
 ).
 @*It also gives more control over the layout, but is, admittingly,
 more cumbersome to write.
@@ -5569,6 +5824,9 @@
 @* Use a @@ref constructs for references (like @pxref{mtripple})
 @* Use @@code for typewriter font (like @code{i_1})
 @* Use @@math for simple math mode typesetting (like 
address@hidden
+$i_1$
address@hidden tex
 ).
 @* Note: No parenthesis like @} are allowed inside @@math and @@code
 @* Use @@example for indented preformatted text typeset in typewriter
@@ -5583,6 +5841,9 @@
 Use @@texinfo for text in pure texinfo
 
 @expansion{}
address@hidden
+$i_{1,1}$
address@hidden tex
 
 
 Notice that
@@ -6232,6 +6493,9 @@
 set of minors of a matrix (see @ref{minor})
 @item modulo
 represents
address@hidden
+$(h1+h2)/h1 \cong h2/(h1 \cap h2)$
address@hidden tex
 (see @ref{modulo})
 @item mres
 minimal free resolution of an ideal resp.@: module w.r.t. a minimal set of 
generators of the given ideal resp.@: module
@@ -7983,25 +8247,62 @@
 Canonically realized are
 @itemize @bullet
 @item
address@hidden
+$Q \rightarrow  Q(a, \ldots)$
address@hidden tex
 
 @item
address@hidden
+$Q \rightarrow R$
address@hidden tex
 
 @item
address@hidden
+$Q \rightarrow  C$
address@hidden tex
 
 @item
address@hidden
+$Z/p \rightarrow  (Z/p)(a, \ldots)$
address@hidden tex
 
 @item
address@hidden
+$Z/p \rightarrow  GF(p^n)$
address@hidden tex
 
 @item
address@hidden
+$Z/p \rightarrow  R$
address@hidden tex
 
 @item
address@hidden
+$R \rightarrow C$
address@hidden tex
 @end itemize
 
 Possible are furthermore
 @itemize @bullet
 @item
address@hidden
address@hidden
address@hidden
+% This is quite a hack, but for now it works.
+$Z/p \rightarrow Q,
+\quad
+[i]_p \mapsto i \in [-p/2, \, p/2]
+\subseteq Z$
address@hidden tex
address@hidden
address@hidden
+$Z/p \rightarrow Z/p^\prime,
+\quad
+[i]_p \mapsto i \in [-p/2, \, p/2] \subseteq Z, \;
+i \mapsto [i]_{p^\prime} \in Z/p^\prime$
address@hidden tex
address@hidden
address@hidden
+$C \rightarrow R, \quad$ the real part
address@hidden tex
 @end itemize
 
 Finally, in Singular we allow the mapping from rings
@@ -8010,8 +8311,14 @@
 
 @itemize @bullet
 @item
address@hidden
+$Q \rightarrow Z/p$
address@hidden tex
 
 @item
address@hidden
+$Q \rightarrow (Z/p)(a, \ldots)$
address@hidden tex
 @end itemize
 In these cases the denominator and the numerator
 of a number are mapped separately by the usual
@@ -8455,18 +8762,45 @@
 Like vectors they
 can only be defined or accessed with respect to a basering.
 If 
address@hidden
+$M$
address@hidden tex
  is a submodule of
-
address@hidden
+$R^n$,
address@hidden tex
+
address@hidden
+$R$
address@hidden tex
  the basering, generated by vectors
address@hidden
+$v_1, \ldots, v_k$, then $v_1, \ldots, v_k$
address@hidden tex
 may be considered as the generators of relations of
address@hidden
+$R^n/M$
address@hidden tex
 between the canonical generators @code{gen(1)},@dots{},@code{gen(n)}.
 Hence any finitely generated 
address@hidden
+$R$
address@hidden tex
 -module can be represented in @sc{Singular}
 by its module of relations. The assignments
 @code{module M=v1,...,vk; matrix A=M;}
 create the presentation matrix of size
address@hidden
+n$\times$k
address@hidden tex
  for
address@hidden
+R$^n$/M,
address@hidden tex
 i.e., the columns of A are the vectors
address@hidden
+$v_1, \ldots, v_k$
address@hidden tex
 which generate M (cf. @ref{Representation of mathematical objects}).
 
 @menu
@@ -8621,6 +8955,9 @@
 over a local ring
 @item modulo
 represents
address@hidden
+$(h1+h2)/h1=h2/(h1 \cap h2)$
address@hidden tex
 (see @ref{modulo})
 @item mres
 minimal free resolution of an ideal resp.@: module w.r.t. a minimal set of 
generators of the given module
@@ -9230,11 +9567,17 @@
 @*["help_text"]
 @address@hidden@{}
 @*
address@hidden
+\quad
address@hidden tex
    procedure_body
 @address@hidden@}}
 @address@hidden
 @address@hidden@{}
 @*
address@hidden
+\quad
address@hidden tex
    sequence_of_commands;
 @address@hidden@}}]
 @address@hidden proc_name @code{=} proc_name @code{;}
@@ -9549,31 +9892,82 @@
 @table @asis
 @item @code{+}
 construct a new ring 
address@hidden
+$k[X,Y]$
address@hidden tex
  from 
address@hidden
+$k_1[X]$
address@hidden tex
   and 
address@hidden
+$k_2[Y]$
address@hidden tex
 .
 @end table
 
 Concerning the ground fields 
address@hidden
+$k_1$
address@hidden tex
  and 
address@hidden
+$k_2$
address@hidden tex
  take the
 following guide lines into consideration:
 @itemize @bullet
 @item Neither 
address@hidden
+$k_1$
address@hidden tex
  nor 
address@hidden
+$k_2$
address@hidden tex
  may be 
address@hidden
+$R$
address@hidden tex
  or 
address@hidden
+$C$
address@hidden tex
 .
 @item If the characteristic of 
address@hidden
+$k_1$
address@hidden tex
  and 
address@hidden
+$k_2$
address@hidden tex
  differs, then one of them must be 
address@hidden
+$Q$
address@hidden tex
 .
 @item At most one of 
address@hidden
+$k_1$
address@hidden tex
  and 
address@hidden
+$k_2$
address@hidden tex
  may be have parameters.
 @item If one of 
address@hidden
+$k_1$
address@hidden tex
  and 
address@hidden
+$k_2$
address@hidden tex
  is an algebraic extension of 
address@hidden
+$Z/p$
address@hidden tex
  it may not be defined by a @code{charstr} of type @code{(p^n,a)}.
 @end itemize
 
@@ -10469,6 +10863,18 @@
 intmat
 @item @strong{Purpose:}
 with 1 argument: computes the graded Betti numbers of a minimal resolution of
address@hidden
+$R^n/M$, if $R$ denotes the basering and
+$M$ a homogeneous submodule of $R^n$ and the argument represents a
+resolution of
+$R^n/M$.
address@hidden tex
address@hidden
+The entry d of the intmat at place (i,j) is the minimal number of
+generators in degree i+j of the j-th syzygy module (= module of
+relations) of $R^n/M$ (the 0th (resp.\ 1st) syzygy module of $R^n/M$ is
+$R^n$ (resp.\ $M$)).
address@hidden tex
 The argument is considered to be the result of a res/sres/mres/nres/lres
 command. This implies that a zero is only allowed (and counted) as a
 generator in the first module.
@@ -10536,6 +10942,15 @@
 where the generators are the columns of the
 displayed matrix and degrees are assigned such that the corresponding maps
 have degree 0:
address@hidden
+$$
+0 \longleftarrow r/j \longleftarrow r(1)
+\buildrel{T[1]}\over{\longleftarrow} r(2) \oplus r^3(3)
+\buildrel{T[2]}\over{\longleftarrow} r^4(4)
+\buildrel{T[3]}\over{\longleftarrow} r(5)
+\longleftarrow 0 \quad .
+$$
address@hidden tex
 
 @c inserted refs from reference.doc:455
 @c end inserted refs from reference.doc:455
@@ -10849,12 +11264,28 @@
 @end format
 If J is a vector or a module this procedure is repeated for each
 component and the resulting matrices are address@hidden
address@hidden
+The third argument is used to return the matrix T of coefficients
+such that {\tt matrix}(J) = T*M.
address@hidden tex
 @item @strong{Note:}
 @code{coeffs} returns the coefficient 0 at the appropriate place if a monomial
 is not present, while @code{coef} considers only monomials which really occur
 in the given expression. @*
 If
address@hidden
+$M=(m_{ij})$
address@hidden tex
 then the j-th generator of an ideal J is equal to
address@hidden
+$$J_j = z^0 \cdot m_{1j} + z^1 \cdot m_{2j} + ... + z^{d-1} \cdot m_{dj},$$
+while for a module J the i-th component of the j-th generator is
+equal to the entry [i,j] of {\tt matrix}(J), and we get
address@hidden tex
address@hidden
+$$ J_{i,j} = z^0 \cdot m_{(i-1)d+1,j} + z^1 \cdot m_{(i-1)d+2,j} + ... +
+z^{d-1} \cdot m_{id,j}.$$
address@hidden tex
 
 @item @strong{Example:}
 @smallexample
@@ -10933,7 +11364,14 @@
 producing a m x n matrix.
 @*Contraction is defined on monomials by:
 @*
address@hidden
+$${\rm contract}(x^A ,  x^B) := \cases{ x^{(B-A)}, &if $B\ge A$
+componentwise\cr 0,&otherwise.\cr}$$
address@hidden tex
 where A and B are the multiexponents of the ring variables represented by
address@hidden
+$x$.
address@hidden tex
 @code{contract} is extended bilinearly to all polynomials.
 @item @strong{Example:}
 @smallexample
@@ -12366,13 +12804,24 @@
 @code{highcorner(I)} returns 0 iff @code{dim(I)>0} or @code{dim(I)=-1}.
 Otherwise it returns the smallest monomial m not in I which has the following
 properties (with
address@hidden
+$x_i$
address@hidden tex
 the variables of the basering):
 @itemize @bullet
 @item
 if
address@hidden
+$x_i>1$ then $x_i$
address@hidden tex
 does not divide m (e.g., m=1 if the ordering is global)
 @item
 given any set of generators
address@hidden
+$f_1,\dots,f_k$ of I, let $f'_i$ be obtained from
+$f_i$ by deleting the terms divisible by $x_i\cdot m$ for all i with $x_i<1$.
+Then $f'_1,\dots,f'_k$ generate I.
address@hidden tex
 @end itemize
 @item @strong{Example:}
 @smallexample
@@ -12511,11 +12960,22 @@
 
 More precisely, let R be the basering and I be the given ideal.
 Then @code{hres} computes a minimal free resolution of R/I
address@hidden
+$$...\longrightarrow F_2 \buildrel{A_2}\over{\longrightarrow} F_1
+\buildrel{A_1}\over{\longrightarrow} R\longrightarrow R/I
+\longrightarrow 0.$$
address@hidden tex
 If the int_expression k is not zero then the computation stops after
 k steps and returns a list of modules
address@hidden
+$M_i={\tt module} (A_i)$, i=1..k.
address@hidden tex
 
 @code{list L=hres(I,0);} returns a list L of n modules (where n is the
 number of variables of the basering) such that
address@hidden
+${\tt L[i]}=M_i$
address@hidden tex
 in the above notation.
 @item @strong{Note:}
 The ideal_expression has to be homogeneous.
@@ -12631,6 +13091,9 @@
 
 @item @strong{Note:}
 U is a set of independent variables for I if and only if
address@hidden
+$I \cap K[U]=(0)$,
address@hidden tex
 i.e., eliminating the remaining variables gives (0).
 U is maximal if dim(I)=#U.
 @item @strong{Syntax:}
@@ -12728,19 +13191,47 @@
 @item @strong{Purpose:}
 interreduces a set of polynomials/vectors.
 @*
address@hidden
+input: $f_1,\dots,f_n$
address@hidden tex
 @*
address@hidden
+output: $g_1,\dots,g_s$ with $s \leq n$ and the properties
address@hidden tex
 @itemize @bullet
 @item
address@hidden
address@hidden
+$(f_1,\dots,f_n) = (g_1,\dots,g_s)$
address@hidden tex
address@hidden
address@hidden
+$L(g_i)\neq L(g_j)$ for all $i\neq j$
address@hidden tex
 @item
 in the case of a global ordering (polynomial ring):
 @*
address@hidden
+$L(g_i)$
address@hidden tex
  does not divide m for all monomials m of
address@hidden
+$\{g_1,\dots,g_{i-1},g_{i+1},\dots,g_s\}$
address@hidden tex
 @item
 in the case of a local or mixed ordering (localization of polynomial ring):
 @* if
address@hidden
+$L(g_i) | L(g_j)$ for any $i \neq j$,
address@hidden tex
 then
address@hidden
+$ecart(g_i) > ecart(g_j)$
address@hidden tex
 @end itemize
address@hidden
+Here, $L(g)$ denotes the leading term of $g$ and
+$ecart(g):=deg(g)-deg(L(g))$.
address@hidden tex
 @item @strong{Example:}
 @smallexample
 @c reused example interred reference.doc:2557 
@@ -13470,11 +13961,22 @@
 
 More precisely, let R be the basering and I be the given ideal.
 Then @code{lres} computes a minimal free resolution of R/I
address@hidden
+$$...\longrightarrow F_2 \buildrel{A_2}\over{\longrightarrow} F_1
+\buildrel{A_1}\over{\longrightarrow} R\longrightarrow R/I
+\longrightarrow 0.$$
address@hidden tex
 If the int_expression k is not zero then the computation stops after
 k steps and returns a list of modules
address@hidden
+$M_i={\tt module}(A_i)$, i=1..k.
address@hidden tex
 
 @code{list L=lres(I,0);} returns a list L of n modules (where n is the
 number of variables of the basering) such that
address@hidden
+${\tt L[i]}=M_i$
address@hidden tex
 in the above notation.
 @item @strong{Note:}
 The ideal_expression has to be homogeneous.
@@ -13728,9 +14230,25 @@
 module
 @item @strong{Purpose:}
 @code{modulo(h1,h2)}
address@hidden
+represents $h_1/(h_1 \cap h_2) \cong (h_1+h_2)/h_2$
address@hidden tex
 where
address@hidden
+$h_1$ and $h_2$
address@hidden tex
 are considered as submodules of the same free module
address@hidden
+$R^l$
address@hidden tex
 (l=1 for ideals). Let
address@hidden
+$H_1$, resp.\ $H_2$,
address@hidden tex
address@hidden
+be the matrices of size $l \times k$, resp.\ $l \times m$, having the
+generators of $h_1$, resp.\ $h_2$,
address@hidden tex
 as columns.
 @c @*
 @c @tex
@@ -13744,7 +14262,14 @@
 @c @end smallexample
 @c @end ifinfo
 Then
address@hidden
+$h_1/(h_1 \cap h_2) \cong R^k / ker(\overline{H_1})$
address@hidden tex
 where
address@hidden
+$\overline{H_1}: R^k \rightarrow R^l/Im(H_2)=R^l/h_2$
+is the induced map.
address@hidden tex
 @address@hidden(h1,h2)} returns generators of
 the kernel of this induced map.
 @item @strong{Example:}
@@ -13845,17 +14370,32 @@
 computes a minimal free resolution of an ideal or module M with the
 standard basis method. More precisely, let address@hidden(M), then @code{mres}
 computes a free resolution of
address@hidden
+$coker(A)=F_0/M$
+$$...\longrightarrow F_2 \buildrel{A_2}\over{\longrightarrow} F_1
+\buildrel{A_1}\over{\longrightarrow} F_0\longrightarrow F_0/M
+\longrightarrow 0,$$
address@hidden tex
 where the columns of the matrix
address@hidden
+$A_1$
address@hidden tex
 are a minimal set of generators
 of M if the basering is local or if M is homogeneous.
 If the int expression k is not zero then the computation stops after k steps
 and returns a list of modules
address@hidden
+$M_i={\tt module}(A_i)$, i=1...k.
address@hidden tex
 @address@hidden(M,0)} returns a resolution consisting of at most n+2 modules,
 where n is the number of variables of the basering.
 Let @code{list L=mres(M,0);}
  then @code{L[1]} consists of a minimal set of generators of the input, 
@code{L[2]}
 consists of a minimal set of generators for the first syzygy module of
 @code{L[1]}, etc., until @code{L[p+1]}, such that
address@hidden
+${\tt L[i]}\neq 0$ for $i \le p$,
address@hidden tex
  but @code{L[p+1]}, the first syzygy module of @code{L[p]},
 is 0 (if the basering is not a qring).
 @item @strong{Note:}
@@ -14146,16 +14686,32 @@
 the second module on (by the standard basis method).
 
 More precisely, let
address@hidden
+$A_1$=matrix(M),
address@hidden tex
 then @code{nres} computes a free resolution of
address@hidden
+$coker(A_1)=F_0/M$
+$$...\longrightarrow F_2 \buildrel{A_2}\over{\longrightarrow} F_1 
\buildrel{A_1}\over{\longrightarrow} F_0\longrightarrow F_0/M\longrightarrow 
0,$$
address@hidden tex
 @*where the columns of the matrix
address@hidden
+$A_1$
address@hidden tex
 are the given set of generators of M.
 If the int expression k is not zero then the computation stops after k steps
 and returns a list of modules
address@hidden
+$M_i={\tt module}(A_i)$, i=1..k.
address@hidden tex
 @address@hidden(M,0)} returns a list of n modules where n is the number of
 variables of the basering.
 Let @code{list L=nres(M,0);} then @code{L[1]=M} is identical to the input,
 @code{L[2]} is a minimal set of generators for the first syzygy
 module of  @code{L[1]}, etc.
address@hidden
+(${\tt L[i]}=M_i$
address@hidden tex
 in the notations from above).
 @item @strong{Example:}
 @smallexample
@@ -14774,9 +15330,18 @@
 @table @code
 @item "betti"
 The Betti numbers are printed in a matrix-like format where the entry
address@hidden
+$d$ in row $i$ and column $j$
address@hidden tex
 is the minimal number of generators in
 degree
address@hidden
+$i+j$ of the $j$-th
address@hidden tex
  syzygy module of
address@hidden
+$R^n/M$ (the 0th and 1st syzygy module of $R^n/M$ is $R^n$ and $M$, resp.).
address@hidden tex
 @item "%s"
 returns @code{string(} expression @code{)}
 @item "%2s"
@@ -15161,12 +15726,21 @@
 @item @strong{Purpose:}
 computes the ideal quotient, resp.@: module quotient. Let @code{R} be the
 basering, @code{I,J} ideals and @code{M} a module in
address@hidden
+${\tt R}^n$.
address@hidden tex
 Then
 @itemize
 @item
 @code{quotient(I,J)}=
address@hidden
+$\{a \in R \mid aJ \subset I\}$,
address@hidden tex
 @item
 @code{quotient(M,J)}=
address@hidden
+$\{b \in R^n \mid bJ \subset M\}$.
address@hidden tex
 @end itemize
 @item @strong{Example:}
 @smallexample
@@ -15356,6 +15930,15 @@
 computes the regularity of a homogeneous ideal, resp.@: module, from a
 minimal resolution given by the list expression.
 @*
address@hidden
+\noindent
+Let $0 \rightarrow\ \bigoplus_a K[x]e_{a,n}\ \rightarrow\ \dots
+  \rightarrow\ \bigoplus_a K[x]e_{a,0}\ \rightarrow\
+  I\ \rightarrow\ 0$
+be a minimal resolution of I considered with homogeneous maps of degree 0.
+The regularity is the smallest number $s$ with the property deg($e_{a,i})
+ \leq s+i$ for all $i$.
address@hidden tex
 @item @strong{Note:}
 If applied to a non minimal resolution only an upper bound is returned.
 @*If the input to the commands @code{res} and @code{mres} is homogeneous
@@ -15922,6 +16505,12 @@
 @item @strong{Type:}
 intvec
 @item @strong{Purpose:}
address@hidden
+computes the permutation {\tt v}
+which orders the ideal, resp.\ module, {\tt I} by its initial terms,
+starting with the smallest, that is, {\tt I(v[i]) < I(v[i+1])} for all
+{\tt i}.
address@hidden tex
 @item @strong{Example:}
 @smallexample
 @c reused example sortvec reference.doc:5565 
@@ -16050,10 +16639,20 @@
 computes a free resolution of an ideal or module with Schreyer's
 method. The ideal, resp.@: module, has to be a standard basis.
 More precisely, let M be given by a standard basis and
address@hidden
+$A_1={\tt matrix}(M)$.
address@hidden tex
 Then @code{sres}
 computes a free resolution of
address@hidden
+$coker(A_1)=F_0/M$
+$$...\longrightarrow F_2 \buildrel{A_2}\over{\longrightarrow} F_1 
\buildrel{A_1}\over{\longrightarrow} F_0\longrightarrow F_0/M\longrightarrow 
0.$$
address@hidden tex
 If the int expression k is not zero then the computation stops after k steps
 and returns a list of modules (given by standard bases)
address@hidden
+$M_i={\tt module}(A_i)$, i=1..k.
address@hidden tex
 @address@hidden(M,0)}
 returns a list of n modules where n is the number of variables of the basering.
 
@@ -16064,6 +16663,9 @@
 @code{L[2]} is a standard basis with respect to the Schreyer ordering of
 the first syzygy
 module of @code{L[1]}, etc.
address@hidden
+(${\tt L[i]}=M_i$
address@hidden tex
  in the notations from above.)
 @item @strong{Note:}
 Accessing single elements of a resolution may require that some partial
@@ -16776,7 +17378,29 @@
 @item @strong{Type:}
 poly
 @item @strong{Purpose:}
address@hidden @strong{Note:}
address@hidden
+{\tt vandermonde(p,v,d)} computes the (unique) polynomial of degree
address@hidden with prescribed values {\tt v[1],...,v[N]} at the points
+{\tt p}$^0,\dots,$ {\tt p}$^{N-1}$, {\tt N=(d+1)}$^n$, $n$ the
+number of ring variables.
+
+The returned polynomial is $\sum
+c_{\alpha_1\ldots\alpha_n}\cdot x_1^{\alpha_1} \cdot \dots \cdot
+x_n^{\alpha_n}$, where the coefficients
+$c_{\alpha_1\ldots\alpha_n}$ are the solution of the (transposed)
+Vandermonde system of linear equations
+$$ \sum_{\alpha_1+\ldots+\alpha_n\leq d} c_{\alpha_1\ldots\alpha_n} \cdot
+{\tt p}_1^{(k-1)\alpha_1}\cdot\dots\cdot {\tt p}_n^{(k-1)\alpha_n} =
+{\tt v}[k], \quad  k=1,\dots,{\tt N}.$$
address@hidden tex
address@hidden @strong{Note:}
address@hidden
+the ground field has to be the field of rational
+numbers. Moreover, {\tt ncols(p)==}$n$, the number of variables in the
+basering, and all the given generators have to be numbers different from
+0,1 or -1. Finally, {\tt ncols(v)==(d+1)$^n$}, and all given generators have
+to be numbers.
address@hidden tex
 @item @strong{Example:}
 @smallexample
 @c reused example vandermonde reference.doc:6304 
@@ -18422,7 +19046,20 @@
 
 The Milnor number, resp.@: the Tjurina number, of a power
 series f in
address@hidden
+$K[[x_1,\ldots,x_n]]$
address@hidden tex
 is
address@hidden
+$$
+\hbox{milnor}(f) = \hbox{dim}_K(K[[x_1,\ldots,x_n]]/\hbox{jacob}(f)),
+$$
+respectively
+$$
+\hbox{tjurina}(f) = \hbox{dim}_K(K[[x_1,\ldots,x_n]]/((f)+\hbox{jacob}(f)))
+$$
+where
address@hidden tex
 @code{jacob(f)} is the ideal generated by the partials
 of @code{f}. @code{tjurina(f)} is finite, if and only if @code{f} has an
 isolated singularity. The same holds for @code{milnor(f)} if
@@ -18431,8 +19068,17 @@
 
 @sc{Singular} cannot compute with infinite power series. But it can
 work in
address@hidden
+$\hbox{Loc}_{(x)}K[x_1,\ldots,x_n]$,
address@hidden tex
 the localization of
address@hidden
+$K[x_1,\ldots,x_n]$
address@hidden tex
 at the maximal ideal
address@hidden
+$(x_1,\ldots,x_n)$.
address@hidden tex
 To do this one has to define an
 s-ordering like ds, Ds, ls, ws, Ws or an appropriate matrix
 ordering (look at the manual to get information about the possible
@@ -18629,7 +19275,13 @@
 
 The same computation which computes the Milnor, resp.@: the Tjurina,
 number, but with ordering @code{dp} instead of @code{ds} (i.e., in
address@hidden
+$K[x_1,\ldots,x_n]$
address@hidden tex
 instead of
address@hidden
+$\hbox{Loc}_{(x)}K[x_1,\ldots,x_n])$
address@hidden tex
 gives:
 @itemize @bullet
 @item
@@ -18667,11 +19319,23 @@
 @item
 The result of the computation here (together with the previous one in
  @ref{Milnor and Tjurina}) shows that (for @code{t}=0)
address@hidden
+$\hbox{dim}_K(\hbox{Loc}_{(x,y,z)}K[x,y,z]/\hbox{jacob}(f))$
address@hidden tex
 = 250 (previously computed) while
address@hidden
+$\hbox{dim}_K(K[x,y,z]/\hbox{jacob}(f))$
address@hidden tex
 = 536. Hence @code{f} has 286 critical points,
   counted with multiplicity, outside the origin.
   Moreover, since
address@hidden
+$\hbox{dim}_K(\hbox{Loc}_{(x,y,z)}K[x,y,z]/(\hbox{jacob}(f)+(f)))$
address@hidden tex
 = 195 =
address@hidden
+$\hbox{dim}_K(K[x,y,z]/(\hbox{jacob}(f)+(f)))$,
address@hidden tex
 the affine surface @code{f}=0 is smooth outside the origin.
 @end itemize
 
@@ -18700,27 +19364,72 @@
 @cindex Saturation
 
 Since in the example above, the ideal 
address@hidden
+$j+(f)$
address@hidden tex
  has the same @code{vdim}
 in the polynomial ring and in the localization at 0 (each 195),
 
address@hidden
+$f=0$
address@hidden tex
  is smooth outside 0.
 Hence 
address@hidden
+$j+(f)$
address@hidden tex
  contains some power of the maximal ideal 
address@hidden
+$m$
address@hidden tex
 . We shall
 check this in a different manner:
 For any two ideals 
address@hidden
+$i, j$
address@hidden tex
  in the basering 
address@hidden
+$R$
address@hidden tex
  let
address@hidden
+$$
+\hbox{sat}(i,j)=\{x\in R\;|\; \exists\;n\hbox{ s.t. }
+x\cdot(j^n)\subseteq i\}
+= \bigcup_{n=1}^\infty i:j^n$$
address@hidden tex
 @*denote the saturation of 
address@hidden
+$i$
address@hidden tex
  with respect to 
address@hidden
+$j$
address@hidden tex
 . This defines,
 geometrically, the closure of the complement of V(
address@hidden
+$j$
address@hidden tex
 ) in V(
address@hidden
+$i$
address@hidden tex
 )
 (V(
address@hidden
+$i$
address@hidden tex
 ) denotes the variety defined by 
address@hidden
+$i$
address@hidden tex
 ).
 In our case, 
address@hidden
+$sat(j+(f),m)$
address@hidden tex
  must be the whole ring, hence
 generated by 1.
 
@@ -18860,13 +19569,25 @@
 and compute over the ground field Q(t).
 We compute the dimension at the generic point,
 i.e.,
address@hidden
+$dim_{Q(t)}Q(t)[x,y]/j$.
address@hidden tex
 (This gives the
 same result as for the deformed ideal above. Hence, the above small
 deformation was "generic".)
 
 For almost all
address@hidden
+$a \in Q$
address@hidden tex
 this is the same as
address@hidden
+$dim_Q Q[x,y]/j_0$,
address@hidden tex
 where
address@hidden
+$j_0=j|_{t=a}$.
address@hidden tex
 
 @smallexample
 @c computed example Parameters examples.doc:579 
@@ -18900,8 +19621,17 @@
 @cindex T2
 
 
address@hidden
+$T^1$
address@hidden tex
 , resp.@: 
address@hidden
+$T^2$
address@hidden tex
 , of an ideal 
address@hidden
+$j$
address@hidden tex
  usually denote the modules of
 infinitesimal deformations, resp.@: of obstructions.
 In @sc{Singular} there are procedures @code{T_1} and @code{T_2} in
@@ -19071,7 +19801,16 @@
 singularity.
 @item
 The procedure @code{deform} in @code{sing.lib} returns a matrix whose columns
address@hidden
+$h_1,\ldots,h_r$
address@hidden tex
 represent all 1st order deformations. More precisely, if
address@hidden
+$I \subset R$ is the ideal generated by $f_1,...,f_s$, then any infinitesimal
+deformation of $R/I$ over $K[\varepsilon]/(\varepsilon^2)$ is given
+by $f+\varepsilon g$,
+where $f=(f_1,...,f_s)$, $g$ a $K$-linear combination of the $h_i$.
address@hidden tex
 
 @item
 The procedure @code{versal} in @code{deform.lib} computes a formal
@@ -19191,12 +19930,24 @@
 @cindex Finite fields
 
 We define a variety in 
address@hidden
+$n$
address@hidden tex
 -space of codimension 2 defined by
 polynomials of degree 
address@hidden
+$d$
address@hidden tex
  with generic coefficients over the prime
 field 
address@hidden
+$Z/p$
address@hidden tex
  and look for zeros on the torus. First over the prime
 field and then in the finite extension field with
address@hidden
+$p^k$
address@hidden tex
 elements.
 In general there will be many more solutions in the second case.
 (Since the @sc{Singular} language is interpreted, the evaluation of many
@@ -19373,9 +20124,24 @@
 
 Elimination is the algebraic counterpart of the geometric concept of
 projection. If
address@hidden
+$f=(f_1,\ldots,f_n):k^r\rightarrow k^n$
address@hidden tex
 is a polynomial map,
 the Zariski-closure of the image is the zero-set of the ideal
address@hidden
+$$
+\displaylines{
+j=J \cap k[x_1,\ldots,x_n], \;\quad\hbox{\rm where}\cr
+J=(x_1-f_1(t_1,\ldots,t_r),\ldots,x_n-f_n(t_1,\ldots,t_r))\subseteq
+k[t_1,\ldots,t_r,x_1,\ldots,x_n]
+}
+$$
address@hidden tex
 i.e, of the ideal j obtained from J by eliminating the variables
address@hidden
+$t_1,\ldots,t_r$.
address@hidden tex
 This can be done by computing a standard basis of J with respect to a product
 ordering where the block of t-variables precedes the block of
 x-variables and then selecting those polynomials which do not contain
@@ -19387,13 +20153,23 @@
 
 @strong{WARNING:} In the case of a local or a mixed ordering, elimination 
needs special
 care. f may be considered as a map of germs
address@hidden
+$f:(k^r,0)\rightarrow(k^n,0)$,
address@hidden tex
 but even
 if this map germ is finite, we are in general not able to compute the image
 germ because for this we would need an implementation of the Weierstrass
 preparation theorem. What we can compute, and what @code{eliminate} actually 
does,
 is the following: let V(J) be the zero-set of J in
address@hidden
+$k^r\times(k^n,0)$,
address@hidden tex
 then the
 closure of the image of V(J) under the projection
address@hidden
+$$\hbox{pr}:k^r\times(k^n,0)\rightarrow(k^n,0)$$
+can be computed.
address@hidden tex
 Note that this germ contains also those components
 of V(J) which meet the fiber of pr outside the origin.
 This is achieved by an ordering with the block of t-variables having a
@@ -19416,6 +20192,9 @@
 @enumerate
 @item
 First we compute the equations of the simple space curve
address@hidden
+$\hbox{T}[7]^\prime$
address@hidden tex
    consisting of two tangential cusps given in parametric form.
 @item
 We compute weights for the equations such that the
@@ -19423,6 +20202,9 @@
 @item
 Then we compute the tangent developable of the rational
    normal curve in
address@hidden
+$P^4$.
address@hidden tex
 @end enumerate
 
 @smallexample
@@ -19572,11 +20354,20 @@
 
 Now let's look at an example which uses resolutions: The Hilbert-Burch
 theorem says that the ideal i of a reduced curve in
address@hidden
+$K^3$
address@hidden tex
 has a free resolution of length 2 and that i is given by the 2x2 minors
 of the 2nd matrix in the resolution.
 We test this for two transversal cusps in
address@hidden
+$K^3$.
address@hidden tex
 Afterwards we compute the resolution of the ideal j of the tangent developable
 of the rational normal curve in
address@hidden
+$P^4$
address@hidden tex
 from above.
 Finally we demonstrate the use of the type @code{resolution} in connection with
 the @code{lres} command.
@@ -19697,24 +20488,45 @@
 @cindex  Ext
 
 We start by showing how to calculate the 
address@hidden
+$n$
address@hidden tex
 -th Ext group of an
 ideal. The ingredients to do this are by the definition of Ext the
 following: calculate a (minimal) resolution at least up to length
 
address@hidden
+$n$
address@hidden tex
 , apply the Hom-functor, and calculate the 
address@hidden
+$n$
address@hidden tex
 -th homology
 group, that is form the quotient
address@hidden
+$\hbox{\rm ker} / \hbox{\rm Im}$
address@hidden tex
 in the resolution sequence.
 
 The Hom functor is given simply by transposing (hence dualizing) the
 module or the corresponding matrix with the command @code{transpose}.
 The image of the 
address@hidden
+$(n-1)$
address@hidden tex
 -st map is generated by the columns of the
 corresponding matrix. To calculate the kernel apply the command
 @code{syz} at the 
address@hidden
+$(n-1)$
address@hidden tex
 -st transposed entry of the resolution.
 Finally, the quotient is obtained by the command @code{modulo}, which
 gives for two modules A = ker, B = Im the module of relations of
address@hidden
+$A/(A \cap B)$
address@hidden tex
 in the usual way. As we have a chain complex this is obviously the same
 as ker/Im.
 
@@ -19753,17 +20565,44 @@
 example.
 
 If 
address@hidden
+$M$
address@hidden tex
  is a module, then
address@hidden
+$\hbox{Ext}^1(M,M)$, resp.\ $\hbox{Ext}^2(M,M)$,
address@hidden tex
 are the modules of infinitesimal deformations, resp.@: of obstructions, of
 
address@hidden
+$M$
address@hidden tex
  (like T1 and T2 for a singularity).  Similar to the treatment
 for singularities, the semiuniversal deformation of 
address@hidden
+$M$
address@hidden tex
  can be
 computed (if
address@hidden
+$\hbox{Ext}^1$
address@hidden tex
 is finite dimensional) with the help of
address@hidden
+$\hbox{Ext}^1$, $\hbox{Ext}^2$
address@hidden tex
 and the cup product. There is an extra procedure for
address@hidden
+$\hbox{Ext}^k(R/J,R)$
address@hidden tex
 if 
address@hidden
+$J$
address@hidden tex
  is an ideal in 
address@hidden
+$R$
address@hidden tex
  since this is faster than the
 general Ext.
 
@@ -19771,15 +20610,42 @@
 @itemize @bullet
 @item
 the infinitesimal deformations
address@hidden
+($=\hbox{Ext}^1(K,K)$)
address@hidden tex
 and obstructions
address@hidden
+($=\hbox{Ext}^2(K,K)$)
address@hidden tex
 of the residue field 
address@hidden
+$K=R/m$
address@hidden tex
  of an ordinary cusp,
address@hidden
+$R=Loc_m K[x,y]/(x^2-y^3)$, $m=(x,y)$.
address@hidden tex
 To compute
address@hidden
+$\hbox{Ext}^1(m,m)$
address@hidden tex
 we have to apply @code{Ext(1,syz(m),syz(m))} with
 @code{syz(m)} the first syzygy module of 
address@hidden
+$m$
address@hidden tex
 , which is isomorphic to
address@hidden
address@hidden
+$\hbox{Ext}^2(K,K)$.
address@hidden tex
address@hidden
address@hidden
+$\hbox{Ext}^k(R/i,R)$
address@hidden tex
 for some ideal 
address@hidden
+$i$
address@hidden tex
  and with an extra option.
 @end itemize
 
@@ -19875,18 +20741,45 @@
 @cindex Polar curves
 
 The polar curve of a hypersurface given by a polynomial
address@hidden
+$f\in k[x_1,\ldots,x_n,t]$
address@hidden tex
 with respect to 
address@hidden
+$t$
address@hidden tex
  (we may consider 
address@hidden
+$f=0$
address@hidden tex
  as a family of
 hypersurfaces parametrized by 
address@hidden
+$t$
address@hidden tex
 ) is defined as the Zariski
 closure of
address@hidden
+$V(\partial f/\partial x_1,\ldots,\partial f/\partial x_n) \setminus V(f)$
address@hidden tex
 if this happens to be a curve.  Some authors consider
address@hidden
+$V(\partial f/\partial x_1,\ldots,\partial f/\partial x_n)$
address@hidden tex
 itself as polar curve.
 
 We may consider projective hypersurfaces
address@hidden
+(in $P^n$),
address@hidden tex
 affine hypersurfaces
address@hidden
+(in $k^n$)
address@hidden tex
 or germs of hypersurfaces
address@hidden
+(in $(k^n,0)$),
address@hidden tex
 getting in this way
 projective, affine or local polar curves.
 
@@ -19999,12 +20892,24 @@
 @cindex Depth
 
 We compute the depth of the module of Kaehler differentials
address@hidden
+D$_k$(R)
address@hidden tex
 of the variety defined by the 
address@hidden
+$(m+1)$
address@hidden tex
 -minors of a generic symmetric
address@hidden
+$(n \times n)$-matrix.
address@hidden tex
 We do this by computing the resolution over the polynomial
 ring.  Then, by the Auslander-Buchsbaum formula, the depth is equal to
 the number of variables minus the length of a minimal resolution.  This
 example was suggested by U.@: Vetter in order to check whether his bound
address@hidden
+$\hbox{depth}(\hbox{D}_k(R))\geq m(m+1)/2 + m-1$
address@hidden tex
 could be improved.
 
 @smallexample
@@ -20173,6 +21078,9 @@
 
 We work in characteristic 0 and use the Lie algebra generated by one
 vector field of the form
address@hidden
+$\sum x_i \partial /\partial x_{i+1}$.
address@hidden tex
 @smallexample
 @c computed example G_a_-Invariants examples.doc:1783 
   LIB "ainvar.lib";
@@ -20338,6 +21246,9 @@
 
 We compute the Hamburger-Noether expansion of a plane curve
 singularity given by a polynomial 
address@hidden
+$f$
address@hidden tex
  in two variables. This is a
 matrix which allows to compute the parametrization (up to a given order)
 and all numerical invariants like the
@@ -20355,7 +21266,13 @@
 @end itemize
 Besides this, the library contains procedures to compute the Newton
 polygon of 
address@hidden
+$f$
address@hidden tex
 , the squarefree part of 
address@hidden
+$f$
address@hidden tex
  and a procedure to
 convert one set of invariants to another.
 
@@ -20580,9 +21497,15 @@
 @section Normalization
 @cindex Normalization
 The normalization will be computed for a reduced ring 
address@hidden
+$R/I$
address@hidden tex
 . The
 result is a list of rings; ideals are always called @code{norid} in the
 rings of this list. The normalization of 
address@hidden
+$R/I$
address@hidden tex
  is the product of
 the factor rings of the rings in the list divided out by the ideals
 @code{norid}.
@@ -20786,12 +21709,41 @@
 @section Kernel of module homomorphisms
 @cindex Kernel of module homomorphisms
 Let 
address@hidden
+$A$
address@hidden tex
 , 
address@hidden
+$B$
address@hidden tex
  be two matrices of size
address@hidden
+$m\times r$ and $m\times s$
address@hidden tex
 over the ring 
address@hidden
+$R$
address@hidden tex
  and consider the corresponding maps
address@hidden
+$$
+R^r \buildrel{A}\over{\longrightarrow}
+R^m \buildrel{B}\over{\longleftarrow} R^s\;.
+$$
address@hidden tex
 We want to compute the kernel of the map
address@hidden
+$R^r \buildrel{A}\over{\longrightarrow}
+R^m\longrightarrow
+R^m/\hbox{Im}(B) \;.$
address@hidden tex
 This can be done using the @code{modulo} command:
address@hidden
+$$
+\hbox{\tt modulo}(A,B)=\hbox{ker}(R^r
+\buildrel{A}\over{\longrightarrow}R^m/\hbox{Im}(B)) \; .
+$$
address@hidden tex
 
 @smallexample
 @c computed example Kernel_of_module_homomorphisms examples.doc:2196 
@@ -20809,22 +21761,56 @@
 @section Algebraic dependence
 @cindex Algebraic dependence
 Let
address@hidden
+$g$, $f_1$, \dots, $f_r\in K[x_1,\ldots,x_n]$.
address@hidden tex
 We want to check whether
 @enumerate
 @item
address@hidden
+$f_1$, \dots, $f_r$
address@hidden tex
 are algebraically dependent.
 
 Let
address@hidden
+$I=\langle Y_1-f_1,\ldots,Y_r-f_r \rangle \subseteq
+K[x_1,\ldots,x_n,Y_1,\ldots,Y_r]$.
address@hidden tex
 Then
address@hidden
+$I \cap K[Y_1,\ldots,Y_r]$
address@hidden tex
 are the algebraic relations between
address@hidden
+$f_1$, \dots, $f_r$.
address@hidden tex
 
 @item
-
address@hidden
+$g \in K [f_1,\ldots,f_r]$.
address@hidden tex
+
address@hidden
+$g \in K[f_1,\ldots,f_r]$
address@hidden tex
 if and only if the normal form of 
address@hidden
+$g$
address@hidden tex
  with respect to 
address@hidden
+$I$
address@hidden tex
  and a
 block ordering with respect to
address@hidden
+$X=(x_1,\ldots,x_n)$ and $Y=(Y_1,\ldots,Y_r)$ with $X>Y$
address@hidden tex
 is in 
address@hidden
+$K[Y]$
address@hidden tex
 .
 @end enumerate
 
@@ -21165,35 +22151,83 @@
 A vector  in @sc{Singular} is always an element of a free module over the
 basering. It is given as a list of polynomials in one of the following
 formats
address@hidden
+$[f_1,...,f_n]$ or $f_1*gen(1)+...+f_n*gen(n)$, where $gen(i)$
address@hidden tex
 denotes the i-th canonical generator of a free module (with 1 at place i and
 0 everywhere else).
 Both forms are equivalent. A vector is internally represented in
 the second form with the
address@hidden
+$gen(i)$
address@hidden tex
 being "special" ring variables, ordered accordingly to the monomial ordering.
 Therefore, the form
address@hidden
+$[f_1,...,f_n]$
address@hidden tex
 is given as output only if the monomial ordering gives priority to the
 component, i.e@:., is of the form @code{(c,...)} (see @ref{Module
 orderings}).  However, in any case the procedure @code{show} from the
 library @code{inout.lib} displays the bracket format.
 
 A vector
address@hidden
+$v=[f_1,...,f_n]$
address@hidden tex
 should always be considered as a column vector in a free module
 of rank equal to
address@hidden
+nrows($v$)
address@hidden tex
 where 
address@hidden
+nrows($v$)
address@hidden tex
 is equal to the maximal index 
address@hidden
+$r$
address@hidden tex
 such that
address@hidden
+$f_r \not= 0$.
address@hidden tex
 This is due to the fact, that internally 
address@hidden
+$v$
address@hidden tex
 is a polynomial in a sparse representation, i.e.,
address@hidden
+$f_i*gen(i)$
address@hidden tex
 is not stored if
address@hidden
+$f_i=0$
address@hidden tex
 (for reasons of efficiency), hence the last 0-entries of 
address@hidden
+$v$
address@hidden tex
 are lost.
 Only more complex structures are able to keep the rank.
 
 A module 
address@hidden
+$M$
address@hidden tex
 in @sc{Singular} is given by a list of vectors
address@hidden
+$v_1,...,v_k$
address@hidden tex
 which generate the module as a submodule of the free module of rank
 equal to 
address@hidden
+nrows($M$)
address@hidden tex
 which is the maximum of
address@hidden
+nrows($v_i$).
address@hidden tex
 
 If one wants to create a module with a larger rank than given by its
 generators, one has to use the command @code{attrib(M,"rank",r)} (see
@@ -21208,33 +22242,84 @@
 By the above remarks it might appear that @sc{Singular} is only able to handle
 submodules of a free module. However, this is not true. @sc{Singular}
 can compute with any finitely generated module over the basering 
address@hidden
+$R$.
address@hidden tex 
 Such a module, say 
address@hidden
+$N$,
address@hidden tex
 is not represented by its generators but by its
 (generators and) relations. This means that
address@hidden
+$N = R^n/M$ where $n$ 
address@hidden tex
 is the number of generators of 
address@hidden
+$N$ and $M \subseteq R^n$
address@hidden tex
 is the module of relations.
 In other words, defining  a module 
address@hidden
+$M$
address@hidden tex
 as a submodule of a free module
address@hidden
+$R^n$
address@hidden tex
 can also be considered as the definition of
address@hidden
+$N = R^n/M$.
address@hidden tex
 
 Note that most functions, when applied to a module 
address@hidden
+$M$,
address@hidden tex
 really deal with
address@hidden
+$M$.
address@hidden tex
 However, there are some functions which deal with 
address@hidden
+$N = R^n/M$ instead of $M$.
address@hidden tex
 
 For example, @code{std(M)} computes a standard basis of 
address@hidden
+$M$
address@hidden tex
 (and thus gives another representation of 
address@hidden
+$N$ as $N = R^n/$std($M$)).
address@hidden tex
 However, @code{dim(M)}, resp.@: @code{vdim(M)}, returns
address@hidden
+dim$(R^n/M)$, resp.@: dim$_k(R^n/M)$
address@hidden tex
 (if M is given by a standard basis).
 
 The function @code{syz(M)}  returns the first syzygy module of 
address@hidden
+$M$,
address@hidden tex
 i.e@:., the module 
 of relations of the given generators of 
address@hidden
+$M$
address@hidden tex
 which is equal to the second syzygy module of 
address@hidden
+$N$.
address@hidden tex
 Refer to the description of each function in
 @ref{Functions} to get information which module the function deals with.
 
 The numbering in @code{res} and other commands for computing resolutions
 refers to a resolution of
address@hidden
+$N = R^n/M$
address@hidden tex
 (see @ref{res}; @ref{Syzygies and resolutions}).
 
 It is possible to compute in any field which is a valid ground field in
@@ -21278,13 +22363,28 @@
 flexibility might also be confusing for the novice user.  Therefore, we
 recommend to those not familiar with monomial orderings to generally use
 the ordering @code{dp} for computations in the polynomial ring
address@hidden
+$K[x_1,\ldots,x_n]$, 
address@hidden tex
 resp.@:  @code{ds} for computations in the localization 
address@hidden
+$\hbox{Loc}_{(x)}K[x_1,\ldots,x_n]$.
address@hidden tex
 
 For inhomogeneous input ideals,  standard (resp.@: groebner) bases
 computations are generally faster 
 with the orderings 
address@hidden
+$\hbox{Wp}(w_1, \ldots, w_n)$
address@hidden tex
 (resp.@: 
address@hidden
+$\hbox{Ws}(w_1, \ldots, w_n)$)
address@hidden tex
 if the input is quasihomogeneous w.r.t. the weights 
address@hidden
+$w_1$, $\ldots$, $w_n$ of $x_1$, $\ldots$, $x_n$. 
address@hidden tex
 
 If the output needs to be "triangular" (resp.@: "block-triangular"), the
 lexicographical ordering @code{lp} (resp.@: lexicographical
@@ -21299,12 +22399,39 @@
 @cindex term orderings
 @cindex monomial orderings
 
address@hidden
+A monomial ordering (term ordering) on $K[x_1, \ldots, x_n]$ is
+a total ordering $<$ on the
+set of monomials (power products) $\{x^\alpha \mid \alpha \in \bf{N}^n\}$
+which is compatible with the
+natural semigroup structure, i.e., $x^\alpha < x^\beta$ implies $x^\gamma
+x^\alpha < x^\gamma x^\beta$ for any $\gamma \in \bf{N}^n$.
+We do not require
+$<$ to be  a well ordering.
address@hidden tex
  See the literature cited in @ref{References}.
 
 It is known that any monomial ordering can be represented by a matrix 
address@hidden
+$M$ in $GL(n,R)$,
address@hidden tex
 but, of course, only integer coefficients are of relevance in
 practice.
 
address@hidden
+Global orderings are well orderings (i.e.,  \hbox{$1 < x_i$} for each variable
+$x_i$), local orderings satisfy $1 > x_i$ for each variable.   If some 
variables are ordered globally and others locally we
+call it a mixed ordering.   Local or mixed orderings are not well orderings.
+
+Let $K$ be the ground field, \hbox{$x = (x_1, \ldots, x_n)$} the
+variables and $<$ a monomial ordering, then Loc $K[x]$ denotes the
+localization of $K[x]$ with respect to the multiplicatively closed set $$\{1 +
+g \mid g = 0 \hbox{ or } g \in K[x]\backslash \{0\} \hbox{ and }L(g) <
+1\}.$$   Here, $L(g)$ 
+denotes the leading monomial of $g$, i.e., the biggest monomial of $g$ with
+respect to $<$.   The result of any computation which uses standard basis
+computations has to be interpreted in Loc $K[x]$.
address@hidden tex
 
 Note that the definition of a ring includes the definition of its
 monomial ordering (see 
@@ -21318,6 +22445,9 @@
 @cindex Global orderings
 @cindex orderings, global
 
address@hidden
+For all these orderings: Loc $K[x]$ = $K[x]$
address@hidden tex
 
 @table @asis
 @item lp:
@@ -21325,35 +22455,81 @@
 @cindex lp, global ordering
 @cindex lexicographical ordering
 @*
address@hidden
+$x^\alpha < x^\beta  \Leftrightarrow  \exists\; 1 \le i \le n :
+\alpha_1 = \beta_1, \ldots, \alpha_{i-1} = \beta_{i-1}, \alpha_i <
+\beta_i$.
address@hidden tex
 @item rp:
 reverse lexicographical ordering:
 @cindex rp, global ordering
 @cindex reverse lexicographical ordering
 @*
address@hidden
+$x^\alpha < x^\beta  \Leftrightarrow  \exists\; 1 \le i \le n :
+\alpha_n = \beta_n,
+    \ldots, \alpha_{i+1} = \beta_{i+1}, \alpha_i > \beta_i.$
address@hidden tex
 @item dp:
 degree reverse lexicographical ordering:
 @cindex degree reverse lexicographical ordering
 @cindex dp, global ordering
 @*
address@hidden
+let $\deg(x^\alpha) = \alpha_1 + \cdots + \alpha_n,$ then
address@hidden tex
address@hidden
+    $x^\alpha < x^\beta \Leftrightarrow \deg(x^\alpha) < \deg(x^\beta)$ or
address@hidden tex
address@hidden
+    \phantom{$x^\alpha < x^\beta \Leftrightarrow $}$ \deg(x^\alpha) =
+    \deg(x^\beta)$ and $\exists\ 1 \le i \le n: \alpha_n = \beta_n,
+    \ldots, \alpha_{i+1} = \beta_{i+1}, \alpha_i > \beta_i.$
address@hidden tex
 @item Dp:
 degree lexicographical ordering:
 @cindex degree lexicographical ordering
 @cindex Dp, global ordering
 @*
address@hidden
+let $\deg(x^\alpha) = \alpha_1 + \cdots + \alpha_n,$ then
address@hidden tex
address@hidden
+    $x^\alpha < x^\beta \Leftrightarrow \deg(x^\alpha) < \deg(x^\beta)$ or
address@hidden tex
address@hidden
+    \phantom{ $x^\alpha < x^\beta \Leftrightarrow $} $\deg(x^\alpha) =
+    \deg(x^\beta)$ and $\exists\ 1 \le i \le n:\alpha_1 = \beta_1,
+    \ldots, \alpha_{i-1} = \beta_{i-1}, \alpha_i < \beta_i.$
address@hidden tex
 @item wp:
 weighted reverse lexicographical ordering:
 @cindex weighted reverse lexicographical ordering
 @cindex wp, global ordering
 @*
address@hidden
+let $w_1, \ldots, w_n$ be positive integers. Then ${\tt wp}(w_1, \ldots,
+w_n)$ 
address@hidden tex
  is defined as @code{dp}
  but with
address@hidden
+$\deg(x^\alpha) = w_1 \alpha_1 + \cdots + w_n\alpha_n.$
address@hidden tex
 @item Wp:
 weighted lexicographical ordering:
 @cindex weighted lexicographical ordering
 @cindex WP, global ordering
 @*
address@hidden
+let $w_1, \ldots, w_n$ be positive integers. Then ${\tt Wp}(w_1, \ldots,
+w_n)$ 
address@hidden tex
  is defined as @code{Dp}
  but with
address@hidden
+$\deg(x^\alpha) = w_1 \alpha_1 + \cdots + w_n\alpha_n.$
address@hidden tex
 @end table
 @c --------------------------------------------------------------------------
 @node Local orderings, Module orderings, Global orderings, Monomial orderings
@@ -21363,8 +22539,17 @@
 
 For ls, ds, Ds and, if the weights are positive integers, also for ws and
 Ws,  we have
address@hidden
+Loc $K[x]$ = $K[x]_{(x)}$,
address@hidden tex
  the localization of 
address@hidden
+$K[x]$
address@hidden tex
 at the maximal ideal
address@hidden
+\ $(x_1, ..., x_n)$.
address@hidden tex
 
 @table @asis
 @item ls:
@@ -21372,36 +22557,81 @@
 @cindex negative lexicographical ordering
 @cindex ls, local ordering
 @*
address@hidden
+$x^\alpha < x^\beta  \Leftrightarrow  \exists\; 1 \le i \le n :
+\alpha_1 = \beta_1, \ldots, \alpha_{i-1} = \beta_{i-1}, \alpha_i >
+\beta_i$.
address@hidden tex
 @item ds:
 negative degree reverse lexicographical ordering:
 @cindex negative degree reverse lexicographical ordering
 @cindex ds, local ordering
 @*
address@hidden
+let $\deg(x^\alpha) = \alpha_1 + \cdots + \alpha_n,$ then
address@hidden tex
address@hidden
+    $x^\alpha < x^\beta \Leftrightarrow \deg(x^\alpha) > \deg(x^\beta)$ or
address@hidden tex
address@hidden
+    \phantom{ $x^\alpha < x^\beta \Leftrightarrow$}$ \deg(x^\alpha) =
+    \deg(x^\beta)$ and $\exists\ 1 \le i \le n: \alpha_n = \beta_n,
+    \ldots, \alpha_{i+1} = \beta_{i+1}, \alpha_i > \beta_i.$
address@hidden tex
 @item Ds:
 negative degree lexicographical ordering:
 @cindex negative degree lexicographical ordering
 @cindex Ds, local ordering
 @*
address@hidden
+let $\deg(x^\alpha) = \alpha_1 + \cdots + \alpha_n,$ then
address@hidden tex
address@hidden
+    $x^\alpha < x^\beta \Leftrightarrow \deg(x^\alpha) > \deg(x^\beta)$ or 
address@hidden tex
address@hidden
+    \phantom{ $ x^\alpha < x^\beta \Leftrightarrow$}$ \deg(x^\alpha) =
+    \deg(x^\beta)$ and $\exists\ 1 \le i \le n:\alpha_1 = \beta_1,
+    \ldots, \alpha_{i-1} = \beta_{i-1}, \alpha_i < \beta_i.$
address@hidden tex
 @item ws:
 (general) weighted reverse lexicographical ordering:
 @cindex general weighted reverse lexicographical ordering
 @cindex local weighted reverse lexicographical ordering
 @cindex ws, local ordering
 @*
address@hidden
+${\tt ws}(w_1, \ldots, w_n),\; w_1$
address@hidden tex
  a nonzero integer,
address@hidden
+$w_2,\ldots,w_n$
address@hidden tex
  any integer (including 0),
  is defined as @code{ds}
  but with
address@hidden
+$\deg(x^\alpha) = w_1 \alpha_1 + \cdots + w_n\alpha_n.$
address@hidden tex
 @item Ws:
 (general) weighted lexicographical ordering:
 @cindex general weighted lexicographical ordering
 @cindex local weighted lexicographical ordering
 @cindex Ws, local ordering
 @*
address@hidden
+${\tt Ws}(w_1, \ldots, w_n),\; w_1$
address@hidden tex
  a nonzero integer,
address@hidden
+$w_2,\ldots,w_n$
address@hidden tex
  any integer (including 0),
  is defined as @code{Ds}
  but with
address@hidden
+$\deg(x^\alpha) = w_1 \alpha_1 + \cdots + w_n\alpha_n.$
address@hidden tex
 @end table
 
 @c --------------------------------------------------------------------------
@@ -21410,22 +22640,42 @@
 @cindex Module orderings
 
 @sc{Singular} offers also orderings on the set of ``monomials''
address@hidden
+$\{ x^a e_i  \mid  a \in N^n, 1 \leq i \leq r \}$ in Loc $K[x]^r$ = Loc
+$K[x]e_1 
++ \ldots +$Loc $K[x]e_r$, where $e_1, \ldots, e_r$ denote the canonical
+generators of Loc $K[x]^r$, the r-fold direct sum of Loc $K[x]$.
+(The function {\tt gen(i)} yields $e_i$).
address@hidden tex
 
 We have two possibilities: either to give priority to the component of a
 vector in 
address@hidden
+ Loc $K[x]^r$
address@hidden tex
 or (which is the default in @sc{Singular}) to give priority
 to the coefficients.
 The orderings @code{(<,c)} and @code{(<,C)} give priority to the
 coefficients; whereas
 @code{(c,<)} and @code{(C,<)} give priority to the components.
 @*Let < be any of the monomial orderings of 
address@hidden
+Loc $K[x]$
address@hidden tex
 as above.
 
 @table @asis
 @item (<,C):
 @cindex C, module ordering
 @cindex module ordering C
address@hidden
+$<_m = (<,C)$ denotes the module ordering (giving priority to the 
coefficients):
address@hidden tex
 @*
address@hidden
+\quad  \quad  $x^\alpha e_i <_m x^\beta e_j \Leftrightarrow x^\alpha <
+x^\beta$ or ($x^\alpha = x^\beta $ and $ i < j$).
address@hidden tex
 
 @strong{Example:}
 @smallexample
@@ -21440,6 +22690,13 @@
 @end smallexample
 
 @item (C,<):
address@hidden
+$<_m = (C, <)$ denotes the module ordering (giving priority to the component):
address@hidden tex
address@hidden
+\quad \quad   $x^\alpha e_i <_m x^\beta e_j \Leftrightarrow i < j$ or ($
+i = j $ and $ x^\alpha < x^\beta $). 
address@hidden tex
 
 @strong{Example:}
 @smallexample
@@ -21455,6 +22712,13 @@
 @item (<,c):
 @cindex c, module ordering
 @cindex module ordering c
address@hidden
+$<_m = (<,c)$ denotes the module ordering (giving priority to the 
coefficients):
address@hidden tex
address@hidden
+\quad \quad $x^\alpha e_i <_m x^\beta e_j \Leftrightarrow x^\alpha <
+x^\beta$ or ($x^\alpha = x^\beta $ and $ i > j$).
address@hidden tex
 
 @strong{Example:}
 @smallexample
@@ -21468,6 +22732,13 @@
 @end smallexample
 
 @item (c,<):
address@hidden
+$<_m = (c, <)$ denotes the module ordering (giving priority to the component):
address@hidden tex
address@hidden
+\quad \quad   $x^\alpha e_i <_m x^\beta e_j \Leftrightarrow i > j$ or ($
+i = j $ and $ x^\alpha < x^\beta $). 
address@hidden tex
 
 @strong{Example:}
 @smallexample
@@ -21481,7 +22752,14 @@
 @end smallexample
 @end table
 
address@hidden
+The output of a vector $v$ in $K[x]^r$ with components $v_1,
+\ldots, v_r$ has the format $v_1 * gen(1) + \ldots + v_r * gen(r)$
address@hidden tex
 (up to permutation) unless the ordering starts with @code{c}.
address@hidden
+In this case a vector is written as $[v_1, \ldots, v_r]$.
address@hidden tex
 In all cases @sc{Singular} can read input in both formats.
 
 @c --------------------------------------------------------------------------
@@ -21492,25 +22770,152 @@
 @cindex M, ordering
 
 Let 
address@hidden
+$M$
address@hidden tex
 be an invertible 
address@hidden
+$(n \times n)$-matrix
address@hidden tex
  with integer coefficients and
address@hidden
+$M_1, \ldots, M_n$ the rows of $M$.
address@hidden tex
 
 The M-ordering < is defined as follows:
 @*
address@hidden
+\quad \quad $x^a < x^b \Leftrightarrow \exists\  1 \leq i \leq n :
+M_1 a = \; M_1 b, \ldots, M_{i-1} a = \; M_{i-1} b$ and $M_i a < \; M_i b$.
address@hidden tex
 
 Thus,
address@hidden
+$x^a < x^b$
+if and only if $M a$ is smaller than $M b$
address@hidden tex
 with respect to the lexicographical ordering.
 
 The following matrices represent (for 3 variables) the global and
 local orderings defined above (note that the matrix is not uniquely determined
 by the ordering):
 
address@hidden
+
+$\quad$ lp:
+$\left(\matrix{
+ 1 & 0 & 0 \cr
+ 0 & 1 & 0 \cr
+ 0 & 0 & 1 \cr
+ }\right)$
+\quad dp:
+$\left(\matrix{
+ 1 & 1 & 1 \cr
+ 0 & 0 &-1 \cr
+ 0 &-1 & 0 \cr
+ }\right)$
+\quad Dp:
+$\left(\matrix{
+ 1 & 1 & 1 \cr
+ 1 & 0 & 0 \cr
+ 0 & 1 & 0 \cr
+ }\right)$
+
+$\quad$ wp(1,2,3):
+$\left(\matrix{
+ 1 & 2 & 3 \cr
+ 0 & 0 &-1 \cr
+ 0 &-1 & 0 \cr
+ }\right)$
+\quad Wp(1,2,3):
+$\left(\matrix{
+ 1 & 2 & 3 \cr
+ 1 & 0 & 0 \cr
+ 0 & 1 & 0 \cr
+ }\right)$
+
+$\quad$ ls:
+$\left(\matrix{
+-1 & 0 & 0 \cr
+ 0 &-1 & 0 \cr
+ 0 & 0 &-1 \cr
+ }\right)$
+\quad ds:
+$\left(\matrix{
+-1 &-1 &-1 \cr
+ 0 & 0 &-1 \cr
+ 0 &-1 & 0 \cr
+ }\right)$
+\quad Ds:
+$\left(\matrix{
+-1 &-1 &-1 \cr
+ 1 & 0 & 0 \cr
+ 0 & 1 & 0 \cr
+ }\right)$
+
+$\quad$ ws(1,2,3):
+$\left(\matrix{
+-1 &-2 &-3 \cr
+ 0 & 0 &-1 \cr
+ 0 &-1 & 0 \cr
+ }\right)$
+\quad Ws(1,2,3):
+$\left(\matrix{
+-1 &-2 &-3 \cr
+ 1 & 0 & 0 \cr
+ 0 & 1 & 0 \cr
+ }\right)$
address@hidden tex
 
 Product orderings (see next section) represented by  a matrix:
 
address@hidden
+$\quad$ (dp(3), wp(1,2,3)):
+$\left(\matrix{
+1&  1&  1&  0&  0&  0 \cr
+0&  0&  -1&  0&  0&  0 \cr
+0&  -1&  0&  0&  0&  0 \cr
+0&  0&  0&  1&  2&  3 \cr
+0&  0&  0&  0&  0&  -1 \cr
+0&  0&  0&  0&  -1&  0 \cr
+ }\right)$
+
+$\quad$ (Dp(3), ds(3)):
+$\left(\matrix{
+1&  1&  1&  0&  0&  0 \cr
+1&  0&  0&  0&  0&  0 \cr
+0&  1&  0&  0&  0&  0 \cr
+0&  0&  0&  -1&  -1&  -1 \cr
+0&  0&  0&  0&  0&  -1 \cr
+0&  0&  0&  0&  -1&  0 \cr
+ }\right)$
address@hidden tex
 
 Orderings with extra weight vector (see below) represented by  a matrix:
 
address@hidden
+$\quad$ (dp(3), a(1,2,3),dp(3)):
+$\left(\matrix{
+1&  1&  1&  0&  0&  0 \cr
+0&  0&  -1&  0&  0&  0 \cr
+0&  -1&  0&  0&  0&  0 \cr
+0&  0&  0&  1&  2&  3 \cr
+0&  0&  0&  1&  1&  1 \cr
+0&  0&  0&  0&  0&  -1 \cr
+0&  0&  0&  0&  -1&  0 \cr
+ }\right)$
+
+$\quad$ (a(1,2,3,4,5),Dp(3), ds(3)):
+$\left(\matrix{
+1&  2&  3&  4&  5&  0 \cr
+1&  1&  1&  0&  0&  0 \cr
+1&  0&  0&  0&  0&  0 \cr
+0&  1&  0&  0&  0&  0 \cr
+0&  0&  0&  -1&  -1&  -1 \cr
+0&  0&  0&  0&  0 & -1 \cr
+0&  0&  0&  0&  -1&  0 \cr
+ }\right)$
address@hidden tex
 
 @address@hidden:
 @smallexample
@@ -21540,7 +22945,13 @@
 @end smallexample
 
 If the ring has 
address@hidden
+$n$
address@hidden tex
 variables and the matrix contains less than 
address@hidden
+$n \times n$
address@hidden tex
 entries an error message is given, if there are more entries,
 the last ones are ignored.
 
@@ -21561,6 +22972,9 @@
 @cindex orderings, product
 
 Let
address@hidden
+$x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_m)$
address@hidden tex
 be two ordered sets of variables,
 
 Inductively one defines the product ordering of more than two monomial
@@ -21582,9 +22996,24 @@
 @cindex a, ordering
 @cindex orderings, a 
 
address@hidden
+${\tt a}(w_1, \ldots, w_n),\; $
address@hidden tex
address@hidden
+$w_1,\ldots,w_n$
address@hidden tex
 any integers (including 0), defines
address@hidden
+$\deg(x^\alpha) = w_1 \alpha_1 + \cdots + w_n\alpha_n$
address@hidden tex
 and
 @*
address@hidden
+    $$\deg(x^\alpha) < \deg(x^\beta) \Rightarrow x^\alpha < x^\beta,$$
address@hidden tex
address@hidden
+    $$\deg(x^\alpha) > \deg(x^\beta) \Rightarrow x^\alpha > x^\beta. $$
address@hidden tex
 @*An extra weight vector does not define a monomial ordering by itself:
 it can only be used in combination with other orderings
 to insert an extra line of weights into the ordering
@@ -21633,14 +23062,44 @@
 @cindex Standard bases
 
 @subheading Definition
address@hidden
+Let $R = \hbox{Loc}_< K[\underline{x}]$ and let $I$ be a submodule of $R^r$.
+Note that for r=1 this means that $I$ is an ideal in $R$.
+Denote by $L(I)$ the submodule of $R^r$ generated by the leading terms 
+of elements of $I$, i.e. by $\left\{L(f) \mid f \in I\right\}$.
+Then $f_1, \ldots, f_s \in I$ is called a {\bf standard basis} of $I$ 
+if $L(f_1), \ldots, L(f_s)$ generate $L(I)$.
address@hidden tex
 
 @subheading Properties
 @table @asis
 @item normal form:
 @cindex Normal form
address@hidden
+A function $\hbox{NF} : R^r \times \{G \mid G\ \hbox{ a standard
+basis}\} \to R^r, (p,G) \mapsto \hbox{NF}(p|G)$, is called a {\bf normal
+form} if for any $p \in R^r$ and any standard basis $G$ the following
+holds: if $\hbox{NF}(p|G) \not= 0$ then $L(g)$ does not divide
+$L(\hbox{NF}(p|G))$ for all $g \in G$.
+
+\noindent
+$\hbox{NF}(p|G)$ is called a {\bf normal form of} $p$ {\bf with
+respect to} $G$ (note that such a function is not unique).
address@hidden tex
 @item ideal membership:
 @cindex Ideal membership
address@hidden
+For a standard basis $G$ of $I$ the following holds: 
+$f \in I$ if and only if $\hbox{NF}(f,G) = 0$.
address@hidden tex
 @item Hilbert function:
address@hidden
+Let \hbox{$I \subseteq K[\underline{x}]^r$} be a homogeneous module, then the 
Hilbert function
+$H_I$ of $I$ (see below)
+and the Hilbert function $H_{L(I)}$ of the leading module $L(I)$
+coincide, i.e.,
+$H_I=H_{L(I)}$.
address@hidden tex
 @end table
 
 @c ---------------------------------------------------------------------------
@@ -21648,8 +23107,32 @@
 @section Hilbert function
 @cindex Hilbert function
 @cindex Hilbert series
address@hidden
+Let M $=\bigoplus_i M_i$ be a graded module over $K[x_1,..,x_n]$ with 
+respect to weights $(w_1,..w_n)$.
+The {\bf Hilbert function} of $M$, $H_M$, is defined (on the integers) by
+$$H_M(k) :=dim_K M_k.$$
+The {\bf Hilbert-Poincare series}  of $M$ is the power series
+$$\hbox{HP}_M(t) :=\sum_{i=-\infty}^\infty
+H_M(i)t^i=\sum_{i=-\infty}^\infty dim_K M_i \cdot t^i.$$
+It turns out that $\hbox{HP}_M(t)$ can be written in two useful ways
+for weights $(1,..,1)$:
+$$\hbox{HP}_M(t)={Q(t)\over (1-t)^n}={P(t)\over (1-t)^{dim(M)}}$$
+where $Q(t)$ and $P(t)$ are polynomials in ${\bf Z}[t]$.
+$Q(t)$ is called the {\bf first Hilbert series},
+and $P(t)$ the {\bf second Hilbert series}.
+If \hbox{$P(t)=\sum_{k=0}^N a_k t^k$}, and \hbox{$d = dim(M)$},
+then \hbox{$H_M(s)=\sum_{k=0}^N a_k$ ${d+s-k-1}\choose{d-1}$}
+(the {\bf Hilbert polynomial}) for $s \ge N$.
address@hidden tex
 @*
 @*
address@hidden
+Generalizing these to quasihomogeneous modules we get
+$$\hbox{HP}_M(t)={Q(t)\over {\Pi_{i=1}^n(1-t^{w_i})}}$$
+where $Q(t)$ is a polynomial in ${\bf Z}[t]$.
+$Q(t)$ is called the {\bf first (weighted) Hilbert series} of M.
address@hidden tex
 
 @c ---------------------------------------------------------------------------
 @node Syzygies and resolutions, Characteristic sets, Hilbert function, 
Mathematical background
@@ -21657,11 +23140,22 @@
 @cindex Syzygies and resolutions
 
 @subheading Syzygies
address@hidden
+Let $R$ be a quotient of $\hbox{Loc}_< K[\underline{x}]$ and let 
\hbox{$I=(g_1, ..., g_s)$} be a submodule of $R^r$.
+Then the {\bf module of syzygies} (or {\bf 1st syzygy module}, {\bf module of 
relations}) of $I$, syz($I$), is defined to be the kernel of the map \hbox{$R^s 
\rightarrow R^r,\; \sum_{i=1}^s w_ie_i \mapsto \sum_{i=1}^s w_ig_i$.}
address@hidden tex
 
 The @strong{k-th syzygy module} is defined inductively to be the module
 of syzygies of the
address@hidden
+$(k-1)$-st 
address@hidden tex
  syzygy module.
 
address@hidden
+Note, that the syzygy modules of $I$ depend on a choice of generators $g_1, 
..., g_s$.
+But one can show that they depend on $I$ uniquely up to direct summands.
address@hidden tex
 
 @table @code
 @item @strong{Example:}
@@ -21679,10 +23173,26 @@
 @end table
 
 @subheading Free resolutions
address@hidden
+Let $I=(g_1,...,g_s)\subseteq R^r$ and $M= R^r/I$.
+A {\bf free resolution of $M$} is a long exact sequence
+$$...\longrightarrow F_2 \buildrel{A_2}\over{\longrightarrow} F_1
+\buildrel{A_1}\over{\longrightarrow} F_0\longrightarrow M\longrightarrow
+0,$$
address@hidden tex
 @*where the columns of the matrix
address@hidden
+$A_1$
address@hidden tex
 generate 
address@hidden
+$I$
address@hidden tex
 . Note, that resolutions need not to be finite (i.e., of
 finite length). The Hilbert Syzygy Theorem states, that for 
address@hidden
+$R=\hbox{Loc}_< K[\underline{x}]$
address@hidden tex
 there exists a ("minimal") resolution of length not exceeding the number of
 variables.
 
@@ -21715,11 +23225,37 @@
 @subheading Betti numbers and regularity
 @cindex Betti number
 @cindex regularity
address@hidden
+Let $R$ be a graded ring (e.g., $R = \hbox{Loc}_< K[\underline{x}]$) and
+let $I \subset R^r$ be a graded submodule. Let
+$$
+  R^r = \bigoplus_a R\cdot e_{a,0} \buildrel A_1 \over \longleftarrow
+        \bigoplus_a R\cdot e_{a,1} \longleftarrow \ldots \longleftarrow
+        \bigoplus_a R\cdot e_{a,n} \longleftarrow 0
+$$
+be a minimal free resolution of $R^n/I$ considered with homogeneous maps
+of degree 0. Then the {\bf graded Betti number} $b_{i,j}$ of $R^r/I$ is
+the minimal number of generators $e_{a,j}$ in degree $i+j$ of the $j$-th
+syzygy module of $R^r/I$ (i.e., the $(j-1)$-st syzygy module of
+$I$). Note, that by definition the $0$-th syzygy module of $R^r/I$ is $R^r$
+and the 1st syzygy module of $R^r/I$ is $I$.
address@hidden tex
 
 The @strong{regularity} of 
address@hidden
+$I$
address@hidden tex
  is the smallest integer 
address@hidden
+$s$
address@hidden tex
 
 such that
address@hidden
+$$
+    \hbox{deg}(e_{a,j}) \le s+j-1 \quad \hbox{for all $j$.}
+$$
address@hidden tex
 
 @table @code
 @item @strong{Example:}
@@ -21752,6 +23288,43 @@
 @section Characteristic sets
 @cindex Characteristic sets
 
address@hidden
+Let $<$ be the lexicographical ordering on $R=K[x_1,...,x_n]$ with $x_1
+< ... < x_n$.
+For $f \in R$ let lvar($f$) (the leading variable of $f$) be the largest
+variable in $f$,
+i.e., if $f=a_s(x_1,...,x_{k-1})x_k^s+...+a_0(x_1,...,x_{k-1})$ for some
+$k \leq n$ then lvar$(f)=x_k$.
+
+Moreover, let
+\hbox{ini}$(f):=a_s(x_1,...,x_{k-1})$. The pseudo remainder
+$r=\hbox{prem}(g,f)$ of $g$ with respect to $f$ is
+defined by the equality $\hbox{ini}(f)^a\cdot g = qf+r$ with
+$\hbox{deg}_{lvar(f)}(r)<\hbox{deg}_{lvar(f)}(f)$ and $a$
+minimal.
+
+A set $T=\{f_1,...,f_r\} \subset R$ is called triangular if
+$\hbox{lvar}(f_1)<...<\hbox{lvar}(f_r)$. Moreover, let $ U \subset T $,
+then $(T,U)$ is called a triangular system, if $T$ is a triangular set
+such that $\hbox{ini}(T)$ does not vanish on $V(T) \setminus V(U)
+(=:V(T\setminus U))$.
+
+$T$ is called irreducible if for every $i$ there are no
+$d_i$,$f_i'$,$f_i''$ such that
+$$   \hbox{lvar}(d_i)<\hbox{lvar}(f_i) =
+\hbox{lvar}(f_i')=\hbox{lvar}(f_i''),$$
+$$   0 \not\in \hbox{prem}(\{ d_i, \hbox{ini}(f_i'),
+\hbox{ini}(f_i'')\},\{ f_1,...,f_{i-1}\}),$$
+$$\hbox{prem}(d_if_i-f_i'f_i'',\{f_1,...,f_{i-1}\})=0.$$
+Furthermore, $(T,U)$ is called irreducible if $T$ is irreducible.
+
+The main result on triangular sets is the following:
+let $G=\{g_1,...,g_s\} \subset R$ then there are irreducible triangular sets 
$T_1,...,T_l$
+such that $V(G)=\bigcup_{i=1}^{l}(V(T_i\setminus I_i))$
+where $I_i=\{\hbox{ini}(f) \mid f \in T_i \}$. Such a set
+$\{T_1,...,T_l\}$ is called an {\bf irreducible characteristic series} of
+the ideal $(G)$.
address@hidden tex
 
 @table @code
 @item @strong{Example:}
@@ -21776,14 +23349,61 @@
 @c tex and info versions of it. It end just before the introducing text
 @c to the first example.
 
address@hidden
+Let $f\colon(C^{n+1},0)\rightarrow(C,0)$ be a complex isolated hypersurface 
singularity given by a polynomial with algebraic coefficients which we also 
denote by $f$.
+Let $O=C[x_0,\ldots,x_n]_{(x_0,\ldots,x_n)}$ be the local ring at the origin 
and $J_f$ the Jacobian ideal of $f$.
+
+A {\bf Milnor representative} of $f$ defines a differentiable fibre bundle 
over the punctured disc with fibres of homotopy type of $\mu$ $n$-spheres.
+The $n$-th cohomology bundle is a flat vector bundle of dimension $n$ and 
carries a natural flat connection with covariant derivative $\partial_t$.
+The {\bf monodromy operator} is the action of a positively oriented generator 
of the fundamental group of the puctured disc on the Milnor fibre.
+Sections in the cohomology bundle of {\bf moderate growth} at $0$ form a 
regular $D=C\{t\}[\partial_t]$-module $G$, the {\bf Gauss-Manin connection}.
+
+By integrating along flat multivalued families of cycles, one can consider 
fibrewise global holomorphic differential forms as elements of $G$.
+This factors through an inclusion of the {\bf Brieskorn lattice} 
$H'':=\Omega^{n+1}_{C^{n+1},0}/df\wedge d\Omega^{n-1}_{C^{n+1},0}$ in $G$.
+
+The $D$-module structure defines the {\bf V-filtration} $V$ on $G$ by 
$V^\alpha:=\sum_{\beta\ge\alpha}C\{t\}ker(t\partial_t-\beta)^{n+1}$.
+The Brieskorn lattice defines the {\bf Hodge filtration} $F$ on $G$ by 
$F_k=\partial_t^kH''$ which comes from the {\bf mixed Hodge structure} on the 
Milnor fibre.
+Note that $F_{-1}=H'$.
+
+The induced V-filtration on the Brieskorn lattice determines the {\bf 
singularity spectrum} $Sp$ by $Sp(\alpha):=\dim_CGr_V^\alpha Gr^F_0G$.
+The spectrum consists of $\mu$ rational numbers $\alpha_1,\dots,\alpha_\mu$ 
such that $e^{2\pi i\alpha_1},\dots,e^{2\pi i\alpha_\mu}$ are the eigenvalues 
of the monodromy.
+These {\bf spectral numbers} lie in the open interval $(-1,n)$, symmetric 
about the midpoint $(n-1)/2$.
+
+The spectrum is constant under $\mu$-constant deformations and has the 
following semicontinuity property:
+The number of spectral numbers in an interval $(a,a+1]$ of all singularities 
of a small deformation of $f$ is greater or equal to that of f in this interval.
+For semiquasihomogeneous singularities, this also holds for intervals of the 
form $(a,a+1)$.
+
+Two given isolated singularities $f$ and $g$ determine two spectra and from 
these spectra we get an integer.
+This integer is the maximal positive integer $k$ such that the semicontinuity 
holds for the spectrum of $f$ and $k$ times the spectrum of $g$.
+These numbers give bounds for the maximal number of isolated singularities of 
a specific type on a hypersurface $X\subset{P}^n$ of degree $d$: 
+such a hypersurface has a smooth hyperplane section, and the complement is a 
small deformation of a cone over this hyperplane section.
+The cone itself being a $\mu$-constant deformation of $x_0^d+\dots+x_n^d=0$, 
the singularities are bounded by the spectrum of $x_0^d+\dots+x_n^d$.
+
+Using the library {\tt gaussman.lib} one can compute the {\bf monodromy}, the 
V-filtration on $H''/H'$, and the spectrum.
address@hidden tex
 
 
 Let us consider as an example 
address@hidden
+$f=x^5+x^2y^2+y^5$
address@hidden tex
 .
 First, we compute a matrix 
address@hidden
+$M$
address@hidden tex
  such that
address@hidden
+$\exp(2\pi iM)$
address@hidden tex
 is a monodromy matrix of 
address@hidden
+$f$
address@hidden tex
  and the Jordan normal form of 
address@hidden
+$M$
address@hidden tex
 :
 @smallexample
 @c reused example Gauss-Manin_connection math.doc:505 
@@ -21808,6 +23428,9 @@
 @end smallexample
 
 Now, we compute the V-filtration on 
address@hidden
+$H''/H'$
address@hidden tex
  and the spectrum:
 @smallexample
 @c reused example Gauss-Manin_connection_1 math.doc:517 
@@ -21859,17 +23482,36 @@
 @c end example Gauss-Manin_connection_1 math.doc:517
 @end smallexample
 Here @code{l[1]} contains the spectral numbers, @code{l[2]} the corresponding 
multiplicities, @code{l[3]} a 
address@hidden
+$C$
address@hidden tex
 -basis of the V-filtration on 
address@hidden
+$H''/H'$
address@hidden tex
  in terms of the monomial basis of
address@hidden
+$O/J_f\cong H''/H'$
address@hidden tex
 in @code{l[4]}.
 
address@hidden
+If the principal part of $f$ is $C$-nondegenerate, one can compute the 
spectrum using the library {\tt spectrum.lib}.
+In this case, the V-filtration on $H''$ coincides with the Newton-filtration 
on $H''$ which allows to compute the spectrum more efficiently.
address@hidden tex
 
 
 Let us calculate one specific example, the maximal number 
 of triple points of type
address@hidden
+$\tilde{E}_6$ on a surface $X\subset{P}^3$
address@hidden tex
 of degree seven.
 This calculation can be done over the rationals.
 So choose a local ordering on 
address@hidden
+$Q[x,y,z]$
address@hidden tex
 . Here we take the
 negative degree lexicographical ordering which is denoted
 @code{ds} in @sc{Singular}:
@@ -21904,21 +23546,44 @@
 @end smallexample
 
 The command @code{spectrumnd(f)} computes the spectrum of 
address@hidden
+$f$
address@hidden tex
  and
 returns a list with six entries:
 The Milnor number
address@hidden
+$\mu(f)$, the geometric genus $p_g(f)$
address@hidden tex
 and the number of different spectrum numbers.
 The other three entries are of type @code{intvec}.
 They contain the numerators, denominators and
 multiplicities of the spectrum numbers. So
address@hidden
+$x^7+y^7+z^7=0$
address@hidden tex
 has Milnor number 216 and geometrical
 genus 35. Its spectrum consists of the 16 different rationals
 @*
address@hidden
+${3 \over 7}, {4 \over 7}, {5 \over 7}, {6 \over 7}, {1 \over 1},
+{8 \over 7}, {9 \over 7}, {10 \over 7}, {11 \over 7}, {12 \over 7},
+{13 \over 7}, {2 \over 1}, {15 \over 7}, {16 \over 7}, {17 \over 7},
+{18 \over 7}$
address@hidden tex
 @*appearing with multiplicities
 @*1,3,6,10,15,21,25,27,27,25,21,15,10,6,3,1.
 
address@hidden
+The singularities of type $\tilde{E}_6$ form a
+$\mu$-constant one parameter family given by
+$x^3+y^3+z^3+\lambda xyz=0,\quad \lambda^3\neq-27$.
address@hidden tex
 Therefore they have all the same spectrum, which we compute
 for 
address@hidden
+$x^3+y^3+z^3$.
address@hidden tex
 
 @smallexample
 poly g=x^3+y^3+z^3;
@@ -21944,6 +23609,9 @@
 @end smallexample
 
 This tells us that there are at most 18 singularities of type
address@hidden
+$\tilde{E}_6$ on a septic in $P^3$. But $x^7+y^7+z^7$
address@hidden tex
 is semiquasihomogeneous (sqh), so we can also apply the stronger
 form of semicontinuity:
 
@@ -21953,12 +23621,21 @@
 @end smallexample
 
 So in fact a septic has at most 17 triple points of type
address@hidden
+$\tilde{E}_6$.
address@hidden tex
 
 Note that @code{spectrumnd(f)} works only if 
address@hidden
+$f$
address@hidden tex
  has nondegenerate
 principal part. In fact @code{spectrumnd} will detect a degenerate
 principal part in many cases and print out an error message.
 However if it is known in advance that 
address@hidden
+$f$
address@hidden tex
  has nondegenerate
 principal part, then the spectrum may be computed much faster
 using @code{spectrumnd(f,1)}.
@@ -21982,10 +23659,33 @@
 @comment DO NOT EDIT DIRECTLY, BUT EDIT ti_ip.doc INSTEAD
 @cindex ideal, toric
 
address@hidden
+Let $A$ denote an $m\times n$ matrix with integral coefficients. For $u
+\in Z\!\!\! Z^n$, we define $u^+,u^-$ to be the uniquely determined
+vectors with nonnegative coefficients and disjoint support (i.e.,
+$u_i^+=0$ or $u_i^-=0$ for each component $i$) such that
+$u=u^+-u^-$. For $u\geq 0$ component-wise, let $x^u$ denote the monomial
+$x_1^{u_1}\cdot\ldots\cdot x_n^{u_n}\in K[x_1,\ldots,x_n]$.
+
+The ideal
+$$ I_A:=<x^{u^+}-x^{u^-} | u\in\ker(A)\cap Z\!\!\! Z^n>\ \subset
+K[x_1,\ldots,x_n] $$
+is called a \bf toric ideal. \rm
+
+The first problem in computing toric ideals is to find a finite
+generating set: Let $v_1,\ldots,v_r$ be a lattice basis of $\ker(A)\cap
+Z\!\!\! Z^n$ (i.e, a basis of the $Z\!\!\! Z$-module). Then
+$$ I_A:=I:(x_1\cdot\ldots\cdot x_n)^\infty $$
+where
+$$ I=<x^{v_i^+}-x^{v_i^-}|i=1,\ldots,r> $$
address@hidden tex
 
 
 The required lattice basis can be computed using the LLL-algorithm 
(@pxref{[Coh93]}). For the computation of the saturation, there are various
 possibilities described in the
address@hidden
+section Algorithms.
address@hidden tex
 
 @menu
 * Algorithms::             Various algorithms for computing toric ideals.
@@ -22013,6 +23713,23 @@
 
 
 The algorithm of Conti and Traverso (@pxref{[CoTr91]})
address@hidden
+computes $I_A$ via the
+extended matrix $B=(I_m|A)$,
+where $I_m$ is the $m\times m$ unity matrix. A lattice basis of $B$ is
+given by the set of vectors $(a^j,-e_j)\in Z\!\!\! Z^{m+n}$, where $a^j$
+is the $j$-th row of $A$ and $e_j$ the $j$-th coordinate vector. We
+look at the ideal in $K[y_1,\ldots,y_m,x_1,\ldots,x_n]$ corresponding to
+these vectors, namely
+$$ I_1=<y^{a_j^+}- x_j y^{a_j^-} | j=1,\ldots, n>.$$
+We introduce a further variable $t$ and adjoin the binomial $t\cdot
+y_1\cdot\ldots\cdot y_m -1$ to the generating set of $I_1$, obtaining
+an ideal $I_2$ in the polynomial ring $K[t,
+y_1,\ldots,y_m,x_1,\ldots,x_n]$. $I_2$ is saturated w.r.t. all
+variables because all variables are invertible modulo $I_2$. Now $I_A$
+can be computed from $I_2$ by eliminating the variables
+$t,y_1,\ldots,y_m$.
address@hidden tex
 
 Because of the big number of auxiliary variables needed to compute a
 toric ideal, this algorithm is rather slow in practice. However, it has
@@ -22027,6 +23744,16 @@
 
 
 The algorithm of Pottier (@pxref{[Pot94]}) starts by computing a lattice
address@hidden
+basis $v_1,\ldots,v_r$ for the integer kernel of $A$ using the
+LLL-algorithm. The ideal corresponding to the lattice basis vectors
+$$ I_1=<x^{v_i^+}-x^{v_i^-}|i=1,\ldots,r> $$
+is saturated -- as in the algorithm of Conti and Traverso -- by
+inversion of all variables: One adds an auxiliary variable $t$ and the
+generator $t\cdot x_1\cdot\ldots\cdot x_n -1$ to obtain an ideal $I_2$
+in $K[t,x_1,\ldots,x_n]$ from which one computes $I_A$ by elimination of
+$t$.
address@hidden tex
 
 
 @node Hosten and Sturmfels, Di Biase and Urbanke, Pottier, Algorithms
@@ -22037,6 +23764,33 @@
 
 
 The algorithm of Hosten and Sturmfels (@pxref{[HoSt95]}) allows to
address@hidden
+compute $I_A$ without any auxiliary variables, provided that $A$ contains a 
vector $w$
+with positive coefficients in its row space. This is a real restriction,
+i.e., the algorithm will not necessarily work in the general case.
+
+A lattice basis $v_1,\ldots,v_r$ is again computed via the
+LLL-algorithm. The saturation step is performed in the following way:
+First note that $w$ induces a positive grading w.r.t. which the ideal
+$$ I=<x^{v_i^+}-x^{v_i^-}|i=1,\ldots,r> $$
+corresponding to our lattice basis is homogeneous. We use the following
+lemma:
+
+Let $I$ be a homogeneous ideal w.r.t. the weighted reverse
+lexicographical ordering with weight vector $w$ and variable order $x_1
+> x_2 > \ldots > x_n$. Let $G$ denote a Groebner basis of $I$ w.r.t. to
+this ordering.  Then a Groebner basis of $(I:x_n^\infty)$ is obtained by
+dividing each element of $G$ by the highest possible power of $x_n$.
+
+From this fact, we can successively compute
+$$ I_A= I:(x_1\cdot\ldots\cdot x_n)^\infty
+=(((I:x_1^\infty):x_2^\infty):\ldots :x_n^\infty); $$
+in the $i$-th step we take $x_i$ as the cheapest variable and apply the
+lemma with $x_i$ instead of $x_n$.
+
+This procedure involves $n$ Groebner basis computations. Actually, this
+number can be reduced to at most $n/2$
address@hidden tex
 (@pxref{[HoSh98]}), and the single
 computations -- except from the first one -- show to be easy and fast in
 practice.
@@ -22049,6 +23803,38 @@
 
 Like the algorithm of Hosten and Sturmfels, the algorithm of Di Biase
 and Urbanke (@pxref{[DBUr95]}) performs up
address@hidden
+to $n/2$ Groebner basis
+computations. It needs no auxiliary variables, but a supplementary
+precondition; namely, the existence of a vector without zero components
+in the kernel of $A$.
+
+The main idea comes from the following observation:
+
+Let $B$ be an integer matrix, $u_1,\ldots,u_r$ a lattice basis of the
+integer kernel of $B$. Assume that all components of $u_1$ are
+positive. Then
+$$ I_B=<x^{u_i^+}-x^{u_i^-}|i=1,\ldots,r>, $$
+i.e., the ideal on the right is already saturated w.r.t. all variables.
+
+The algorithm starts by finding a lattice basis $v_1,\ldots,v_r$ of the
+kernel of $A$ such that $v_1$ has no zero component. Let
+$\{i_1,\ldots,i_l\}$ be the set of indices $i$ with
+$v_{1,i}<0$. Multiplying the components $i_1,\ldots,i_l$ of
+$v_1,\ldots,v_r$ and the columns $i_1,\ldots,i_l$ of $A$ by $-1$ yields
+a matrix $B$ and a lattice basis $u_1,\ldots,u_r$ of the kernel of $B$
+that fulfill the assumption of the observation above. We are then able
+to compute a generating set of $I_A$ by applying the following
+``variable flip'' successively to $i=i_1,\ldots,i_l$:
+
+Let $>$ be an elimination ordering for $x_i$. Let $A_i$ be the matrix
+obtained by multiplying the $i$-th column of $A$ with $-1$. Let
+$$\{x_i^{r_j} x^{a_j} - x^{b_j} | j\in J \}$$
+be a Groebner basis of $I_{A_i}$ w.r.t. $>$ (where $x_i$ is neither
+involved in $x^{a_j}$ nor in $x^{b_j}$). Then
+$$\{x^{a_j} - x_i^{r_j} x^{b_j} | j\in J \}$$
+is a generating set for $I_A$.
address@hidden tex
 
 @node Bigatti and La Scala and Robbiano, , Di Biase and Urbanke, Algorithms
 
@@ -22059,6 +23845,12 @@
 The algorithm of Bigatti, La Scala and Robbiano (@pxref{[BLR98]}) combines the 
ideas of
 the algorithms of Pottier and of Hosten and Sturmfels. The
 computations are performed on a graded ideal with one auxiliary
address@hidden
+variable $u$ and one supplementary generator $x_1\cdot\ldots\cdot x_n -
+u$ (instead of the generator $t\cdot x_1\cdot\ldots\cdot x_n -1$ in
+the algorithm of Pottier). The algorithm uses a quite unusual technique to
+get rid of the variable $u$ again.
address@hidden tex
 
 There is another algorithm of the authors which tries to parallelize
 the computations (but which is not implemented in this library).
@@ -22083,6 +23875,25 @@
 @subsection Integer programming
 @cindex integer programming
 
address@hidden
+Let $A$ be an $m\times n$ matrix with integral coefficients, $b\in
+Z\!\!\! Z^m$ and $c\in Z\!\!\! Z^n$. The problem
+$$ \min\{c^T x | x\in Z\!\!\! Z^n, Ax=b, x\geq 0\hbox{
+component-wise}\} $$
+is called an instance of the \bf integer programming problem \rm or
+\bf IP problem. \rm
+
+The IP problem is very hard; namely, it is NP-complete.
+
+For the following discussion let $c\geq 0$ (component-wise). We
+consider $c$ as a weight vector; because of its non-negativity, $c$ can
+be refined into a monomial ordering $>_c$. It turns out that we can
+solve such an IP instance with the help of toric ideals:
+
+First we assume that an initial solution $v$ (i.e., $v\in Z\!\!\!
+Z^n, v\geq 0, Av=b$) is already known. We obtain the optimal solution
+$v_0$ (i.e., with $c^T v_0$ minimal) by the following procedure:
address@hidden tex
 @c \begin{itemize}
 @c \item (1) Compute the toric ideal $I_A$ using one of the algorithms in the
 @c       previous section.
@@ -22097,11 +23908,23 @@
 @itemize @bullet
 @item (1) Compute the toric ideal I(A) using one of the algorithms in the 
previous section.
 @item (2) Compute the reduced Groebner basis G(c) of I(A) w.r.t.@: 
address@hidden
+$>_c$
address@hidden tex
 .
 @item (3) Reduce 
address@hidden
+$x^v$
address@hidden tex
  modulo G(c) using the Hironaka division algorithm.
 If the result of this reduction is 
address@hidden
+$x^(v_0)$
address@hidden tex
 , then 
address@hidden
+$v_0$
address@hidden tex
  is an optimal
 solution of the given instance.
 @end itemize
@@ -22121,6 +23944,9 @@
 methods seem to be faster in general than the methods using toric
 ideals. But the latter have one great advantage: If one wants to solve
 various instances that differ only by the vector 
address@hidden
+$b$
address@hidden tex
 , one has to
 perform steps (1) and (2) above only once. As the running time of step (3)
 is very short, solving all the instances is not much harder than
@@ -22263,6 +24089,9 @@
 Symbolic Computation
 
 @item
address@hidden
+Faug\`ere,
address@hidden tex
 J. C.; Gianni, P.; Lazard, D.; Mora, T.: Efficient computation
 of zero-dimensional
 Gr@"obner bases by change of ordering. Journal of Symbolic Computation, 1989
@@ -47813,6 +49642,9 @@
 
 @item @strong{Warnings:}
 G should satisfy 
address@hidden
+$ 2*genus-2 < deg(G) < size(D) $
address@hidden tex
 , which is
 not checked by the algorithm.
 @*G and D should have disjoint supports (checked by the algorithm).
@@ -47877,10 +49709,16 @@
 for more details)address@hidden
 The code computes the residues of a vector space basis of
 
address@hidden
+$\Omega(G-D)$
address@hidden tex
  at the rational places given by D.
 
 @item @strong{Warnings:}
 G should satisfy 
address@hidden
+$ 2*genus-2 < deg(G) < size(D) $
address@hidden tex
 , which is
 not checked by the algorithm.
 @*G and D should have disjoint supports (checked by the algorithm).
@@ -47937,8 +49775,14 @@
    E[2] ... E[n+2]:  matrices used in the procedure decodeSV
    E[n+3]:  intvec with
        E[n+3][1]: correction capacity 
address@hidden
+$epsilon$
address@hidden tex
  of the algorithm
        E[n+3][2]: designed Goppa distance 
address@hidden
+$delta$
address@hidden tex
  of the current AG code
    @end format
 
@@ -47954,6 +49798,9 @@
 The current AG code is @code{AGcode_Omega(G,D,EC)address@hidden
 If you know the exact minimum distance d and you want to use it in
 @code{decodeSV} instead of 
address@hidden
+$delta$
address@hidden tex
 , you can change the value
 of E[n+3][2] to d before applying decodeSV.
 @*If you have a systematic encoding for the current code and want to
@@ -47964,10 +49811,19 @@
 @item @strong{Warnings:}
 F must be a divisor with support disjoint from the support of D and
 with degree 
address@hidden
+$epsilon + genus$
address@hidden tex
 , where
 
address@hidden
+$epsilon:=[(deg(G)-3*genus+1)/2]$
address@hidden tex
 address@hidden
 G should satisfy 
address@hidden
+$ 2*genus-2 < deg(G) < size(D) $
address@hidden tex
 , which is
 not checked by the algorithm.
 @*G and D should also have disjoint supports (checked by the




reply via email to

[Prev in Thread] Current Thread [Next in Thread]