[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [PATCH v2 2/3] hw/ufs: Support for Query Transfer Requests
From: |
Stefan Hajnoczi |
Subject: |
Re: [PATCH v2 2/3] hw/ufs: Support for Query Transfer Requests |
Date: |
Mon, 19 Jun 2023 09:16:33 +0200 |
On Fri, Jun 16, 2023 at 03:58:25PM +0900, Jeuk Kim wrote:
> This commit makes the UFS device support query
> and nop out transfer requests.
>
> The next patch would be support for UFS logical
> unit and scsi command transfer request.
>
> Signed-off-by: Jeuk Kim <jeuk20.kim@samsung.com>
> ---
> hw/ufs/ufs.c | 968 ++++++++++++++++++++++++++++++++++++++++++++++++++-
> hw/ufs/ufs.h | 45 +++
> 2 files changed, 1012 insertions(+), 1 deletion(-)
>
> diff --git a/hw/ufs/ufs.c b/hw/ufs/ufs.c
> index 9dba1073a8..10ecc8cd7b 100644
> --- a/hw/ufs/ufs.c
> +++ b/hw/ufs/ufs.c
> @@ -19,6 +19,233 @@
> #define UFS_MAX_NUTRS 32
> #define UFS_MAX_NUTMRS 8
>
> +static MemTxResult ufs_addr_read(UfsHc *u, hwaddr addr, void *buf, int size)
> +{
> + uint32_t cap = ldl_le_p(&u->reg.cap);
> + hwaddr hi = addr + size - 1;
> +
> + if (hi < addr) {
> + return MEMTX_DECODE_ERROR;
> + }
> +
> + if (!FIELD_EX32(cap, CAP, 64AS) && (hi >> 32)) {
> + return MEMTX_DECODE_ERROR;
> + }
> +
> + return pci_dma_read(PCI_DEVICE(u), addr, buf, size);
> +}
> +
> +static MemTxResult ufs_addr_write(UfsHc *u, hwaddr addr, const void *buf,
> + int size)
> +{
> + uint32_t cap = ldl_le_p(&u->reg.cap);
> + hwaddr hi = addr + size - 1;
> + if (hi < addr) {
> + return MEMTX_DECODE_ERROR;
> + }
> +
> + if (!FIELD_EX32(cap, CAP, 64AS) && (hi >> 32)) {
> + return MEMTX_DECODE_ERROR;
> + }
> +
> + return pci_dma_write(PCI_DEVICE(u), addr, buf, size);
> +}
> +
> +static void ufs_complete_req(UfsRequest *req, UfsReqResult req_result);
> +
> +static inline hwaddr ufs_get_utrd_addr(UfsHc *u, uint32_t slot)
> +{
> + uint32_t utrlba = ldl_le_p(&u->reg.utrlba);
> + uint32_t utrlbau = ldl_le_p(&u->reg.utrlbau);
> + hwaddr utrl_base_addr = (((hwaddr)utrlbau) << 32) + utrlba;
> + hwaddr utrd_addr = utrl_base_addr + slot * sizeof(UtpTransferReqDesc);
> +
> + return utrd_addr;
> +}
> +
> +static inline hwaddr ufs_get_req_upiu_base_addr(const UtpTransferReqDesc
> *utrd)
> +{
> + uint32_t cmd_desc_base_addr_lo =
> + le32_to_cpu(utrd->command_desc_base_addr_lo);
> + uint32_t cmd_desc_base_addr_hi =
> + le32_to_cpu(utrd->command_desc_base_addr_hi);
> +
> + return (((hwaddr)cmd_desc_base_addr_hi) << 32) + cmd_desc_base_addr_lo;
> +}
> +
> +static inline hwaddr ufs_get_rsp_upiu_base_addr(const UtpTransferReqDesc
> *utrd)
> +{
> + hwaddr req_upiu_base_addr = ufs_get_req_upiu_base_addr(utrd);
> + uint32_t rsp_upiu_byte_off =
> + le16_to_cpu(utrd->response_upiu_offset) * sizeof(uint32_t);
> + return req_upiu_base_addr + rsp_upiu_byte_off;
> +}
> +
> +static MemTxResult ufs_dma_read_utrd(UfsRequest *req)
> +{
> + UfsHc *u = req->hc;
> + hwaddr utrd_addr = ufs_get_utrd_addr(u, req->slot);
> + MemTxResult ret;
> +
> + ret = ufs_addr_read(u, utrd_addr, &req->utrd, sizeof(req->utrd));
> + if (ret) {
> + trace_ufs_err_dma_read_utrd(req->slot, utrd_addr);
> + }
> + return ret;
> +}
> +
> +static MemTxResult ufs_dma_read_req_upiu(UfsRequest *req)
> +{
> + UfsHc *u = req->hc;
> + hwaddr req_upiu_base_addr = ufs_get_req_upiu_base_addr(&req->utrd);
> + UtpUpiuReq *req_upiu = &req->req_upiu;
> + uint32_t copy_size;
> + uint16_t data_segment_length;
> + MemTxResult ret;
> +
> + /*
> + * To know the size of the req_upiu, we need to read the
> + * data_segment_length in the header first.
> + */
> + ret = ufs_addr_read(u, req_upiu_base_addr, &req_upiu->header,
> + sizeof(UtpUpiuHeader));
> + if (ret) {
> + trace_ufs_err_dma_read_req_upiu(req->slot, req_upiu_base_addr);
> + return ret;
> + }
> + data_segment_length = be16_to_cpu(req_upiu->header.data_segment_length);
> +
> + copy_size = sizeof(UtpUpiuHeader) + UFS_TRANSACTION_SPECIFIC_FIELD_SIZE +
> + data_segment_length;
> +
> + ret = ufs_addr_read(u, req_upiu_base_addr, &req->req_upiu, copy_size);
> + if (ret) {
> + trace_ufs_err_dma_read_req_upiu(req->slot, req_upiu_base_addr);
> + }
> + return ret;
> +}
> +
> +static MemTxResult ufs_dma_read_prdt(UfsRequest *req)
> +{
> + UfsHc *u = req->hc;
> + uint16_t prdt_len = le16_to_cpu(req->utrd.prd_table_length);
> + uint16_t prdt_byte_off =
> + le16_to_cpu(req->utrd.prd_table_offset) * sizeof(uint32_t);
> + uint32_t prdt_size = prdt_len * sizeof(UfshcdSgEntry);
> + UfshcdSgEntry *prd_entries;
> + hwaddr req_upiu_base_addr, prdt_base_addr;
> + int err;
> +
> + assert(!req->sg);
> +
> + if (prdt_len == 0) {
> + return MEMTX_OK;
> + }
> +
> + prd_entries = g_new(UfshcdSgEntry, prdt_size);
> + if (!prd_entries) {
> + trace_ufs_err_memory_allocation();
> + return MEMTX_ERROR;
> + }
> +
> + req_upiu_base_addr = ufs_get_req_upiu_base_addr(&req->utrd);
> + prdt_base_addr = req_upiu_base_addr + prdt_byte_off;
> +
> + err = ufs_addr_read(u, prdt_base_addr, prd_entries, prdt_size);
> + if (err) {
> + trace_ufs_err_dma_read_prdt(req->slot, prdt_base_addr);
> + return err;
prd_entries is leaked. I suggest using g_autofree to avoid manual
g_free() calls in return paths.
> + }
> +
> + req->sg = g_malloc0(sizeof(QEMUSGList));
> + if (!req->sg) {
> + trace_ufs_err_memory_allocation();
> + g_free(prd_entries);
> + return MEMTX_ERROR;
> + }
> + pci_dma_sglist_init(req->sg, PCI_DEVICE(u), prdt_len);
> +
> + for (uint16_t i = 0; i < prdt_len; ++i) {
> + hwaddr data_dma_addr = le64_to_cpu(prd_entries[i].addr);
> + int32_t data_byte_count = le32_to_cpu(prd_entries[i].size) + 1;
> + qemu_sglist_add(req->sg, data_dma_addr, data_byte_count);
> + }
> + g_free(prd_entries);
> +
> + return MEMTX_OK;
> +}
> +
> +static MemTxResult ufs_dma_read_upiu(UfsRequest *req)
> +{
> + MemTxResult ret;
> +
> + ret = ufs_dma_read_utrd(req);
> + if (ret) {
> + return ret;
> + }
> +
> + ret = ufs_dma_read_req_upiu(req);
> + if (ret) {
> + return ret;
> + }
> +
> + ret = ufs_dma_read_prdt(req);
> + if (ret) {
> + return ret;
> + }
> +
> + return 0;
> +}
> +
> +static MemTxResult ufs_dma_write_utrd(UfsRequest *req)
> +{
> + UfsHc *u = req->hc;
> + hwaddr utrd_addr = ufs_get_utrd_addr(u, req->slot);
> + MemTxResult ret;
> +
> + ret = ufs_addr_write(u, utrd_addr, &req->utrd, sizeof(req->utrd));
> + if (ret) {
> + trace_ufs_err_dma_write_utrd(req->slot, utrd_addr);
> + }
> + return ret;
> +}
> +
> +static MemTxResult ufs_dma_write_rsp_upiu(UfsRequest *req)
> +{
> + UfsHc *u = req->hc;
> + hwaddr rsp_upiu_base_addr = ufs_get_rsp_upiu_base_addr(&req->utrd);
> + uint32_t rsp_upiu_byte_len =
> + le16_to_cpu(req->utrd.response_upiu_length) * sizeof(uint32_t);
> + uint16_t data_segment_length =
> + be16_to_cpu(req->rsp_upiu.header.data_segment_length);
> + uint32_t copy_size = sizeof(UtpUpiuHeader) +
> + UFS_TRANSACTION_SPECIFIC_FIELD_SIZE +
> + data_segment_length;
> + MemTxResult ret;
> +
> + if (copy_size > rsp_upiu_byte_len) {
> + copy_size = rsp_upiu_byte_len;
> + }
> +
> + ret = ufs_addr_write(u, rsp_upiu_base_addr, &req->rsp_upiu, copy_size);
> + if (ret) {
> + trace_ufs_err_dma_write_rsp_upiu(req->slot, rsp_upiu_base_addr);
> + }
> + return ret;
> +}
> +
> +static MemTxResult ufs_dma_write_upiu(UfsRequest *req)
> +{
> + MemTxResult ret;
> +
> + ret = ufs_dma_write_rsp_upiu(req);
> + if (ret) {
> + return ret;
> + }
> +
> + return ufs_dma_write_utrd(req);
> +}
> +
> static void ufs_irq_check(UfsHc *u)
> {
> PCIDevice *pci = PCI_DEVICE(u);
> @@ -34,6 +261,36 @@ static void ufs_irq_check(UfsHc *u)
> }
> }
>
> +static void ufs_process_db(UfsHc *u, uint64_t val)
> +{
> + uint32_t slot;
> + uint32_t nutrs = u->params.nutrs;
> + uint32_t utrldbr = ldl_le_p(&u->reg.utrldbr);
> + UfsRequest *req;
> +
> + val &= ~utrldbr;
> + if (!val) {
> + return;
> + }
> + stl_le_p(&u->reg.utrldbr, utrldbr | val);
> +
> + slot = find_first_bit(&val, nutrs);
> +
> + while (slot < nutrs) {
> + req = &u->req_list[slot];
> + if (req->state != UFS_REQUEST_IDLE) {
> + trace_ufs_err_utrl_slot_busy(req->slot);
> + return;
> + }
> +
> + trace_ufs_process_db(slot);
> + req->state = UFS_REQUEST_READY;
> + slot = find_next_bit(&val, nutrs, slot + 1);
> + }
> +
> + qemu_bh_schedule(u->doorbell_bh);
> +}
> +
> static void ufs_process_uiccmd(UfsHc *u, uint32_t val)
> {
> uint32_t is = ldl_le_p(&u->reg.is);
> @@ -85,6 +342,7 @@ static void ufs_write_reg(UfsHc *u, hwaddr offset,
> uint32_t data, unsigned size)
> uint32_t is = ldl_le_p(&u->reg.is);
> uint32_t hcs = ldl_le_p(&u->reg.hcs);
> uint32_t hce = ldl_le_p(&u->reg.hce);
> + uint32_t utrldbr = ldl_le_p(&u->reg.utrldbr);
> uint32_t utrlcnr = ldl_le_p(&u->reg.utrlcnr);
> uint32_t utrlba, utmrlba;
>
> @@ -119,7 +377,9 @@ static void ufs_write_reg(UfsHc *u, hwaddr offset,
> uint32_t data, unsigned size)
> stl_le_p(&u->reg.utrlbau, data);
> break;
> case A_UTRLDBR:
> - /* Not yet supported */
> + ufs_process_db(u, data);
> + utrldbr |= data;
> + stl_le_p(&u->reg.utrldbr, utrldbr);
> break;
> case A_UTRLRSR:
> stl_le_p(&u->reg.utrlrsr, data);
> @@ -199,6 +459,632 @@ static const MemoryRegionOps ufs_mmio_ops = {
> },
> };
>
> +static void ufs_build_upiu_header(UfsRequest *req, uint8_t trans_type,
> + uint8_t flags, uint8_t response,
> + uint8_t scsi_status,
> + uint16_t data_segment_length)
> +{
> + memcpy(&req->rsp_upiu.header, &req->req_upiu.header,
> sizeof(UtpUpiuHeader));
> + req->rsp_upiu.header.trans_type = trans_type;
> + req->rsp_upiu.header.flags = flags;
> + req->rsp_upiu.header.response = response;
> + req->rsp_upiu.header.scsi_status = scsi_status;
> + req->rsp_upiu.header.data_segment_length =
> cpu_to_be16(data_segment_length);
> +}
> +
> +static UfsReqResult ufs_exec_nop_cmd(UfsRequest *req)
> +{
> + trace_ufs_exec_nop_cmd(req->slot);
> + ufs_build_upiu_header(req, UPIU_TRANSACTION_NOP_IN, 0, 0, 0, 0);
> + return UFS_REQUEST_SUCCESS;
> +}
> +
> +/*
> + * This defines the permission of flags based on their IDN. There are some
> + * things that are declared read-only, which is inconsistent with the ufs
> spec,
> + * because we want to return an error for features that are not yet
> supported.
> + */
> +static const int flag_permission[QUERY_FLAG_IDN_COUNT] = {
> + [QUERY_FLAG_IDN_FDEVICEINIT] = UFS_QUERY_FLAG_READ | UFS_QUERY_FLAG_SET,
> + /* Write protection is not supported */
> + [QUERY_FLAG_IDN_PERMANENT_WPE] = UFS_QUERY_FLAG_READ,
> + [QUERY_FLAG_IDN_PWR_ON_WPE] = UFS_QUERY_FLAG_READ,
> + [QUERY_FLAG_IDN_BKOPS_EN] = UFS_QUERY_FLAG_READ | UFS_QUERY_FLAG_SET |
> + UFS_QUERY_FLAG_CLEAR | UFS_QUERY_FLAG_TOGGLE,
> + [QUERY_FLAG_IDN_LIFE_SPAN_MODE_ENABLE] =
> + UFS_QUERY_FLAG_READ | UFS_QUERY_FLAG_SET | UFS_QUERY_FLAG_CLEAR |
> + UFS_QUERY_FLAG_TOGGLE,
> + /* Purge Operation is not supported */
> + [QUERY_FLAG_IDN_PURGE_ENABLE] = UFS_QUERY_FLAG_NONE,
> + /* Refresh Operation is not supported */
> + [QUERY_FLAG_IDN_REFRESH_ENABLE] = UFS_QUERY_FLAG_NONE,
> + /* Physical Resource Removal is not supported */
> + [QUERY_FLAG_IDN_FPHYRESOURCEREMOVAL] = UFS_QUERY_FLAG_READ,
> + [QUERY_FLAG_IDN_BUSY_RTC] = UFS_QUERY_FLAG_READ,
> + [QUERY_FLAG_IDN_PERMANENTLY_DISABLE_FW_UPDATE] = UFS_QUERY_FLAG_READ,
> + /* Write Booster is not supported */
> + [QUERY_FLAG_IDN_WB_EN] = UFS_QUERY_FLAG_READ,
> + [QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN] = UFS_QUERY_FLAG_READ,
> + [QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8] = UFS_QUERY_FLAG_READ,
> +};
> +
> +static inline QueryRespCode ufs_flag_check_idn_valid(uint8_t idn, int op)
> +{
> + if (idn >= QUERY_FLAG_IDN_COUNT) {
> + return QUERY_RESULT_INVALID_IDN;
> + }
> +
> + if (!(flag_permission[idn] & op)) {
> + if (op == UFS_QUERY_FLAG_READ) {
> + trace_ufs_err_query_flag_not_readable(idn);
> + return QUERY_RESULT_NOT_READABLE;
> + }
> + trace_ufs_err_query_flag_not_writable(idn);
> + return QUERY_RESULT_NOT_WRITEABLE;
> + }
> +
> + return QUERY_RESULT_SUCCESS;
> +}
> +
> +static const int attr_permission[QUERY_ATTR_IDN_COUNT] = {
> + /* booting is not supported */
> + [QUERY_ATTR_IDN_BOOT_LU_EN] = UFS_QUERY_ATTR_READ,
> + [QUERY_ATTR_IDN_POWER_MODE] = UFS_QUERY_ATTR_READ,
> + [QUERY_ATTR_IDN_ACTIVE_ICC_LVL] =
> + UFS_QUERY_ATTR_READ | UFS_QUERY_ATTR_WRITE,
> + [QUERY_ATTR_IDN_OOO_DATA_EN] = UFS_QUERY_ATTR_READ,
> + [QUERY_ATTR_IDN_BKOPS_STATUS] = UFS_QUERY_ATTR_READ,
> + [QUERY_ATTR_IDN_PURGE_STATUS] = UFS_QUERY_ATTR_READ,
> + [QUERY_ATTR_IDN_MAX_DATA_IN] = UFS_QUERY_ATTR_READ |
> UFS_QUERY_ATTR_WRITE,
> + [QUERY_ATTR_IDN_MAX_DATA_OUT] = UFS_QUERY_ATTR_READ |
> UFS_QUERY_ATTR_WRITE,
> + [QUERY_ATTR_IDN_DYN_CAP_NEEDED] = UFS_QUERY_ATTR_READ,
> + [QUERY_ATTR_IDN_REF_CLK_FREQ] = UFS_QUERY_ATTR_READ |
> UFS_QUERY_ATTR_WRITE,
> + [QUERY_ATTR_IDN_CONF_DESC_LOCK] = UFS_QUERY_ATTR_READ,
> + [QUERY_ATTR_IDN_MAX_NUM_OF_RTT] =
> + UFS_QUERY_ATTR_READ | UFS_QUERY_ATTR_WRITE,
> + [QUERY_ATTR_IDN_EE_CONTROL] = UFS_QUERY_ATTR_READ | UFS_QUERY_ATTR_WRITE,
> + [QUERY_ATTR_IDN_EE_STATUS] = UFS_QUERY_ATTR_READ,
> + [QUERY_ATTR_IDN_SECONDS_PASSED] = UFS_QUERY_ATTR_WRITE,
> + [QUERY_ATTR_IDN_CNTX_CONF] = UFS_QUERY_ATTR_READ,
> + [QUERY_ATTR_IDN_FFU_STATUS] = UFS_QUERY_ATTR_READ,
> + [QUERY_ATTR_IDN_PSA_STATE] = UFS_QUERY_ATTR_READ | UFS_QUERY_ATTR_WRITE,
> + [QUERY_ATTR_IDN_PSA_DATA_SIZE] = UFS_QUERY_ATTR_READ |
> UFS_QUERY_ATTR_WRITE,
> + [QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME] = UFS_QUERY_ATTR_READ,
> + [QUERY_ATTR_IDN_CASE_ROUGH_TEMP] = UFS_QUERY_ATTR_READ,
> + [QUERY_ATTR_IDN_HIGH_TEMP_BOUND] = UFS_QUERY_ATTR_READ,
> + [QUERY_ATTR_IDN_LOW_TEMP_BOUND] = UFS_QUERY_ATTR_READ,
> + [QUERY_ATTR_IDN_THROTTLING_STATUS] = UFS_QUERY_ATTR_READ,
> + [QUERY_ATTR_IDN_WB_FLUSH_STATUS] = UFS_QUERY_ATTR_READ,
> + [QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE] = UFS_QUERY_ATTR_READ,
> + [QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST] = UFS_QUERY_ATTR_READ,
> + [QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE] = UFS_QUERY_ATTR_READ,
> + /* refresh operation is not supported */
> + [QUERY_ATTR_IDN_REFRESH_STATUS] = UFS_QUERY_ATTR_READ,
> + [QUERY_ATTR_IDN_REFRESH_FREQ] = UFS_QUERY_ATTR_READ,
> + [QUERY_ATTR_IDN_REFRESH_UNIT] = UFS_QUERY_ATTR_READ,
> +};
> +
> +static inline QueryRespCode ufs_attr_check_idn_valid(uint8_t idn, int op)
> +{
> + if (idn >= QUERY_ATTR_IDN_COUNT) {
> + return QUERY_RESULT_INVALID_IDN;
> + }
> +
> + if (!(attr_permission[idn] & op)) {
> + if (op == UFS_QUERY_ATTR_READ) {
> + trace_ufs_err_query_attr_not_readable(idn);
> + return QUERY_RESULT_NOT_READABLE;
> + }
> + trace_ufs_err_query_attr_not_writable(idn);
> + return QUERY_RESULT_NOT_WRITEABLE;
> + }
> +
> + return QUERY_RESULT_SUCCESS;
> +}
> +
> +static QueryRespCode ufs_exec_query_flag(UfsRequest *req, int op)
> +{
> + UfsHc *u = req->hc;
> + uint8_t idn = req->req_upiu.qr.idn;
> + uint32_t value;
> + QueryRespCode ret;
> +
> + ret = ufs_flag_check_idn_valid(idn, op);
> + if (ret) {
> + return ret;
> + }
> +
> + value = *(((uint8_t *)&u->flags) + idn);
> + if (idn == QUERY_FLAG_IDN_FDEVICEINIT) {
> + value = 0;
> + } else if (op == UFS_QUERY_FLAG_READ) {
> + value = *(((uint8_t *)&u->flags) + idn);
This value was already loaded a few lines above.
> + } else if (op == UFS_QUERY_FLAG_SET) {
> + value = 1;
> + } else if (op == UFS_QUERY_FLAG_CLEAR) {
> + value = 0;
> + } else if (op == UFS_QUERY_FLAG_TOGGLE) {
> + value = !value;
> + } else {
> + trace_ufs_err_query_invalid_opcode(op);
> + return QUERY_RESULT_INVALID_OPCODE;
> + }
> +
> + *(((uint8_t *)&u->flags) + idn) = value;
> + req->rsp_upiu.qr.value = cpu_to_be32(value);
> + return QUERY_RESULT_SUCCESS;
> +}
> +
> +static uint32_t ufs_read_attr_value(UfsHc *u, uint8_t idn)
> +{
> + switch (idn) {
> + case QUERY_ATTR_IDN_BOOT_LU_EN:
> + return u->attributes.boot_lun_en;
> + case QUERY_ATTR_IDN_POWER_MODE:
> + return u->attributes.current_power_mode;
> + case QUERY_ATTR_IDN_ACTIVE_ICC_LVL:
> + return u->attributes.active_icc_level;
> + case QUERY_ATTR_IDN_OOO_DATA_EN:
> + return u->attributes.out_of_order_data_en;
> + case QUERY_ATTR_IDN_BKOPS_STATUS:
> + return u->attributes.background_op_status;
> + case QUERY_ATTR_IDN_PURGE_STATUS:
> + return u->attributes.purge_status;
> + case QUERY_ATTR_IDN_MAX_DATA_IN:
> + return u->attributes.max_data_in_size;
> + case QUERY_ATTR_IDN_MAX_DATA_OUT:
> + return u->attributes.max_data_out_size;
> + case QUERY_ATTR_IDN_DYN_CAP_NEEDED:
> + return be32_to_cpu(u->attributes.dyn_cap_needed);
> + case QUERY_ATTR_IDN_REF_CLK_FREQ:
> + return u->attributes.ref_clk_freq;
> + case QUERY_ATTR_IDN_CONF_DESC_LOCK:
> + return u->attributes.config_descr_lock;
> + case QUERY_ATTR_IDN_MAX_NUM_OF_RTT:
> + return u->attributes.max_num_of_rtt;
> + case QUERY_ATTR_IDN_EE_CONTROL:
> + return be16_to_cpu(u->attributes.exception_event_control);
> + case QUERY_ATTR_IDN_EE_STATUS:
> + return be16_to_cpu(u->attributes.exception_event_status);
> + case QUERY_ATTR_IDN_SECONDS_PASSED:
> + return be32_to_cpu(u->attributes.seconds_passed);
> + case QUERY_ATTR_IDN_CNTX_CONF:
> + return be16_to_cpu(u->attributes.context_conf);
> + case QUERY_ATTR_IDN_FFU_STATUS:
> + return u->attributes.device_ffu_status;
> + case QUERY_ATTR_IDN_PSA_STATE:
> + return be32_to_cpu(u->attributes.psa_state);
> + case QUERY_ATTR_IDN_PSA_DATA_SIZE:
> + return u->attributes.psa_data_size;
> + case QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME:
> + return u->attributes.ref_clk_gating_wait_time;
> + case QUERY_ATTR_IDN_CASE_ROUGH_TEMP:
> + return u->attributes.device_case_rough_temperaure;
> + case QUERY_ATTR_IDN_HIGH_TEMP_BOUND:
> + return u->attributes.device_too_high_temp_boundary;
> + case QUERY_ATTR_IDN_LOW_TEMP_BOUND:
> + return u->attributes.device_too_low_temp_boundary;
> + case QUERY_ATTR_IDN_THROTTLING_STATUS:
> + return u->attributes.throttling_status;
> + case QUERY_ATTR_IDN_WB_FLUSH_STATUS:
> + return u->attributes.wb_buffer_flush_status;
> + case QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE:
> + return u->attributes.available_wb_buffer_size;
> + case QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST:
> + return u->attributes.wb_buffer_life_time_est;
> + case QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE:
> + return be32_to_cpu(u->attributes.current_wb_buffer_size);
> + case QUERY_ATTR_IDN_REFRESH_STATUS:
> + return u->attributes.refresh_status;
> + case QUERY_ATTR_IDN_REFRESH_FREQ:
> + return u->attributes.refresh_freq;
> + case QUERY_ATTR_IDN_REFRESH_UNIT:
> + return u->attributes.refresh_unit;
> + }
> + return 0;
> +}
> +
> +static void ufs_write_attr_value(UfsHc *u, uint8_t idn, uint32_t value)
> +{
> + switch (idn) {
> + case QUERY_ATTR_IDN_ACTIVE_ICC_LVL:
> + u->attributes.active_icc_level = value;
> + break;
> + case QUERY_ATTR_IDN_MAX_DATA_IN:
> + u->attributes.max_data_in_size = value;
> + break;
> + case QUERY_ATTR_IDN_MAX_DATA_OUT:
> + u->attributes.max_data_out_size = value;
> + break;
> + case QUERY_ATTR_IDN_REF_CLK_FREQ:
> + u->attributes.ref_clk_freq = value;
> + break;
> + case QUERY_ATTR_IDN_MAX_NUM_OF_RTT:
> + u->attributes.max_num_of_rtt = value;
> + break;
> + case QUERY_ATTR_IDN_EE_CONTROL:
> + u->attributes.exception_event_control = cpu_to_be16(value);
> + break;
> + case QUERY_ATTR_IDN_SECONDS_PASSED:
> + u->attributes.seconds_passed = cpu_to_be32(value);
> + break;
> + case QUERY_ATTR_IDN_PSA_STATE:
> + u->attributes.psa_state = value;
> + break;
> + case QUERY_ATTR_IDN_PSA_DATA_SIZE:
> + u->attributes.psa_data_size = cpu_to_be32(value);
> + break;
> + }
> +}
> +
> +static QueryRespCode ufs_exec_query_attr(UfsRequest *req, int op)
> +{
> + UfsHc *u = req->hc;
> + uint8_t idn = req->req_upiu.qr.idn;
> + uint32_t value;
> + QueryRespCode ret;
> +
> + ret = ufs_attr_check_idn_valid(idn, op);
> + if (ret) {
> + return ret;
> + }
> +
> + if (op == UFS_QUERY_ATTR_READ) {
> + value = ufs_read_attr_value(u, idn);
> + } else {
> + value = be32_to_cpu(req->req_upiu.qr.value);
> + ufs_write_attr_value(u, idn, value);
> + }
> +
> + req->rsp_upiu.qr.value = cpu_to_be32(value);
> + return QUERY_RESULT_SUCCESS;
> +}
> +
> +static const RpmbUnitDescriptor rpmb_unit_desc = {
> + .length = sizeof(RpmbUnitDescriptor),
> + .descriptor_idn = 2,
> + .unit_index = UFS_UPIU_RPMB_WLUN,
> + .lu_enable = 0,
> +};
> +
> +static QueryRespCode ufs_read_unit_desc(UfsRequest *req)
> +{
> + uint8_t lun = req->req_upiu.qr.index;
> +
> + if (lun != UFS_UPIU_RPMB_WLUN && lun > UFS_MAX_LUS) {
> + trace_ufs_err_query_invalid_index(req->req_upiu.qr.opcode, lun);
> + return QUERY_RESULT_INVALID_INDEX;
> + }
> +
> + if (lun == UFS_UPIU_RPMB_WLUN) {
> + memcpy(&req->rsp_upiu.qr.data, &rpmb_unit_desc,
> rpmb_unit_desc.length);
> + } else {
> + /* unit descriptor is not yet supported */
> + return QUERY_RESULT_INVALID_INDEX;
> + }
> +
> + return QUERY_RESULT_SUCCESS;
> +}
> +
> +static const StringDescriptor manufacturer_str_desc = {
> + .length = 0x12,
> + .descriptor_idn = QUERY_DESC_IDN_STRING,
> + .UC = { 'S', 'A', 'M', 'S', 'U', 'N', 'G' },
What is the endianness of these 16-bit characters? I noticed endianness
issues in several other places but will not audit the patch
exhaustively. Please review all guest-visible fields carefully and add
cpu_to_leXX()/cpu_to_beXX() where necessary.
> +};
> +
> +static const StringDescriptor product_name_str_desc = {
> + .length = 0x22,
> + .descriptor_idn = QUERY_DESC_IDN_STRING,
> + .UC = { 'Q', 'E', 'M', 'U', '-', 'U', 'F', 'S' },
> +};
> +
> +static const StringDescriptor product_rev_level_str_desc = {
> + .length = 0x0a,
> + .descriptor_idn = QUERY_DESC_IDN_STRING,
> + .UC = { '0', '0', '0', '1' },
> +};
> +
> +static const StringDescriptor null_str_desc = {
> + .length = 0x02,
> + .descriptor_idn = QUERY_DESC_IDN_STRING,
> +};
> +
> +static QueryRespCode ufs_read_string_desc(UfsRequest *req)
> +{
> + UfsHc *u = req->hc;
> + uint8_t index = req->req_upiu.qr.index;
> + if (index == u->device_desc.manufacturer_name) {
> + memcpy(&req->rsp_upiu.qr.data, &manufacturer_str_desc,
> + manufacturer_str_desc.length);
> + } else if (index == u->device_desc.product_name) {
> + memcpy(&req->rsp_upiu.qr.data, &product_name_str_desc,
> + product_name_str_desc.length);
> + } else if (index == u->device_desc.serial_number) {
> + memcpy(&req->rsp_upiu.qr.data, &null_str_desc, null_str_desc.length);
> + } else if (index == u->device_desc.oem_id) {
> + memcpy(&req->rsp_upiu.qr.data, &null_str_desc, null_str_desc.length);
> + } else if (index == u->device_desc.product_revision_level) {
> + memcpy(&req->rsp_upiu.qr.data, &product_rev_level_str_desc,
> + product_rev_level_str_desc.length);
> + } else {
> + trace_ufs_err_query_invalid_index(req->req_upiu.qr.opcode, index);
> + return QUERY_RESULT_INVALID_INDEX;
> + }
> + return QUERY_RESULT_SUCCESS;
> +}
> +
> +static const InterconnectDescriptor interconnect_desc = {
> + .length = sizeof(InterconnectDescriptor),
> + .descriptor_idn = QUERY_DESC_IDN_INTERCONNECT,
> + .bcd_unipro_version = 0x180,
> + .bcd_mphy_version = 0x410,
What is the endianness of these two 16-bit fields?
> +};
> +
> +static QueryRespCode ufs_read_desc(UfsRequest *req)
> +{
> + UfsHc *u = req->hc;
> + QueryRespCode status;
> + uint8_t idn = req->req_upiu.qr.idn;
> + uint16_t length = be16_to_cpu(req->req_upiu.qr.length);
> +
> + switch (idn) {
> + case QUERY_DESC_IDN_DEVICE:
> + memcpy(&req->rsp_upiu.qr.data, &u->device_desc,
> sizeof(u->device_desc));
> + status = QUERY_RESULT_SUCCESS;
> + break;
> + case QUERY_DESC_IDN_UNIT:
> + status = ufs_read_unit_desc(req);
> + break;
> + case QUERY_DESC_IDN_GEOMETRY:
> + memcpy(&req->rsp_upiu.qr.data, &u->geometry_desc,
> + sizeof(u->geometry_desc));
> + status = QUERY_RESULT_SUCCESS;
> + break;
> + case QUERY_DESC_IDN_INTERCONNECT: {
> + memcpy(&req->rsp_upiu.qr.data, &interconnect_desc,
> + sizeof(interconnect_desc));
> + status = QUERY_RESULT_SUCCESS;
> + break;
> + }
> + case QUERY_DESC_IDN_STRING:
> + status = ufs_read_string_desc(req);
> + break;
> + case QUERY_DESC_IDN_POWER:
> + /* mocking of power descriptor is not supported */
> + memset(&req->rsp_upiu.qr.data, 0, sizeof(PowerParametersDescriptor));
> + req->rsp_upiu.qr.data[0] = sizeof(PowerParametersDescriptor);
> + req->rsp_upiu.qr.data[1] = QUERY_DESC_IDN_POWER;
> + status = QUERY_RESULT_SUCCESS;
> + break;
> + case QUERY_DESC_IDN_HEALTH:
> + /* mocking of health descriptor is not supported */
> + memset(&req->rsp_upiu.qr.data, 0, sizeof(DeviceHealthDescriptor));
> + req->rsp_upiu.qr.data[0] = sizeof(DeviceHealthDescriptor);
> + req->rsp_upiu.qr.data[1] = QUERY_DESC_IDN_HEALTH;
> + status = QUERY_RESULT_SUCCESS;
> + break;
> + default:
> + length = 0;
> + trace_ufs_err_query_invalid_idn(req->req_upiu.qr.opcode, idn);
> + status = QUERY_RESULT_INVALID_IDN;
> + }
> +
> + if (length > req->rsp_upiu.qr.data[0]) {
> + length = req->rsp_upiu.qr.data[0];
> + }
> + req->rsp_upiu.qr.opcode = req->req_upiu.qr.opcode;
> + req->rsp_upiu.qr.idn = req->req_upiu.qr.idn;
> + req->rsp_upiu.qr.index = req->req_upiu.qr.index;
> + req->rsp_upiu.qr.selector = req->req_upiu.qr.selector;
> + req->rsp_upiu.qr.length = cpu_to_be16(length);
> +
> + return status;
> +}
> +
> +static QueryRespCode ufs_exec_query_read(UfsRequest *req)
> +{
> + QueryRespCode status;
> + switch (req->req_upiu.qr.opcode) {
> + case UPIU_QUERY_OPCODE_NOP:
> + status = QUERY_RESULT_SUCCESS;
> + break;
> + case UPIU_QUERY_OPCODE_READ_DESC:
> + status = ufs_read_desc(req);
> + break;
> + case UPIU_QUERY_OPCODE_READ_ATTR:
> + status = ufs_exec_query_attr(req, UFS_QUERY_ATTR_READ);
> + break;
> + case UPIU_QUERY_OPCODE_READ_FLAG:
> + status = ufs_exec_query_flag(req, UFS_QUERY_FLAG_READ);
> + break;
> + default:
> + trace_ufs_err_query_invalid_opcode(req->req_upiu.qr.opcode);
> + status = QUERY_RESULT_INVALID_OPCODE;
> + break;
> + }
> +
> + return status;
> +}
> +
> +static QueryRespCode ufs_exec_query_write(UfsRequest *req)
> +{
> + QueryRespCode status;
> + switch (req->req_upiu.qr.opcode) {
> + case UPIU_QUERY_OPCODE_NOP:
> + status = QUERY_RESULT_SUCCESS;
> + break;
> + case UPIU_QUERY_OPCODE_WRITE_DESC:
> + /* write descriptor is not supported */
> + status = QUERY_RESULT_NOT_WRITEABLE;
> + break;
> + case UPIU_QUERY_OPCODE_WRITE_ATTR:
> + status = ufs_exec_query_attr(req, UFS_QUERY_ATTR_WRITE);
> + break;
> + case UPIU_QUERY_OPCODE_SET_FLAG:
> + status = ufs_exec_query_flag(req, UFS_QUERY_FLAG_SET);
> + break;
> + case UPIU_QUERY_OPCODE_CLEAR_FLAG:
> + status = ufs_exec_query_flag(req, UFS_QUERY_FLAG_CLEAR);
> + break;
> + case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
> + status = ufs_exec_query_flag(req, UFS_QUERY_FLAG_TOGGLE);
> + break;
> + default:
> + trace_ufs_err_query_invalid_opcode(req->req_upiu.qr.opcode);
> + status = QUERY_RESULT_INVALID_OPCODE;
> + break;
> + }
> +
> + return status;
> +}
> +
> +static UfsReqResult ufs_exec_query_cmd(UfsRequest *req)
> +{
> + uint8_t query_func = req->req_upiu.header.query_func;
> + uint16_t data_segment_length;
> + QueryRespCode status;
> +
> + trace_ufs_exec_query_cmd(req->slot, req->req_upiu.qr.opcode);
> + if (query_func == UPIU_QUERY_FUNC_STANDARD_READ_REQUEST) {
> + status = ufs_exec_query_read(req);
> + } else if (query_func == UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST) {
> + status = ufs_exec_query_write(req);
> + } else {
> + status = QUERY_RESULT_GENERAL_FAILURE;
> + }
> +
> + data_segment_length = be16_to_cpu(req->rsp_upiu.qr.length);
> + ufs_build_upiu_header(req, UPIU_TRANSACTION_QUERY_RSP, 0, status, 0,
> + data_segment_length);
> +
> + if (status != QUERY_RESULT_SUCCESS) {
> + return UFS_REQUEST_ERROR;
> + }
> + return UFS_REQUEST_SUCCESS;
> +}
> +
> +static void ufs_exec_req(UfsRequest *req)
> +{
> + UfsReqResult req_result;
> +
> + if (ufs_dma_read_upiu(req)) {
> + return;
> + }
> +
> + switch (req->req_upiu.header.trans_type) {
> + case UPIU_TRANSACTION_NOP_OUT:
> + req_result = ufs_exec_nop_cmd(req);
> + break;
> + case UPIU_TRANSACTION_COMMAND:
> + /* Not yet implemented */
> + req_result = UFS_REQUEST_ERROR;
> + break;
> + case UPIU_TRANSACTION_QUERY_REQ:
> + req_result = ufs_exec_query_cmd(req);
> + break;
> + default:
> + trace_ufs_err_invalid_trans_code(req->slot,
> + req->req_upiu.header.trans_type);
> + req_result = UFS_REQUEST_ERROR;
> + }
> +
> + ufs_complete_req(req, req_result);
> +}
> +
> +static void ufs_process_req(void *opaque)
> +{
> + UfsHc *u = opaque;
> + UfsRequest *req;
> + int slot;
> +
> + for (slot = 0; slot < u->params.nutrs; slot++) {
> + req = &u->req_list[slot];
> +
> + if (req->state != UFS_REQUEST_READY) {
> + continue;
> + }
> + trace_ufs_process_req(slot);
> + req->state = UFS_REQUEST_RUNNING;
> +
> + ufs_exec_req(req);
> + }
> +}
> +
> +static void ufs_complete_req(UfsRequest *req, UfsReqResult req_result)
> +{
> + UfsHc *u = req->hc;
> + assert(req->state == UFS_REQUEST_RUNNING);
> +
> + if (req_result == UFS_REQUEST_SUCCESS) {
> + req->utrd.header.dword_2 = OCS_SUCCESS;
> + } else {
> + req->utrd.header.dword_2 = OCS_INVALID_CMD_TABLE_ATTR;
> + }
How does byte-swapping work in your patch series? This looks like native
endian but it should be little-endian.
> +
> + trace_ufs_complete_req(req->slot);
> + req->state = UFS_REQUEST_COMPLETE;
> + qemu_bh_schedule(u->complete_bh);
> +}
> +
> +static void ufs_clear_req(UfsRequest *req)
> +{
> + if (req->sg != NULL) {
> + qemu_sglist_destroy(req->sg);
> + g_free(req->sg);
> + req->sg = NULL;
> + }
> +
> + memset(&req->utrd, 0, sizeof(req->utrd));
> + memset(&req->req_upiu, 0, sizeof(req->req_upiu));
> + memset(&req->rsp_upiu, 0, sizeof(req->rsp_upiu));
> +}
> +
> +static void ufs_sendback_req(void *opaque)
> +{
> + UfsHc *u = opaque;
> + UfsRequest *req;
> + int slot;
> +
> + for (slot = 0; slot < u->params.nutrs; slot++) {
> + uint32_t is = ldl_le_p(&u->reg.is);
> + uint32_t utrldbr = ldl_le_p(&u->reg.utrldbr);
> + uint32_t utrlcnr = ldl_le_p(&u->reg.utrlcnr);
> +
> + req = &u->req_list[slot];
> +
> + if (req->state != UFS_REQUEST_COMPLETE) {
> + continue;
> + }
> +
> + if (ufs_dma_write_upiu(req)) {
> + continue;
Does this error handling work? It looks to me like a failed DMA
transaction will repeat every time ufs_sendback_req() is called instead
of stopping the request (changing req->state).
> + }
> +
> + /*
> + * TODO: UTP Transfer Request Interrupt Aggregation Control is not
> yet
> + * supported
> + */
> + if (req->utrd.header.dword_2 != OCS_SUCCESS ||
> + req->utrd.header.dword_0 & UTP_REQ_DESC_INT_CMD) {
> + is = FIELD_DP32(is, IS, UTRCS, 1);
> + }
> +
> + utrldbr &= ~(1 << slot);
> + utrlcnr |= (1 << slot);
> +
> + stl_le_p(&u->reg.is, is);
> + stl_le_p(&u->reg.utrldbr, utrldbr);
> + stl_le_p(&u->reg.utrlcnr, utrlcnr);
> +
> + trace_ufs_sendback_req(req->slot);
> +
> + ufs_clear_req(req);
> + req->state = UFS_REQUEST_IDLE;
> + }
> +
> + ufs_irq_check(u);
> +}
> +
> static bool ufs_check_constraints(UfsHc *u, Error **errp)
> {
> if (u->params.nutrs > UFS_MAX_NUTRS) {
> @@ -232,6 +1118,23 @@ static void ufs_init_pci(UfsHc *u, PCIDevice *pci_dev)
> u->irq = pci_allocate_irq(pci_dev);
> }
>
> +static void ufs_init_state(UfsHc *u)
> +{
> + u->req_list = g_new0(UfsRequest, u->params.nutrs);
> +
> + for (int i = 0; i < u->params.nutrs; i++) {
> + u->req_list[i].hc = u;
> + u->req_list[i].slot = i;
> + u->req_list[i].sg = NULL;
> + u->req_list[i].state = UFS_REQUEST_IDLE;
> + }
> +
> + u->doorbell_bh = qemu_bh_new_guarded(ufs_process_req, u,
> + &DEVICE(u)->mem_reentrancy_guard);
> + u->complete_bh = qemu_bh_new_guarded(ufs_sendback_req, u,
> + &DEVICE(u)->mem_reentrancy_guard);
> +}
> +
> static void ufs_init_hc(UfsHc *u)
> {
> uint32_t cap = 0;
> @@ -249,6 +1152,54 @@ static void ufs_init_hc(UfsHc *u)
> cap = FIELD_DP32(cap, CAP, CS, 0);
> stl_le_p(&u->reg.cap, cap);
> stl_le_p(&u->reg.ver, UFS_SPEC_VER);
> +
> + memset(&u->device_desc, 0, sizeof(DeviceDescriptor));
> + u->device_desc.length = sizeof(DeviceDescriptor);
> + u->device_desc.descriptor_idn = QUERY_DESC_IDN_DEVICE;
> + u->device_desc.device_sub_class = 0x01;
> + u->device_desc.number_lu = 0x00;
> + u->device_desc.number_wlu = 0x04;
> + /* TODO: Revisit it when Power Management is implemented */
> + u->device_desc.init_power_mode = 0x01; /* Active Mode */
> + u->device_desc.high_priority_lun = 0x7F; /* Same Priority */
> + u->device_desc.spec_version = cpu_to_be16(0x0310);
Can UFS_SPEC_VER be used here instead of hardcoding a magic number?
> + u->device_desc.manufacturer_name = 0x00;
> + u->device_desc.product_name = 0x01;
> + u->device_desc.serial_number = 0x02;
> + u->device_desc.oem_id = 0x03;
> + u->device_desc.ud_0_base_offset = 0x16;
> + u->device_desc.ud_config_p_length = 0x1A;
> + u->device_desc.device_rtt_cap = 0x02;
> + u->device_desc.queue_depth = u->params.nutrs;
> + u->device_desc.product_revision_level = 0x04;
> + u->device_desc.extended_ufs_features_support = 0x00;
> +
> + memset(&u->geometry_desc, 0, sizeof(GeometryDescriptor));
> + u->geometry_desc.length = sizeof(GeometryDescriptor);
> + u->geometry_desc.descriptor_idn = QUERY_DESC_IDN_GEOMETRY;
> + u->geometry_desc.total_raw_device_capacity = 0;
> + u->geometry_desc.max_number_lu = (UFS_MAX_LUS == 32) ? 0x1 : 0x0;
> + u->geometry_desc.segment_size = cpu_to_be32(0x2000); /* 4KB */
> + u->geometry_desc.allocation_unit_size = 0x1; /* 4KB */
> + u->geometry_desc.min_addr_block_size = 0x8; /* 4KB */
> + u->geometry_desc.max_in_buffer_size = 0x8;
> + u->geometry_desc.max_out_buffer_size = 0x8;
> + u->geometry_desc.rpmb_read_write_size = 0x40;
> + u->geometry_desc.data_ordering =
> + 0x0; /* out-of-order data transfer is not supported */
> + u->geometry_desc.max_context_id_number = 0x5;
> + u->geometry_desc.supported_memory_types = cpu_to_be16(0x8001);
> +
> + memset(&u->attributes, 0, sizeof(u->attributes));
> + u->attributes.max_data_in_size = 0x08;
> + u->attributes.max_data_out_size = 0x08;
> + u->attributes.ref_clk_freq = 0x01; /* 26 MHz */
> + /* configure descriptor is not supported */
> + u->attributes.config_descr_lock = 0x01;
> + u->attributes.max_num_of_rtt = 0x02;
> +
> + memset(&u->flags, 0, sizeof(u->flags));
> + u->flags.permanently_disable_fw_update = 1;
> }
>
> static void ufs_realize(PCIDevice *pci_dev, Error **errp)
> @@ -259,10 +1210,24 @@ static void ufs_realize(PCIDevice *pci_dev, Error
> **errp)
> return;
> }
>
> + ufs_init_state(u);
> ufs_init_hc(u);
> ufs_init_pci(u, pci_dev);
> }
>
> +static void ufs_exit(PCIDevice *pci_dev)
> +{
> + UfsHc *u = UFS(pci_dev);
> +
> + qemu_bh_delete(u->doorbell_bh);
> + qemu_bh_delete(u->complete_bh);
> +
> + for (int i = 0; i < u->params.nutrs; i++) {
> + ufs_clear_req(&u->req_list[i]);
> + }
> + g_free(u->req_list);
> +}
> +
> static Property ufs_props[] = {
> DEFINE_PROP_STRING("serial", UfsHc, params.serial),
> DEFINE_PROP_UINT8("nutrs", UfsHc, params.nutrs, 32),
> @@ -281,6 +1246,7 @@ static void ufs_class_init(ObjectClass *oc, void *data)
> PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
>
> pc->realize = ufs_realize;
> + pc->exit = ufs_exit;
> pc->class_id = PCI_CLASS_STORAGE_UFS;
>
> set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
> diff --git a/hw/ufs/ufs.h b/hw/ufs/ufs.h
> index 3c28f4e62d..5d4fd818f9 100644
> --- a/hw/ufs/ufs.h
> +++ b/hw/ufs/ufs.h
> @@ -18,6 +18,31 @@
> #define UFS_MAX_LUS 32
> #define UFS_LOGICAL_BLK_SIZE 4096
>
> +typedef enum UfsRequestState {
> + UFS_REQUEST_IDLE = 0,
> + UFS_REQUEST_READY = 1,
> + UFS_REQUEST_RUNNING = 2,
> + UFS_REQUEST_COMPLETE = 3,
> +} UfsRequestState;
> +
> +typedef enum UfsReqResult {
> + UFS_REQUEST_SUCCESS = 0,
> + UFS_REQUEST_ERROR = 1,
> +} UfsReqResult;
> +
> +typedef struct UfsRequest {
> + struct UfsHc *hc;
> + UfsRequestState state;
> + int slot;
> +
> + UtpTransferReqDesc utrd;
> + UtpUpiuReq req_upiu;
> + UtpUpiuRsp rsp_upiu;
> +
> + /* for scsi command */
> + QEMUSGList *sg;
> +} UfsRequest;
> +
> typedef struct UfsParams {
> char *serial;
> uint8_t nutrs; /* Number of UTP Transfer Request Slots */
> @@ -30,6 +55,12 @@ typedef struct UfsHc {
> UfsReg reg;
> UfsParams params;
> uint32_t reg_size;
> + UfsRequest *req_list;
> +
> + DeviceDescriptor device_desc;
> + GeometryDescriptor geometry_desc;
> + Attributes attributes;
> + Flags flags;
>
> qemu_irq irq;
> QEMUBH *doorbell_bh;
> @@ -39,4 +70,18 @@ typedef struct UfsHc {
> #define TYPE_UFS "ufs"
> #define UFS(obj) OBJECT_CHECK(UfsHc, (obj), TYPE_UFS)
>
> +typedef enum UfsQueryFlagPerm {
> + UFS_QUERY_FLAG_NONE = 0x0,
> + UFS_QUERY_FLAG_READ = 0x1,
> + UFS_QUERY_FLAG_SET = 0x2,
> + UFS_QUERY_FLAG_CLEAR = 0x4,
> + UFS_QUERY_FLAG_TOGGLE = 0x8,
> +} UfsQueryFlagPerm;
> +
> +typedef enum UfsQueryAttrPerm {
> + UFS_QUERY_ATTR_NONE = 0x0,
> + UFS_QUERY_ATTR_READ = 0x1,
> + UFS_QUERY_ATTR_WRITE = 0x2,
> +} UfsQueryAttrPerm;
> +
> #endif /* HW_UFS_UFS_H */
> --
> 2.34.1
>
signature.asc
Description: PGP signature