addftinfo(1) General Commands Manual addftinfo(1)

Name
addftinfo — add font metrics to troff fonts for use with groff

Synopsis
addftinfo [-asc—height 1] [-body—depth n] [-body-height n] [-cap-height 1] [-comma—depth]
[-desc—depth] [-fig—height n] [-x—height 1] resolution unit-width font

addftinfo ——help

addftinfo —v
addftinfo ——version

Description
addftinfo reads an AT&T troff font description file font, adds additional font metric information required
by GNU troff (1), and writes the combined result to the standard output. The information added is derived
from the font’s existing parameters and assumptions about traditional troff names for characters. Among
the font metrics added are the heights and depths of characters (how far each extends vertically above and
below the baseline). The resolution and unit-width arguments should be the same as the corresponding pa-
rameters in the DESC file. font is the name of the file describing the font; if font ends with “I”, the font is
assumed to be oblique (or italic).

Options
—-help displays a usage message, while —v and ——version show version information; all exit afterward.
All other options change parameters that are used to derive the heights and depths. Like the existing quan-

tities in the font description file, each value n is in inches/resolution for a font whose point size is unit-
width.

—asc—height n
height of characters with ascenders, such as “b”, “d”, or “1”
—body-depth n
depth of characters such as parentheses
—body-height n
height of characters such as parentheses
—cap-height n
height of uppercase letters such as “A”

—comma-—depth n
depth of a comma

—desc—depth n
depth of characters with descenders, such as “p”, “q”, or “‘y”
—fig—height
height of figures (numerals)
—x-height n
height of lowercase letters without ascenders such as “x”
addftinfo makes no attempt to use the specified parameters to infer unspecified parameters. If a parameter

is not specified, the default will be used. The defaults are chosen to produce reasonable values for a Times
font.

See also
groff_fon«(5), groff(1), groff_char(7)

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 1

afimtodit(1) General Commands Manual afmtodit(1)

Name

afmtodit — adapt Adobe Font Metrics files for groff —Tps and —Tpdf

Synopsis

afmtodit [-ckmnsx] [—a slant] [-d device-description-file] [—e encoding-file] [—f internal-name]
[italic-correction-factor] [—o output-file] afm-file map-file font-description-file

afmtodit —v

Description

afmtodit adapts an Adobe Font Metric file, afin-file, for use with the ps and pdf output devices of groff(1).
map-file associates a groff glyph name with a PostScript glyph name. Output is written in groff font(5)
format to font-description-file, a file named for the intended groff font name (but see the —o option).

map-file should contain a sequence of lines of the form

ps—glyph groff-glyph
where ps-glyph is the PostScript glyph name and groff-glyph is the groff special character identifier for the
glyph (as used in the groff font description file). The same ps-glyph can occur multiple times in the file;
each groff-glyph must occur at most once. Lines starting with “#” and blank lines are ignored. If the file
isn’t found in the current directory, it is sought in the devps/generate subdirectory of the default font direc-
tory.

If a PostScript glyph is not mentioned in map-file, and a generic groff glyph name can’t be deduced using
the Adobe Glyph List (AGL, built into afmtodit), then afmtodit puts the PostScript glyph into the groff font
description file as an unnamed glyph which can only be accessed by the “\N” escape sequence in a roff
document. In particular, this is true for glyph variants named in the form “ foo.bar”; all glyph names con-
taining one or more periods are mapped to unnamed entities. Unless —e is specified, the encoding defined
in the AFM file (i.e., entries with non-negative codes) is used. Refer to section “Using Symbols” in Groff:
The GNU Implementation of troff , the groff Texinfo manual, which describes how groff glyph names are
constructed.

Glyphs not encoded in the AFM file (i.e., entries indexed as “—17) are still available in groff’; they get glyph
index values greater than 255 (or greater than the biggest code used in the AFM file in the unlikely case that
it is greater than 255) in the groff font description file. Unencoded glyph indices don’t have a specific or-
der; it is best to access them with glyph names only.

If the font is downloadable to the device as a file, it may be listed in the file /usr/local/share/groff/1.23.0/
font/devps/download; see grops(1).

If the —i option is used, afintodit automatically generates an italic correction, a left italic correction, and a
subscript correction for each glyph (the significance of these is explained in groff_font(5)); they can be
specified for individual glyphs by adding to the afin-file lines of the form:

italicCorrection ps-glyph n

leftItalicCorrection ps—-glyph n

subscriptCorrection ps-glyph n
where ps-glyph is the PostScript glyph name, and n is the desired value of the corresponding parameter in
thousandths of an em. Such parameters are normally needed only for italic (or oblique) fonts.

The —s option should be given if the font is “special”’, meaning that groff should search it whenever a glyph
is not found in the current font. In that case, font-description-file should be listed as an argument to the
fonts directive in the output device’s DESC file; if it is not special, there is no need to do so, since troff(1)
will automatically mount it when it is first used.

Options

—a slant
Use slant as the slant (“angle”) parameter in the font description file; this is used by groff in the
positioning of accents. By default afimtodit uses the negative of the ItalicAngle specified in the
AFM file; with true italic fonts it is sometimes desirable to use a slant that is less than this. If you
find that an italic font places accents over base glyphs too far to the right, use —a to give it a
smaller slant.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 2

afimtodit(1) General Commands Manual afmtodit(1)

Files

—-C Include comments in the font description file identifying the PostScript font.

—d device-description-file
The device description file is desc-file rather than the default DESC. If not found in the current di-
rectory, the devps subdirectory of the default font directory is searched (this is true for both the de-
fault device description file and a file given with option —d).

—e encoding-file
The PostScript font should be reencoded to use the encoding described in enc-file. The format of
enc-file is described in grops(1l). If not found in the current directory, the devps subdirectory of
the default font directory is searched.

—f internal-name
The internal name of the groff font is set to name.

—i italic-correction-factor
Generate an italic correction for each glyph so that its width plus its italic correction is equal to
italic-correction-factor thousandths of an em plus the amount by which the right edge of the
glyph’s bounding box is to the right of its origin. If this would result in a negative italic correc-
tion, use a zero italic correction instead.

Also generate a subscript correction equal to the product of the tangent of the slant of the font and
four fifths of the x-height of the font. If this would result in a subscript correction greater than the
italic correction, use a subscript correction equal to the italic correction instead.

Also generate a left italic correction for each glyph equal to italic-correction-factor thousandths of
an em plus the amount by which the left edge of the glyph’s bounding box is to the left of its ori-
gin. The left italic correction may be negative unless option —m is given.

This option is normally needed only with italic (or oblique) fonts. The font description files dis-
tributed with groff were created using an option of —i50 for italic fonts.

—0 output-file
Write to output-file instead of font-description-file.

-k Omit any kerning data from the groff font; use only for monospaced (constant-width) fonts.

-m Prevent negative left italic correction values. Font description files for roman styles distributed
with groff were created with “—i0 —m” to improve spacing with egn(1).

-n Don’t output a ligatures command for this font; use with monospaced (constant-width) fonts.
-s Add the special directive to the font description file.
-V Write version information to the standard output stream and exit.

-X Don’t use the built-in Adobe Glyph List.

/usr/local/share/groff/1.23.0/font/devps/DESC
describes the ps output device.

/usr/local/share/groff/1.23.0/font/devps/F
describes the font known as F' on device ps.

/usr/local/share/groff/1.23.0/font/devps/download
lists fonts available for embedding within the PostScript document (or download to the device).

/usr/local/share/groff/1.23.0/font/devps/text.enc
describes the encoding scheme used by most PostScript Type 1 fonts; the encoding directive of
font description files for the ps device refers to it.

/usr/local/share/groff/1.23.0/font/devps/generate/textmap
maps names in the Adobe Glyph List to groff special character identifiers.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 3

afimtodit(1) General Commands Manual afmtodit(1)

See also
Groff: The GNU Implementation of troff, by Trent A. Fisher and Werner Lemberg, is the primary groff

manual. Section “Using Symbols” may be of particular note. You can browse it interactively with “info

[EE)

'(groff)Using Symbols™”.
groff(1), gropdf(1), grops(1), groff_font(5)

groff 1.23.0.rc1.2692-2d9%e 10 June 2022

chem(1) General Commands Manual chem(1)

Name

chem — embed chemical structure diagrams in groff documents
Synopsis

chem [—] [file .. .]

chem -h

chem —help

chem —v

chem —version

Description
chem produces chemical structure diagrams. Today’s version is best suited for organic chemistry (bonds,
rings). The chem program is a groff preprocessor like egn, pic, tbl, etc. It generates pic output such that
all chem parts are translated into diagrams of the pic language.

[T3E L)

If no operands are given, or if file is , chem reads the standard input stream. —h and —help display a
usage message, whereas —v and ——version display version information; all exit.

The program chem originates from the Perl source file chem.pl. It tells pic to include a copy of the macro
file chem.pic. Moreover the groff source file pic.tmac is loaded.

In a style reminiscent of egn and pic, the chem diagrams are written in a special language.
A set of chem lines looks like this

.cstart
chem data
.cend

Lines containing the keywords .cstart and .cend start and end the input for chem, respectively. In pic con-
text, i.e., after the call of .PS, chem input can optionally be started by the line begin chem and ended by the
line with the single word end instead.

Anything outside these initialization lines is copied through without modification; all data between the ini-
tialization lines is converted into pic commands to draw the diagram.

As an example,

.cstart
CH3
bond
CH3

.cend

prints two CH3 groups with a bond between them.

If you want to create just groff output, you must run chem followed by groff with the option —p for the ac-
tivation of pic:

chem [file ...]| groff —p ...

Language
The chem input language is rather small. It provides rings of several styles and a way to glue them together
as desired, bonds of several styles, moieties (e.g., C, NH3, ..., and strings.

Setting variables
There are some variables that can be set by commands. Such commands have two possible forms, either

variable value
or
variable = value

This sets the given variable to the argument value. If more arguments are given only the last argument is
taken, all other arguments are ignored.

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 5

chem(1) General Commands Manual chem(1)

There are only a few variables to be set by these commands:

textht arg
Set the height of the text to arg; default is 0.16.

cwid arg
Set the character width to arg; default is 0.12.

db arg Set the bond length to arg; default is 0.2.

size arg
Scale the diagram to make it look plausible at point size arg; default is 10 point.

Bonds
This

bond [direction] [length n] [from Name|picstuff]

draws a single bond in direction from nearest corner of Name. bond can also be double bond, front bond,
back bond, etc. (We will get back to Name soon.)

direction is the angle in degrees (0 up, positive clockwise) or a direction word like up, down, sw (= south-
west), etc. If no direction is specified, the bond goes in the current direction (usually that of the last bond).

Normally the bond begins at the last object placed; this can be changed by naming a from place. For in-
stance, to make a simple alkyl chain:

CH3

bond (this one goes right from the CH3)
C (at the right end of the bond)
double bond up (from the C)

(0 (at the end of the double bond)
bond right from C

CH3

A length in inches may be specified to override the default length. Other pic commands can be tacked on
to the end of a bond command, to created dotted or dashed bonds or to specify a to place.

Rings
There are lots of rings, but only five- and six-sided rings get much support. ring by itself is a six-sided
ring; benzene is the benzene ring with a circle inside. aromatic puts a circle into any kind of ring.

ring [pointing (up|right|left|down)] [aromatic] [put Mol at] [double i,j k,I ... [picstuff]

The vertices of a ring are numbered 1, 2, ... from the vertex that points in the natural compass direction.
So for a hexagonal ring with the point at the top, the top vertex is 1, while if the ring has a point at the east
side, that is vertex 1. This is expressed as

Rl: ring pointing up
R2: ring pointing right

The ring vertices are named .V1, ..., .Vn, with .V1 in the pointing direction. So the corners of R1 are
R1.V1 (the top), R1.V2, R1.V3, R1.V4 (the bottom), etc., whereas for R2, R2.V1 is the rightmost vertex
and R2.V4 the leftmost. These vertex names are used for connecting bonds or other rings. For example,

R1l: benzene pointing right
R2: benzene pointing right with .V6 at R1.V2

creates two benzene rings connected along a side.

Interior double bonds are specified as double ni,n2 n3,n4 ...; each number pair adds an interior bond. So
the alternate form of a benzene ring is

ring double 1,2 3,4 5,6

Heterocycles (rings with something other than carbon at a vertex) are written as put X at V, as in

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 6

chem(1) General Commands Manual chem(1)

R: ring put N at 1 put O at 2
In this heterocycle, R.N and R.O become synonyms for R.V1 and R.V2.

There are two five-sided rings. ring5 is pentagonal with a side that matches the six-sided ring; it has four
natural directions. A flatring is a five-sided ring created by chopping one corner of a six-sided ring so that
it exactly matches the six-sided rings.

The description of a ring has to fit on a single line.

Moieties and strings
A moiety is a string of characters beginning with a capital letter, such as N(C2H5)2. Numbers are con-
verted to subscripts (unless they appear to be fractional values, as in N2.5H). The name of a moiety is de-
termined from the moiety after special characters have been stripped out: e.g., N(C2HS5)2) has the name
NC2H52.

Moieties can be specified in two kinds. Normally a moiety is placed right after the last thing mentioned,
separated by a semicolon surrounded by spaces, e.g.,

B1: bond ; OH

Here the moiety is OH,; it is set after a bond.

As the second kind a moiety can be positioned as the first word in a pic-like command, e.g.,
CH3 at C + (0.5,0.5)

Here the moiety is CH3. It is placed at a position relative to C, a moiety used earlier in the chemical struc-
ture.

So moiety names can be specified as chem positions everywhere in the chem code. Beneath their printing
moieties are names for places.

The moiety BP is special. It is not printed but just serves as a mark to be referred to in later chem com-
mands. For example,

bond ; BP

sets a mark at the end of the bond. This can be used then for specifying a place. The name BP is derived
from branch point (i.e., line crossing).

A string within double quotes " is interpreted as a part of a chem command. It represents a string that
should be printed (without the quotes). Text within quotes "'..." is treated more or less like a moiety except
that no changes are made to the quoted part.

Names
In the alkyl chain above, notice that the carbon atom C was used both to draw something and as the name
for a place. A moiety always defines a name for a place; you can use your own names for places instead,
and indeed, for rings you will have to. A name is just

Name: . ..

Name is often the name of a moiety like CH3, but it need not to be. Any name that begins with a capital
letter and which contains only letters and numbers is valid:

First: bond
bond 30 from First

Miscellaneous
The specific construction

bond ... ; moiety
is equivalent to

bond
moiety

Otherwise, each item has to be on a separate line (and only one line). Note that there must be whitespace

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 7

chem(1) General Commands Manual chem(1)

after the semicolon which separates the commands.

A period character . or a single quote
copied through as-is.

in the first column of a line signals a froff command, which is

A line whose first non-blank character is a hash character (#) is treated as a comment and thus ignored.
However, hash characters within a word are kept.

A line whose first word is pic is copied through as-is after the word pic has been removed.
The command
size n
scales the diagram to make it look plausible at point size n (default is 10 point).
Anything else is assumed to be pic code, which is copied through with a label.

Since chem is a pic preprocessor, it is possible to include pic statements in the middle of a diagram to draw
things not provided for by chem itself. Such pic statements should be included in chem code by adding pic
as the first word of this line for clarity.

The following pic commands are accepted as chem commands, so no pic command word is needed:

define Start the definition of pic macro within chem.

[Start a block composite.
] End a block composite.
{ Start a macro definition block.
} End a macro definition block.

The macro names from define statements are stored and their call is accepted as a chem command as well.

Wish list
This TODO list was collected by Brian Kernighan.

Error checking is minimal; errors are usually detected and reported in an oblique fashion by pic.
There is no library or file inclusion mechanism, and there is no shorthand for repetitive structures.

The extension mechanism is to create pic macros, but these are tricky to get right and don’t have all the
properties of built-in objects.

There is no in-line chemistry yet (e.g., analogous to the $...$ construct of egn).

There is no way to control entry point for bonds on groups. Normally a bond connects to the carbon atom
if entering from the top or bottom and otherwise to the nearest corner.

Bonds from substituted atoms on heterocycles do not join at the proper place without adding a bit of pic.
There is no decent primitive for brackets.

Text (quoted strings) doesn’t work very well.

A squiggle bond is needed.

Files
/usr/local/share/groff/1.23.0/pic/chem.pic
A collection of pic macros needed by chem.

/usr/local/share/groff/1.23.0/tmac/pic.tmac
A macro file which redefines .PS, .PE, and .PF to center pic diagrams.

/usr/local/share/doc/groff—1.23.0/examples/chem/*.chem
Example files for chem.

/usr/local/share/doc/groff—1.23.0/examples/chem/122/% .chem
Example files from the chem article by its authors, “CHEM—A Program for Typesetting Chemical
Structure Diagrams: User Manual” (CSTR #122).

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 8

chem(1) General Commands Manual chem(1)

Authors
The GNU version of chem was written by Bernd Warken {(groff—bernd.warken—72@web.de). It is based on
the documentation of Brian Kernighan’s original awk version of chem.

See also
“CHEM—A Program for Typesetting Chemical Diagrams: User Manual” by Jon L. Bentley, Lynn W. Jelin-
ski, and Brian W. Kernighan, 1992, AT&T Bell Laboratories Computing Science Technical Report No. 122

groff(1), pic(1)

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 9

eqn(1) General Commands Manual eqn(1)

Name
eqn — format equations for groff or MathML
Synopsis
eqn [-rCNR] [-d xy] [-f F] [-m n] [-M dir] [-p n] [-s n] [T name] [file .. .]
eqn —help
eqn —v
eqn ——version
Description

The GNU implemenation of egn is part of the groff(7) document formatting system. egn is a troff(1) pre-
processor that translates descriptions of equations embedded in roff(7) input files into the language under-
stood by ftroff(1). It copies the contents of each file to the standard output stream, except that lines between
.EQ and .EN (or “inline” within a pair of user-specified delimiters) are interpreted as equation descriptions.
Normally, egn is not executed directly by the user, but invoked by specifying the —e option to groff(1).
While GNU egn’s input syntax is highly compatible with AT&T egn, the output egn produces cannot be
processed by AT&T troff ; GNU troff (or a troff implementing relevant GNU extensions) must be used. If
no file operands are given on the command line, or if file is “=”, the standard input stream is read.

Unless the —R option is given, eqn searches for the file egnrc in the directories given with the —M option
first, then in /usr/local/lib/groff/site—tmac, /usr/local/share/groff/site—tmac, and finally in the standard
macro directory /usr/local/share/groff/1.23.0/tmac. If it exists, eqgn processes it before the other input files.

Only the differences between GNU egn and AT&T egn are described in this document. Most of the new
features of the GNU egn input language are based on TgX. There are some references to the differences be-
tween TgX and GNU egn below; these may safely be ignored if you do not know TgX.

Three points are worth special note.
* GNU egn emits Presentation MathML output when invoked with the “~T MathML” option.

* GNU egn does not provide the functionality of negn: it does not support low-resolution, typewriter-like
devices (although it may work adequately for very simple input).

* GNU egn sets the input token “...” as three periods or low dots, rather than the three centered dots of
AT&T egn. To get three centered dots, write cdots or “cdot cdot cdot”.

Controlling delimiters
If not in compatibility mode, egn recognizes “delim on” as a command to restore the delimiters which have
been previously disabled with a call to “delim off”. If delimiters haven’t been specified, the call has no ef-
fect.

Automatic spacing
eqn gives each component of an equation a type, and adjusts the spacing between components using that
type. Possible types are described in the table below.

ordinary an ordinary character such as “1” or “x”
operator a large operator such as “«

binary a binary operator such as “+”

relation arelation such as “="

opening an opening bracket such as “(”

closing a closing bracket such as “)”
punctuation apunctuation character such as “,”

inner a sub-formula contained within brackets
suppress a type without automatic spacing adjustment

Components of an equation get a type in one of two ways.

type t e This yields an equation component that contains e but that has type ¢, where ¢ is one of the types
mentioned above. For example, times is defined as follows.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 10

eqn(1) General Commands Manual eqn(1)

type "binary" \ (mu
The type name doesn’t have to be quoted, but doing so protects it from macro expansion.

chartype ¢ fext
Each (unquoted) character in text is assigned type ¢. The type ¢ can also be “letter” or “digit”; in
these cases chartype changes the font style of the characters. See subsection ‘“Fonts” below. For
example,

chartype "punctuation" .,;:

assigns the “punctuation” type to each of the characters in “.,;:” wherever they subsequently ap-
pear in an equation.

New primitives
big e Enlarges the expression it modifies; intended to have semantics like CSS “large”. In troff output,
the point size is increased by 5; in MathML output, the expression uses

<mstyle mathsize='big'>

el smallover e2
This is similar to over; smallover reduces the size of el and e2; it also puts less vertical space be-
tween el or e2 and the fraction bar. The over primitive corresponds to the TgX \over primitive in
display styles; smallover corresponds to \over in non-display styles.

vcenter e
This vertically centers e about the math axis. The math axis is the vertical position about which
characters such as “+” and “=” are centered; it is also the vertical position used for fraction bars.

For example, sum is defined as follows.
{ type "operator" vcenter size +5 \(*S }
vceenter is silently ignored when generating MathML.

el accent e2
This sets e2 as an accent over el. e2 is assumed to be at the correct height for a lowercase letter;
e2 is moved down according to whether e/ is taller or shorter than a lowercase letter. For exam-
ple, hat is defined as follows.

accent { """ }
dotdot, dot, tilde, vec, and dyad are also defined using the accent primitive.

el uaccent e2
This sets e2 as an accent under el. e2 is assumed to be at the correct height for a character with-
out a descender; ¢2 is moved down if e/ has a descender. utilde is pre-defined using uaccent as a
tilde accent below the baseline.

split "'zext"
This has the same effect as simply

text

but rext is not subject to macro expansion because it is quoted; fext is split up and the spacing be-
tween individual characters is adjusted.

nosplit rext
This has the same effect as

"text"

but because fext is not quoted it is subject to macro expansion; fext is not split up and the spacing
between individual characters is not adjusted.

e opprime
This is a variant of prime that acts as an operator on e. It produces a different result from prime
in a case such as “A opprime sub 1”: with opprime the “1” is tucked under the prime as a sub-

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 11

eqn(1) General Commands Manual eqn(1)

script to the “A” (as is conventional in mathematical typesetting), whereas with prime the “1” is a
subscript to the prime character. The precedence of opprime is the same as that of bar and un-
der, which is higher than that of everything except accent and uaccent. In unquoted text, a neu-
tral apostrophe (') that is not the first character on the input line is treated like opprime.

special rext e

This constructs a new object from e using a roff(1) macro named fext. When the macro is called,
the string 0s contains the output for e, and the registers Ow, Oh, 0d, Oskern, and Oskew contain the
width, height, depth, subscript kern, and skew of e. (The subscript kern of an object indicates how
much a subscript on that object should be “tucked in”, or placed to the left relative to a non-sub-
scripted glyph of the same size. The skew of an object is how far to the right of the center of the
object an accent over it should be placed.) The macro must modify Os so that it outputs the desired
result with its origin at the current point, and increase the current horizontal position by the width
of the object. The registers must also be modified so that they correspond to the result.

For example, suppose you wanted a construct that “cancels” an expression by drawing a diagonal
line through it.

.EQ
define cancel 'special Ca'
.EN
.de Ca
ds 0s \
\Z'"* (0s "'\
\v'\\n (0du"'\
\D'1 \\n (Owu —-\\n (Ohu-\\n (0du'\
\v'\\n (0Ohu'

You could then cancel an expression e with “cancel { ¢ }”.
Here’s a more complicated construct that draws a box around an expression.

.EQ

define box 'special Bx'

.EN

.de Bx

.ds 0s \

\Z'\h'1In"* (0s'\

\Z'\

\v'\\n (0du+1n"'\

\D'1l \\n (Owu+2n 0'\

\D'1 0 -\\n(Ohu-\\n(0du-2n'\
\D'l -\\n(Owu-2n 0'\

\D'1 0 \\n (Ohu+\\n (0du+2n"'\
"\

\h'\\n (Owu+2n"

.nr 0w +2n

.nr 0d +1n

.nr Oh +1n

space n
A positive value of the integer n (in hundredths of an em) sets the vertical spacing before the equa-
tion, a negative value sets the spacing after the equation, replacing the default values. This primi-
tive provides an interface to groff”’s \x escape (but with opposite sign). This keyword has no effect
if the equation is part of a pic picture.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 12

eqn(1) General Commands Manual eqn(1)

Extended primitives
coln{...}
ceoln{...}
Icoln{...}
reoln{...}
pilen{...}
cpilen{...}
Ipilen{...}
rpilen{...}
The integer value n (in hundredths of an em) increases the vertical spacing between rows, using
groff’s \x escape (the value has no effect in MathML mode). Negative values are possible but
have no effect. If there is more than a single value given in a matrix, the biggest one is used.

Customization
When egn is generating troff markup, the appearance of equations is controlled by a large number of para-
meters. They have no effect when generating MathML mode, which pushes typesetting and fine motions
downstream to a MathML rendering engine. These parameters can be set using the set command.

set p n This sets parameter p to value n, where n is an integer. For example,
set x_height 45
says that egn should assume an x height of 0.45 ems.

Possible parameters are as follows. Values are in units of hundredths of an em unless otherwise
stated. These descriptions are intended to be expository rather than definitive.

minimum_size
eqn won'’t set anything at a smaller point size than this. The value is in points.

fat_offset
The fat primitive emboldens an equation by overprinting two copies of the equation hori-
zontally offset by this amount. This parameter is not used in MathML mode; fat text uses
<mstyle mathvariant='double-struck'>
instead.

over_hang
A fraction bar is longer by twice this amount than the maximum of the widths of the nu-
merator and denominator; in other words, it overhangs the numerator and denominator by
at least this amount.

accent_width
When bar or under is applied to a single character, the line is this long. Normally, bar
or under produces a line whose length is the width of the object to which it applies; in
the case of a single character, this tends to produce a line that looks too long.

delimiter_factor
Extensible delimiters produced with the left and right primitives have a combined height
and depth of at least this many thousandths of twice the maximum amount by which the
sub-equation that the delimiters enclose extends away from the axis.

delimiter_shortfall
Extensible delimiters produced with the left and right primitives have a combined height
and depth not less than the difference of twice the maximum amount by which the sub-
equation that the delimiters enclose extends away from the axis and this amount.

null_delimiter_space
This much horizontal space is inserted on each side of a fraction.

script_space
The width of subscripts and superscripts is increased by this amount.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 13

eqn(1) General Commands Manual eqn(1)

thin_space
This amount of space is automatically inserted after punctuation characters.

medium_space
This amount of space is automatically inserted on either side of binary operators.

thick_space
This amount of space is automatically inserted on either side of relations.

x_height
The height of lowercase letters without ascenders such as “x”.

axis_height
The height above the baseline of the center of characters such as “+” and “=". It is im-
portant that this value is correct for the font you are using.

default_rule_thickness
This should be set to the thickness of the \[ru] character, or the thickness of horizontal
lines produced with the \D escape sequence.

numl The over command shifts up the numerator by at least this amount.
num?2 The smallover command shifts up the numerator by at least this amount.

denoml
The over command shifts down the denominator by at least this amount.

denom?2
The smallover command shifts down the denominator by at least this amount.

supl Normally superscripts are shifted up by at least this amount.

sup2 Superscripts within superscripts or upper limits or numerators of smallover fractions are
shifted up by at least this amount. This is usually less than supl.

sup3 Superscripts within denominators or square roots or subscripts or lower limits are shifted
up by at least this amount. This is usually less than sup2.

subl Subscripts are normally shifted down by at least this amount.

sub2 When there is both a subscript and a superscript, the subscript is shifted down by at least
this amount.

sup_drop
The baseline of a superscript is no more than this much below the top of the object on
which the superscript is set.

sub_drop
The baseline of a subscript is at least this much below the bottom of the object on which
the subscript is set.

big_op_spacingl
The baseline of an upper limit is at least this much above the top of the object on which
the limit is set.

big_op_spacing2
The baseline of a lower limit is at least this much below the bottom of the object on
which the limit is set.

big_op_spacing3
The bottom of an upper limit is at least this much above the top of the object on which the
limit is set.

big_op_spacing4
The top of a lower limit is at least this much below the bottom of the object on which the
limit is set.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 14

eqn(1)

General Commands Manual eqn(1)

big_op_spacing5
This much vertical space is added above and below limits.

baseline_sep
The baselines of the rows in a pile or matrix are normally this far apart. In most cases
this should be equal to the sum of num1 and denom1.

shift_down
The midpoint between the top baseline and the bottom baseline in a matrix or pile is
shifted down by this much from the axis. In most cases this should be equal to
axis_height.

column_sep
This much space is added between columns in a matrix.

matrix_side_sep
This much space is added at each side of a matrix.

draw_lines
If this is non-zero, lines are drawn using the \D escape sequence, rather than with the \l
escape sequence and the \[ru] character.

body_height
The amount by which the height of the equation exceeds this is added as extra space be-
fore the line containing the equation (using \x). The default value is 85.

body_depth
The amount by which the depth of the equation exceeds this is added as extra space after
the line containing the equation (using \x). The default value is 35.

nroff If this is non-zero, then ndefine behaves like define and tdefine is ignored, otherwise
tdefine behaves like define and ndefine is ignored. The default value is O; the egnrc file
sets it to 1 for the ascii, latin1, utf8, and cp1047 output devices.

A more precise description of the role of many of these parameters can be found in Appendix H of
The TEXbook.

Macros

Macros can take arguments. In a macro body, $n where n is between 1 and 9, is replaced by the nth argu-
ment if the macro is called with arguments; if there are fewer than n arguments, it is replaced by nothing.
A word containing a left parenthesis where the part of the word before the left parenthesis has been defined
using the define command is recognized as a macro call with arguments; characters following the left
parenthesis up to a matching right parenthesis are treated as comma-separated arguments. Commas inside
nested parentheses do not terminate an argument.

sdefine name X anything X
This is like the define command, but name is not recognized if called with arguments.

include " file"

copy " file"
Include the contents of file (include and copy are synonyms). Lines of file beginning with .EQ or
.EN are ignored.

ifdef name X anything X
If name has been defined by define (or has been automatically defined because name is the output
driver) process anything; otherwise ignore anything. X can be any character not appearing in any-
thing.

undef name
Remove definition of name, making it undefined.

Besides the macros mentioned above, the following definitions are available: Alpha, Beta, ..., Omega (this
is the same as ALPHA, BETA, ..., OMEGA), Idots (three dots on the baseline), and dollar.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 15

eqn(1) General Commands Manual eqn(1)

Fonts
eqn normally uses at least two fonts to set an equation: an italic font for letters, and a roman font for every-
thing else. The AT&T egn gfont command changes the font that is used as the italic font. By default this
is I. The font that is used as the roman font can be changed using the new grfont command.

grfont f
Set the roman font to f.

The italic primitive uses the current italic font set by gfont; the roman primitive uses the current roman
font set by grfont. There is also a new gbfont command, which changes the font used by the bold primi-
tive. If you only use the roman, italic and bold primitives to changes fonts within an equation, you can
change all the fonts used by your equations just by using gfont, grfont and gbfont commands.

You can control which characters are treated as letters (and therefore set in italics) by using the chartype
command described above. A type of letter causes a character to be set in italic type. A type of digit
causes a character to be set in roman type.

Options
—-help displays a usage message, while —v and ——version show version information; all exit afterward.

-C Recognize .EQ and .EN even when followed by a character other than space or newline, and do
not handle the “delim on” statement specially.

—d xy Specify delimiters x and y for the left and right ends, respectively, of inline equations. Any delim
statements in the source file override this.

—f F This is equivalent to a “gfont F” command.

-mn Set the minimum point size to n. egn will not reduce the size of subscripts or superscripts to a
smaller size than n.

—M dir Search dir for egnrc before the default directories.

-N Don’t allow newlines within delimiters. This option allows egn to recover better from missing
closing delimiters.

—pn This says that subscripts and superscripts should be n points smaller than the surrounding text.
This option is deprecated. Normally, egn sets subscripts and superscripts at 70% of the size of the
surrounding text.

-r Only one size reduction.
-R Don’t load egnrc.

-sn This is equivalent to a “gsize n” command. This option is deprecated. egn normally sets equa-
tions at whatever the current point size is when the equation is encountered.

=T name
The output is for output driver name. Normally, the only effect of this is to define a macro name
with a value of 1; egnrc uses this to provide definitions appropriate for the output driver. However,
if the specified driver is “MathML”, the output is MathML markup rather than froff commands,
and egnrc is not loaded at all. The default output driver is ps.

Files
/usr/local/share/groff/1.23.0/tmac/eqnrc
Initialization file.

MathML mode limitations
MathML is designed on the assumption that it cannot know the exact physical characteristics of the media
and devices on which it will be rendered. It does not support fine control of motions and sizes to the same
degree troff does. Thus:

* eqgn parameters have no effect on the generated MathML.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 16

eqn(1) General Commands Manual eqn(1)

» The special, up, down, fwd, and back operations cannot be implemented, and yield a MathML “<mer-
ror>” message instead.

» The vcenter keyword is silently ignored, as centering on the math axis is the MathML default.

* Characters that egn sets extra large in troff mode—notably the integral sign—may appear too small and
need to have their “<mstyle>” wrappers adjusted by hand.

As in its troff mode, egn in MathML mode leaves the .EQ and .EN delimiters in place for displayed equa-
tions, but emits no explicit delimiters around inline equations. They can, however, be recognized as strings
that begin with “$" and end with “$" and do not cross line boundaries.

See section “Bugs” below for translation limits specific to egn.

Bugs
Inline equations are set at the point size that is current at the beginning of the input line.
In MathML mode, the mark and lineup features don’t work. These could, in theory, be implemented with
“<maligngroup>” elements.
In MathML mode, each digit of a numeric literal gets a separate “<mn></mn>" pair, and decimal points are
tagged with “<mo></mo>”. This is allowed by the specification, but inefficient.

See also

“Typesetting Mathematics—User’s Guide” (2nd edition), by Brian W. Kernighan and Lorinda L. Cherry,
1978, AT&T Bell Laboratories Computing Science Technical Report No. 17.

The TgXbook, by Donald E. Knuth, 1984, Addison-Wesley Professional.

groff_char(7), particularly subsections “Logical symbols”, “Mathematical symbols”, and “Greek glyphs”,
documents a variety of special character escape sequences useful in mathematical typesetting.

groff(l), troff(1), pic(1), groff_fon(5)

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 17

eqn2graph(l) General Commands Manual eqn2graph(l)

Name
eqn2graph — convert an eqn equation into a cropped image

Synopsis
eqn2graph [-format output-format] [convert-arguments]

eqn2graph —help

eqn2graph —v
eqn2graph ——version
Description
eqn2graph reads a one-line egn(1) equation from the standard input and writes an image file, by default in
Portable Network Graphics (PNG) format, to the standard output.

The input EQN code should not be preceded by the .EQ macro that normally precedes it within groff(1)
macros; nor do you need to have dollar-sign or other delimiters around the equation.

Arguments not recognized by egn2graph are passed to the ImageMagick or GraphicsMagick program
convert(1l). By specifying these, you can give your image a border, set the image’s pixel density, or per-
form other useful transformations.

The output image is clipped using convert’s —trim option to the smallest possible bounding box that con-
tains all the black pixels.

Options

—-help displays a usage message, while —v and ——version show version information; all exit afterward.

—format output-format
Write the image in output-format, which must be understood by convert; the default is PNG.

Environment
GROFF_TMPDIR
TMPDIR
T™P
TEMP These environment variables are searched in the given order to determine the directory where tem-
porary files will be created. If none are set, /tmp is used.

Authors
eqn2graph was written by Eric S. Raymond {esr@thyrsus.com), based on a recipe for pic2graph(1), by W.
Richard Stevens.

See also
pic2graph(1), grap2graph(1), eqn(1), groff(1), convert(1)

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 18

gdiffmk(1) General Commands Manual gdiffimk(1)

Name
gdiffmk — mark differences between groff/nroff/troff files

Synopsis
gdiffmk [-a add-mark] [-c change-mark] [-d delete-mark] [-x diff-command] [-D [-B] [-M markl
mark2]] [—-] filel file2 [output]
gdiffmk —help
gdiffmk —version

Description
gdiffmk compares two roff(7) documents, filel and file2, and creates an output which is file2 with added
margin character (.mc) requests that indicate the lines with differences.

If the filel or file2 argument is “~”, the standard input stream is read for that input. If the output filename
is present, the output is written there. If it is “~" or absent, the output is written to the standard output
stream. “=” cannot be both input and output.

Options

—-help displays a usage message and ——version shows version information; both exit afterward.

—a add-mark
Use add-mark for source lines not in filel but present in file2. Default: “+”.

-B By default, the deleted texts marked by the —D option end with an added roff break request, .br, to
ensure that the deletions are marked properly. This is the only way to guarantee that deletions and
small changes get flagged. This option directs the program not to insert these breaks; it makes no
sense to use it without —D.

—c change-mark
Use change-mark for changed source lines. Default: “|”.

—d delete-mark
Use the delete-mark for deleted source lines. Default: “*”.

-D Show the deleted portions from changed and deleted text. Default delimiting marks: “[[” ... “]]”.

-M markl mark?2
Change the delimiting marks for the —D option. It makes no sense to use this option without —D.

=X diff-command
Use the diff-command command to perform the comparison of filel and file2. In particular, diff-
command should accept the GNU diff (1) =D option. Default: diff.

- Treat all subsequent arguments as file names, even if they begin with “=".

Bugs
The output is not necessarily compatible with all macro packages and all preprocessors. A workaround that
often overcomes preprocessor problems is to run gdiffimk on the output of all the preprocessors instead of
the input source.

gdiffmk relies on the —D option of GNU diff to make a merged “#ifdef” output format. It hasn’t been
tested whether other versions of diff support this option. Also see the —x diff-command option.

Authors
gdiffmk was written and is maintained by Mike Bianchi (MBianchi@Foveal.com).

See also
groff(1), nroff(1), gtroff (1), roff("7), diff (1)

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 19

glilypond(1) General Commands Manual glilypond(1)

Name
glilypond — embed LilyPond musical notation in groff documents

Synopsis
glilypond [-K] [{—-ly2eps|-—pdf2eps}] [—e directory] [-o0 output-file] [-p filename-prefix] [t tdir]
[{~v|-V}] [[file]
glilypond [{—-ly2eps|-—pdf2eps}] [-—eps_dir directory] [-—keep_all] [-—output output-file] [-—prefix
filename-prefix] [-—temp_dir tdir] [-—verbose] [——] [file .. .]

glilypond -?
glilypond -h
glilypond ——help
glilypond ——usage

glilypond -1
glilypond —-license

glilypond ——version

Description
glilypond is a groff(7) preprocessor that enables the embedding of LilyPond music scores in groff docu-
ments. If no operands are given, or if file is “=”, glilypond reads the standard input stream. A double-dash
argument (“—=") causes all subsequent arguments to be interpreted as file operands, even if their names
start with a dash.

Usage
At present, glilypond works with the groff ps, dvi, html, and xhtml devices. The Ibp and 1j4 devices are
untested. Unfortunately, the pdf device does not yet work.

Option overview
—?|-h|-—help|-—usage
Display usage information and exit.

——version
Display version information and exit.

—1|—-license
Display copyright license information and exit.

Options for building EPS files
——ly2eps
Direct lilypond(1) to create Encapsulated PostScript (EPS) files. This is the default.

——pdf2eps
The program glilypond generates a PDF file using lilypond. Then the EPS file is generated by
pdf2ps and ps2eps.

Directories and files
—e|——eps_dir directory_name
Normally all EPS files are sent to the temporary directory. With this option, you can generate
your own directory, in which all useful EPS files are send. So at last, the temporary directory can
be removed.

—p|——prefix begin_of _name
Normally all temporary files get names that start with the ly. .. prefix. With this option, you can
freely change this prefix.

—k|——keep_all
Normally all temporary files without the eps files are deleted. With this option, all generated files
either by the lilypond program or other format transposers are kept.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 20

glilypond(1) General Commands Manual glilypond(1)

—t|-—temp_dir dir
With this option, you call a directory that is the base for the temporary directory. This directory
name is used as is without any extensions. If this directory does not exist it is be created. The
temporary directory is created by Perl’s security operations directly under this directory. In this
temporary directory, the temporary files are stored.

Output
—o|——output file_name
Normally all groff output of this program is sent to STDOUT. With this option, that can be
changed, such that the output is stored into a file named in the option argument file_name.

—V|-V|-—verbose
A lot more of information is sent to STDERR.

Short option collections
The argument handling of options

Short options are arguments that start with a single dash —. Such an argument can consist of arbitrary many
options without option argument, composed as a collection of option characters following the single dash.

Such a collection can be terminated by an option character that expects an option argument. If this option
character is not the last character of the argument, the following final part of the argument is the option ar-
gument. If it is the last character of the argument, the next argument is taken as the option argument.

This is the standard for POSIX and GNU option management.
For example,

—kVe some_dir
is a collection of the short options —k and —V without option argument, followed by the short op-
tion —e with option argument that is the following part of the argument some_dir. So this argu-
ment could also be written as several arguments —k =V —e some_dir.

Handling of long options
Arguments that start with a double dash —— are so-called long options R . Each double dash argument can
only have a single long option.

Long options have or have not an option argument. An option argument can be the next argument or can be
appended with an equal sign = to the same argument as the long option.

—=help is along option without an option argument.

——eps_dir some_dir
——eps_dir=some_dir
is the long option ——eps_dir with the option argument some_dir.

Moreover the program allows abbreviations of long options, as much as possible.

The long option —keep_all can be abbreviated from ——keep_al up to ——k because the program does not
have another long option whose name starts with the character k.

On the other hand, the option ——version cannot be abbreviated further than ——vers because there is also
the long option ——verbose that can be abbreviated up to ——verb.

An option argument can also be appended to an abbreviation. So is ——e=some_dir the same as ——eps_dir
some_dir.

Moreover the program allows an arbitrary usage of upper and lower case in the option name. This is Perl
style.

For example, the long option —Kkeep_all can as well be written as ——Keep_All or even as an abbreviation
like ——KeE.

LilyPond regions in roff input

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 21

glilypond(1) General Commands Manual glilypond(1)

Integrated LilyPond code
A lilypond part within a structure written in the groff language is the whole part between the marks
.lilypond start
and
.lilypond end

A groff input can have several of these lilypond parts.

When processing such a lilypond part between .lilypond start and .lilypond end we say that the glilypond
program is in lilypond mode.

These lilypond parts are sent into temporary lilypond files with the file name extension .ly. These files are
transformed later on into EPS files.

Inclusion of .ly files
An additional command line for file inclusion of lilypond files is given by
.lilypond include file_name
in groff input. For each such include command, one file of lilypond code can be included into the groff
code. Arbitrarily many of these commands can be included in the groff input.

These include commands can only be used outside the lilypond parts. Within the lilypond mode, this inclu-
sion is not possible. So .lilypond include may not be used in lilypond mode, i.e. between .lilypond start
and .lilypond end. These included ly-files are also transformed into EPS files.

Generated files
By the transformation process of lilypond parts into EPS files, there are many files generated. By default,
these files are regarded as temporary files and as such stored in a temporary directory.

This process can be changed by command-line options.

Command-line options for directories
The temporary directory for this program is either created automatically or can be named by the option
—t|-—temp_dir dir.

Moreover, the EPS files that are later on referred by .PSPIC command in the final groff output can be
stored in a different directory that can be set by the command-line option —e|-—eps_dir directory_name.
With this option, the temporary directory can be removed completely at the end of the program.

The beginning of the names of the temporary files can be set by the command-line options —p or ——prefix.

All of the temporary files except the EPS files are deleted finally. This can be changed by setting the com-
mand-line options —k or ——keep_files. With this, all temporary files and directories are kept, not deleted.

These EPS files are stored in a temporary or EPS directory. But they cannot be deleted by the transforma-
tion process because they are needed for the display which can take a long time.

Transformation processes for generating EPS files
Mode pdf2eps
This mode is the actual default and can also be chosen by the option ——pdf2eps.

In this mode, the .ly files are transformed by the lilypond (1) program into PDF files, using

lilypond —-pdf ——output=file-name
for each .ly file. The file-name must be provided without the extension .pdf. By this process, a file file-
name.pdf is generated.

The next step is to transform these PDF files into a PS file. This is done by the pdf2ps(1) program using
$ pdf2ps file-name.pdf file-name.pds

The next step creates an EPS file from the PS file. This is done by the ps2eps(1) program using
S ps2eps file-name.ps

By that, a file file-name.eps is created for each lilypond part in the groff file or standard input.

The last step to be done is replacing all lilypond parts by the groff command
.PSPIC file-name.eps

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 22

glilypond(1) General Commands Manual glilypond(1)

Mode ly2eps
In earlier time, this mode was the default. But now it does not work any more, so accept the new default
pdf2eps. For testing, this mode can also be chosen by the glilypond option ——ly2eps.

In this mode, the .ly files are transformed by the lilypond program into many files of different formats, in-
cluding eps files, using

$ lilypond —--ps —dbackend=eps —-dgs—load-fonts —-—-output=file-name
for each .ly file. The output file—name must be provided without an extension, its directory is temporary.
There are many EPS files created. One having the complete transformed ly file, named file—name.eps.
Moreover there are EPS files for each page, named file—name—digit.eps.

The last step to be done is replacing all lilypond parts by the collection of the corresponding EPS page
files. This is done by groff commands
.PSPIC file-name—-digit.eps

Generated groff output
The new groff(7) structure generated by glilypond is either

1) sent to standard output and can there be saved into a file or piped into groff(1) or

2) stored into a file by given the option —o | ——output file_name

Authors
glilypond was written by Bernd Warken {(groff—bernd.warken—72 @web.de).

See also
groff(1) describes the usage of the groff command and contains pointers to further documentation of the

groff system.
groff_tmac(5)
describes the .PSPIC request.

lilypond (1)
briefly describes the lilypond command and contains pointers to further documentation.

pdf2ps(1)
transforms a PDF file into a PostScript format.

ps2eps(1)
transforms a PS file into an EPS format.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 23

gperl(1) General Commands Manual gperl(1)

Name
gperl — execute Perl commands in groff documents

Synopsis
gperl [file ..]

gperl -h
gperl —help

gperl —v
gperl ——version

Description
This is a preprocessor for groff(1). It allows the use of perl(7) code in groff(7) files. The result of a Perl
part can be stored in groff strings or numerical registers based on the arguments at a final line of a Perl
part.

I3k L)

If no operands are given, or if file is , gperl reads the standard input stream. A double-dash argument
(“~==") causes all subsequent arguments to be interpreted as file operands, even if their names start with a
dash. —h and —-help display a usage message, whereas —v and ——version display version information; all
exit afterward.

Perl regions
Perl parts in groff files are enclosed by two .Perl requests with different arguments, a starting and an end-
ing command.

Starting Perl mode
The starting Perl request can either be without arguments, or by a request that has the term start as its only

argument.
. Perl
. Perl start

Ending Perl mode without storage
A .Perl command line with an argument different from start finishes a running Perl part. Of course, it
would be reasonable to add the argument stop; that’s possible, but not necessary.

. Perl stop

J Perl other_than_start
The argument other_than_start can additionally be used as a groff string variable name for storage — see
next section.

Ending Perl mode with storage
A useful feature of gperl is to store one or more results from the Perl mode.

The output of a Perl part can be got with backticks "...".

This program collects all printing to STDOUT (normal standard output) by the Perl print program. This
pseudo-printing output can have several lines, due to printed line breaks with \n. By that, the output of a
Perl run should be stored into a Perl array, with a single line for each array member.

This Perl array output can be stored by gperl in either

groff strings
by creating a groff command .ds

groff register
by creating a groff command .rn

The storage modes can be determined by arguments of a final stopping .Perl command. Each argument .ds
changes the mode into groff string and .nr changes the mode into groff register for all following output
parts.

By default, all output is saved as strings, so .ds is not really needed before the first .nr command. That

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 24

gperl(1)

General Commands Manual gperl(1)

suits to groff(7), because every output can be saved as groff string, but the registers can be very restrictive.

In string mode, gperl generates a groff string storage line
.ds var_name content

In register mode the following groff command is generated
.nr var_name content

We present argument collections in the following. You can add as first argument for all stop. We omit this
additional element.

Perl .ds var_name
This will store 1 output line into the groff string named var_name by the automatically created
command
.ds var_name output

Perl var_name
If var_name is different from start this is equivalent to the former command, because the string
mode is string with .ds command. default.

Perl var_namel var_name2
This will store 2 output lines into groff string names var_namel and var_name2, because the de-
fault mode .ds is active, such that no .ds argument is needed. Of course, this is equivalent to
.Perl .ds var_namel var_namel2
and
.Perl .ds var_namel .ds var_nameZ

Perl .nr var_namel varname2
stores both variables as register variables. gperl generates
.nr var_namel output_linel
.nr var_name2 output_line2

Perl .nr var_namel .ds var_name2
stores the 1st argument as register and the second as string by
.nr var_namel output_linel
.ds var_name2 output_line2

Example

A possible Perl part in a roff file could look like that:
before
.Perl start
my $result = 'some data';

print $result;
.Perl stop .ds string_var
after

This stores the result ”some data” into the roff string called string_var, such that the following line is
printed:

.ds string_var some data
by gperl as food for the coming groff run.

A Perl part with several outputs is:

.Perl start

print “first\n”;

print ”“second line\n”;

print ”3\n”;

.Perl varl var2 .nr var3
This stores 3 printed lines into 3 groff strings. varl,var2,var3. So the following groff command lines are
created:

.ds varl first

.ds var2 second line

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 25

gperl(1) General Commands Manual gperl(1)

.nr var3 3

Authors
gperl was written by Bernd Warken (groff—bernd.warken—72 @web.de).

See also
Man pages related to groff are groff(1), groff(7), and grog(1).

Documents related to Perl are perl(1), perl(7).

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 26

gpinyin(1l) General Commands Manual gpinyin(1)

Name

gpinyin — use Hanyu Pinyin Chinese in groff documents

Synopsis

gpinyin [file . . .]
gpinyin —h
gpinyin —help

gpinyin —v
gpinyin ——version

Description

gpinyin is a preprocessor for groff(1) that facilitates use of Hanyu Pinyin in groff(7) files. Pinyin is a
method for writing the Mandarin Chinese language with the Latin alphabet. Mandarin consists of more
than four hundred base syllables, each spoken with one of five different tones. Changing the tone applied
to the syllable generally alters the meaning of the word it forms. In Pinyin, a syllable is written in the Latin
alphabet and a numeric tone indicator can be appended to each syllable.

TR L)

Each input-file is a file name or the character to indicate that the standard input stream should be read.
As usual, the argument “—="" can be used in order to force interpretation of all remaining arguments as file
names, even if an input-file argument begins with a “~”. —h and —help display a usage message, while —v
and ——version show version information; all exit afterward.

Pinyin sections

Pinyin sections in groff files are enclosed by two .pinyin requests with different arguments. The starting
request is
.pinyin start
or
.pinyin begin
and the ending request is
.pinyin stop
or
.pinyin end

Syllables

In Pinyin, each syllable is represented by one to six letters drawn from the fifty-two upper- and lowercase
letters of the Unicode basic Latin character set, plus the letter “U” with dieresis (umlaut) in both cases—in
other words, the members of the set “[a—zA-ZiiU]”.

In groff input, all basic Latin letters are written as themselves. The “u with dieresis” can be written as
“\[-u]” in lowercase or “\[:U]” in uppercase. Within .pinyin sections, gpinyin supports the form “ue” for
lowercase and the forms “Ue” and “UE” for uppercase.

Tones

Each syllable has exactly one of five tones. The fifth tone is not explicitly written at all, but each of the first
through fourth tones is indicated with a diacritic above a specific vowel within the syllable.

In a gpinyin source file, these tones are written by adding a numeral in the range O to 5 after the syllable.
The tone numbers 1 to 4 are transformed into accents above vowels in the output. The tone numbers 0 and
5 are synonymous.

The tones are written as follows.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 27

gpinyin(1l) General Commands Manual gpinyin(1)

Tone Description Diacritic Example Input ~ Example Output
first flat - mal ma
second rising ’ ma2 ma
third falling-rising ma3 ma
fourth falling) ma4 ma
fifth neutral (none) ma0 ma
ma

The neutral tone number can be omitted from a word-final syllable, but not otherwise.

Authors
gpinyin was written by Bernd Warken (groff-bernd.warken—72 @web.de).

See also

Useful documents on the World Wide Web related to Pinyin include
Pinyin to Unicode {http://www.foolsworkshop.com/ptou/index.html),
On-line Chinese Tools (http://www.mandarintools.com/),
Pinyin.info: a guide to the writing of Mandarin Chinese in romanization {http://www.pinyin.info/
index.html),
“Where do the tone marks go?” ¢http://www.pinyin.info/rules/where.html),
pinyin.txt from the CJK macro package for TgX <http://git.savannah.gnu.org/gitweb/?p=cjk.git
;a=blob_plain;f=doc/pinyin.txt;hb=HEAD),

and
pinyin.sty from the CJK macro package for TgX ¢http://git.savannah.gnu.org/gitweb/?p=cjk.git
;a=blob_plain;f=texinput/pinyin.sty;hb=HEAD).

groff(1) and grog(1) explain how to view roff documents.

groff(7) and groff_char(7) are comprehensive references covering the language elements of GNU #roff and
the available glyph repertoire, respectively.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 28

grap2graph(1) General Commands Manual grap2graph(1)

Name
grap2graph — convert a GRAP diagram into a cropped image

Synopsis
grap2graph [—unsafe] [-format output-format] [convert-arguments)

grap2graph —help

grap2graph —v
grap2graph ——version

Description
grap2graph reads a grap(1l) program from the standard input and writes an image file, by default in
Portable Network Graphics (PNG) format, to the standard output.

The input GRAP code should not be wrapped with the .G1 and .G2 macros that normally guard it within
groff(1) documents.

Arguments not recognized by grap2graph are passed to the ImageMagick or GraphicsMagick program
convert(1l). By specifying these, you can give your image a border, set the image’s pixel density, or per-
form other useful transformations.

The output image is clipped using convert’s —trim option to the smallest possible bounding box that con-
tains all the black pixels.

Options
—-help displays a usage message, while —v and ——version show version information; all exit afterward.

—format output-format
Write the image in output-format, which must be understood by convert; the default is PNG.

—unsafe
Run groff in unsafe mode, enabling the PIC command sh to execute arbitrary Unix shell com-
mands. The groff default is to forbid this.

Environment
GROFF_TMPDIR
TMPDIR
T™P
TEMP These environment variables are searched in the given order to determine the directory where tem-
porary files will be created. If none are set, /tmp is used.

Authors
grap2graph was written by Eric S. Raymond {(esr @thyrsus.com), based on a recipe for pic2graph(1), by W.
Richard Stevens.

See also
pic2graph(l), eqn2graph(1), grap(1), pic(1), groff(1), convert(1)

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 29

grn(1)

Name

General Commands Manual grn(1)

grn — embed gremlin images in groff documents

Synopsis

grn [-C] [-T dev] [-M dir] [-F dir] [file .. .]
grn -?

grn —help

grn —v

grn ——version

Description

grn is a preprocessor for including gremlin pictures in troff(1) input. grn writes to standard output, pro-
cessing only input lines between two that start with .GS and .GE. Those lines must contain grn commands
(see below). These macros request a gremlin file; the picture in that file is converted and placed in the troff
input stream. .GS may be called with a C, L, or R argument to center, left-, or right-justify the whole
gremlin picture (the default is to center). If no file is mentioned, the standard input is read. At the end of
the picture, the position on the page is the bottom of the gremlin picture. If the grn entry is ended with .GF
instead of .GE, the position is left at the top of the picture.

Currently only the me macro package has support for .GS, .GE, and .GF.

grn produces drawing escape sequences that use groff”’s color scheme extension \D'F ..."), and thus may
not work with other froff's.

grn commands

Each input line between .GS and .GE may have one grn command. Commands consist of one or two
strings separated by white space, the first string being the command and the second its operand. Com-
mands may be upper- or lowercase and abbreviated down to one character.

Commands that affect a picture’s environment (those listed before “default”, see below) are only in effect
for the current picture: the environment is reinitialized to the defaults at the start of the next picture. The
commands are as follows.

1N

2N

3N

4 N Set gremlin’s text size number 1 (2, 3, or 4) to N points. The default is 12 (16, 24, and 36, respec-
tively).

roman f

italics f

bold f

special f
Set the roman (italics, bold, or special) font to troff’s font f (either a name or number). The de-
faultis R (I, B, and S, respectively).

Lf

stipple f
Set the stipple font to troff’s stipple font f (name or number). The command stipple may be ab-
breviated down as far as “st” (to avoid confusion with “special”’). There is no default for stipples
(unless one is set by the “default” command), and it is invalid to include a gremlin picture with
polygons without specifying a stipple font.

XN

scale N

Magnify the picture (in addition to any default magnification) by N, a floating-point number larger
than zero. The command scale may be abbreviated down to “sc¢”.

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 30

grn(1)

General Commands Manual grn(1)

narrow N

medium N

thick N
Set the thickness of gremlin’s narrow (medium and thick, respectively) lines to N times 0.15pt
(this value can be changed at compile time). The default is 1.0 (3.0 and 5.0, respectively), which
corresponds to 0.15pt (0.45pt and 0.75pt, respectively). A thickness value of zero selects the
smallest available line thickness. Negative values cause the line thickness to be proportional to the
current point size.

pointscale [off|on]
Scale text to match the picture. Gremlin text is usually printed in the point size specified with the
commands 1, 2, 3, or 4, regardless of any scaling factors in the picture. Setting pointscale will
cause the point sizes to scale with the picture (within #roff ’s limitations, of course). An operand of
anything but off will turn text scaling on.

default Reset the picture environment defaults to the settings in the current picture. This is meant to be
used as a global parameter setting mechanism at the beginning of the troff input file, but can be
used at any time to reset the default settings.

width N
Force the picture to be N inches wide. This overrides any scaling factors present in the same pic-
ture. “width 0” is ignored.

height N
Force the picture to be N inches high, overriding other scaling factors. If both width and height
are specified, the tighter constraint will determine the scale of the picture. height and width com-
mands are not saved with a “default” command. They will, however, affect point size scaling if
that option is set.

file name
Get picture from gremlin file name located the current directory (or in the library directory; see the
—M option above). If multiple file commands are given, the last one controls. If name doesn’t ex-
ist, an error message is reported and processing continues from the .GE line.

Usage with groff

Since grn is a preprocessor, it has no access to elements of formatter state, such as indentation, line length,
type size, or register values. Consequently, no #roff input can be placed between the .GS and .GE macros.
However, gremlin text elements are subsequently processed by troff, so anything valid in a single line of
troff input is valid in a line of gremlin text (barring the dot control character “.” at the beginning of a line).
Thus, it is possible to have equations within a gremlin figure by including in the gremlin file eqn expres-

sions enclosed by previously defined delimiters (e.g., “$$”).

When using grn along with other preprocessors, it is best to run 7bl(1) before grn, pic(1), and/or ideal to
avoid overworking tbl. eqn(1) should always be run last. groff(1) will automatically run preprocessors in
the correct order.

A picture is considered an entity, but that doesn’t stop troff from trying to break it up if it falls off the end
of a page. Placing the picture between “keeps” in the me macros will ensure proper placement.

grn uses troff ’s registers gl through g9 and sets registers gl and g2 to the width and height of the gremlin
figure (in device units) before entering the .GS macro (this is for those who want to rewrite these macros).

Gremlin file format

There exist two distinct gremlin file formats: the original format for AED graphic terminals, and the Sun or
X11 version. An extension used by the Sun/X11 version allowing reference points with negative coordi-
nates is not compatible with the AED version. As long as a gremlin file does not contain negative coordi-
nates, either format will be read correctly by either version of gremlin or grn. The other difference in
Sun/X11 format is the use of names for picture objects (e.g., POLYGON, CURVE) instead of numbers.
Files representing the same picture are shown below.

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 31

grn(1)

General Commands Manual

sungremlinfile

0240.00 128.00

CENTCENT
240.00 128.00
185.00 120.00
240.00 120.00
296.00 120.00
*

23

10 A Triangle
POLYGON
224.00 416.00
96.00 160.00
384.00 160.00
*

51

0

-1

gremlinfile
0240.00 128.00
2

240.00 128.00
185.00 120.00
240.00 120.00
296.00 120.00
—-1.00 -1.00
23

10 A Triangle
6

224.00 416.00
96.00 160.00
384.00 160.00
—-1.00 -1.00
51

0

-1

» The first line of each gremlin file contains either the string “gremlinfile” (AED) or “sungremlinfile”

(Sun/X11).

* The second line of the file contains an orientation and x and y values for a positioning point, separated
by spaces. The orientation, either 0 or 1, is ignored by the Sun/X11 version. 0 means that gremlin will
display things in horizontal format (a drawing area wider than it is tall, with a menu across the top). 1
means that gremlin will display things in vertical format (a drawing area taller than it is wide, with a
menu on the left side). x and y are floating-point values giving a positioning point to be used when this
file is read into another file. The stuff on this line really isn’t all that important; a value of “1 0.00 0.00”

is suggested.

* The rest of the file consists of zero or more element specifications. After the last element specification is
a line containing the string “—1".

* Lines longer than 127 characters are truncated to that length.

Element specifications

* The first line of each element contains a single decimal number giving the type of the element (AED) or

its name (Sun/X11).

groff 1.23.0.rc1.2692-2d9%e

gremlin File Format: Object Type Specification
AED Number Sun/X11 Name Description
0 BOTLEFT bottom-left-justified text
1 BOTRIGHT bottom-right-justified text
2 CENTCENT center-justified text
3 VECTOR vector
4 ARC arc
5 CURVE curve
6 POLYGON polygon
7 BSPLINE b-spline
8 BEZIER Bézier
10 TOPLEFT top-left-justified text
11 TOPCENT top-center-justified text
12 TOPRIGHT top-right-justified text
13 CENTLEFT left-center-justified text
14 CENTRIGHT right-center-justified text
15 BOTCENT bottom-center-justified text
17 June 2022 32

grn(1)

General Commands Manual grn(1)

* After the object type comes a variable number of lines, each specifying a point used to display the ele-
ment. Each line contains an x-coordinate and a y-coordinate in floating-point format, separated by
spaces. The list of points is terminated by a line containing the string “~1.0 —1.0” (AED) or a single as-
terisk, “*” (Sun/X11).

* After the points comes a line containing two decimal values, giving the brush and size for the element.
The brush determines the style in which things are drawn. For vectors, arcs, and curves there are six
valid brush values.

thin dotted lines

thin dot-dashed lines
thick solid lines

thin dashed lines
thin solid lines
medium solid lines

N AW =

=)

For polygons, one more value, 0, is valid. It specifies a polygon with an invisible border. For text, the
brush selects a font as follows.

roman (R font in troff)
italics (I font in troff)
bold (B font in troff)
4 special (S font in troff)

W N =

If you’re using grn to run your pictures through groff, the font is really just a starting font. The text
string can contain formatting sequences like “\fI”” or “\d” which may change the font (as well as do many
other things). For text, the size field is a decimal value between 1 and 4. It selects the size of the font in
which the text will be drawn. For polygons, this size field is interpreted as a stipple number to fill the
polygon with. The number is used to index into a stipple font at print time.

* The last line of each element contains a decimal number and a string of characters, separated by a single
space. The number is a count of the number of characters in the string. This information is used only for
text elements, and contains the text string. There can be spaces inside the text. For arcs, curves, and vec-
tors, the character count is zero (0), followed by exactly one space before the newline.

Coordinates

gremlin was designed for AED terminals, and its coordinates reflect the AED coordinate space. For verti-
cal pictures, x values range 116 to 511, and y values from O to 483. For horizontal pictures, x values range
from O to 511, and y values from O to 367. Although you needn’t absolutely stick to this range, you’ll get
better results if you at least stay in this vicinity. Also, point lists are terminated by a point of (-1, —1), so
you shouldn’t ever use negative coordinates. gremlin writes out coordinates using the printf(3) format
“%f1.2”; it’s probably a good idea to use the same format if you want to modify the grn code.

Sun/X11 coordinates

There is no restriction on the range of coordinates used to create objects in the Sun/X11 version of gremlin.
However, files with negative coordinates will cause problems if displayed on the AED.

Options

—? and ——help display a usage message, while —v and ——version show version information; all exit after-
ward.

=T dev Prepare device output using output driver dev. The default is ps. See groff(1) for a list of valid de-
vices.

—M dir Prepend dir to the search path for gremlin files. The default search path is the current directory,
the home directory, /usr/local/lib/groff/site—tmac, /usr/local/share/groff/site—tmac, and /usr/local/
share/groff/1.23.0/tmac, in that order.

—F dir Search dir for subdirectories devname (name is the name of the output driver) for the DESC file
before the default font directories /usr/local/share/groff/site—font, /usr/local/share/groff/1.23.0/
font, and /usr/lib/font.

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 33

grn(l) General Commands Manual grn(1)

-C Recognize .GS and .GE (and .GF) even when followed by a character other than space or newline.

Files
/usr/local/share/groff/1.23.0/font/devname/DESC
describes the output device name.
Authors
David Slattengren and Barry Roitblat wrote the original Berkeley grn. Daniel Senderowicz and Werner
Lemberg modified it for groff.

See also
gremlin(1), groff(1), pic(1), ideal(1)

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 34

grodvi(l) General Commands Manual grodvi(l)

Name

grodvi — groff output driver for TeX DVI format

Synopsis

grodvi [-dl] [-F dir] [-p paper-format] [-w n] [file . . .]
grodvi —help

grodvi —v
grodvi ——version

Description

The GNU roff DVI output driver translates the output of #roff(1) into TgX DVI format. Normally, grodvi is
invoked by groff(1) when the latter is given the “~T dvi” option. (In this installation, ps is the default out-
put device.) Use groff’s —P option to pass any options shown above to grodvi. If no file arguments are
given, or if file is “=”, grodvi reads the standard input stream. Output is written to the standard output
stream.

The DVI file generated by grodvi can be printed by any correctly written DVI driver. froff drawing primi-
tives are implemented using fpic version 2 specials. If the driver does not support these, the \D commands
will not produce any output.

There is an additional drawing command available:

\D'R dh dv'
Draw a rule (solid black rectangle), with one corner at the current position, and the diagonally op-
posite corner at the current position +(dh,dv). Afterwards the current position will be at the oppo-
site corner. This produces a rule in the DVI file and so can be printed even with a driver that does
not support the pic specials unlike the other \D commands.

The groff command \X'anything' is translated into the same command in the DVI file as would be pro-
duced by \special{anything} in TgX; anything may not contain a newline.

For inclusion of EPS image files, —Tdvi loads pspic.tmac automatically, providing the .PSPIC macro. See
groff_tmac(5) for a detailed description.

Font files for grodvi can be created from TFM (TgX font metrics) files using tfimtodit(1). The font descrip-
tion file should contain the following additional commands:

internalname name
The name of the TFM file (without the .#fin extension) is name.

checksum »n
The checksum in the TFM file is n.

designsize n
The designsize in the TFM file is n.

These are automatically generated by tfmtodit.

The default color for \m and \M is black. Currently, the drawing color for \D commands is always black,
and fill color values are translated to gray.

In groff, as in AT&T troff, the \N escape sequence can be used to access characters by their position in the
corresponding TFM file; all characters in the TFM file can be accessed this way.

By design, the DVI format doesn’t care about physical dimensions of the output medium. Instead, grodvi
emits the equivalent to TgX’s \special{papersize=width,length} on the first page; dvips (and possibly other
DVI drivers) then sets the page size accordingly. If either the page width or length is not positive, no pa-
persize special is output.

Options

—-help displays a usage message, while —v and ——version show version information; all exit afterward.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 35

grodvi(l) General Commands Manual grodvi(l)

—-d Do not use tpic specials to implement drawing commands. Horizontal and vertical lines will be
implemented by rules. Other drawing commands will be ignored.

—-Fdir Prepend directory dir/devname to the search path for font and device description files; name is the
name of the device, usually dvi.

-1 Use landscape orientation rather than portrait.

—p paper-format
Set physical dimensions of output medium, overriding the papersize, paperlength, and
paperwidth directives in the DESC file. paper-format can be any argument accepted by the
papersize directive; see groff font(5).

—-wn Draw rules (lines) with a thickness of n thousandths of an em. The default thickness is 40
(0.04 em).

Usage
There are styles called R, I, B, and BI mounted at font positions 1 to 4. The fonts are grouped into families
T and H having members in each of these styles:

TR CM Roman (cmr10)

TI CM Text Italic (cmtil0)

TB CM Bold Extended Roman (cmbx10)

TBI CM Bold Extended Text Italic (cmbxti10)

HR CM Sans Serif (cmss10)

HI CM Slanted Sans Serif (cmssil0)

HB CM Sans Serif Bold Extended (cmssbx10)

HBI CM Slanted Sans Serif Bold Extended (cmssbxo10)

There are also the following fonts which are not members of a family:

CwW CM Typewriter Text (cmtt10)
CWI CM Italic Typewriter Text (cmitt10)

Special fonts are MI (cmmil0), S (cmsy10), EX (cmex10), SC (cmtex10, only for CW), and, perhaps sur-
prisingly, TR, TI, and CW, due to the different font encodings of text fonts. For italic fonts, CWI is used
instead of CW.

Finally, the symbol fonts of the American Mathematical Society are available as special fonts SA (msam10)
and SB (msbm10). These two fonts are not mounted by default.

Using the option —mec (which loads the file ec.tmac) selects the EC and TC fonts. The EC fonts are de-
signed similarly to the CM fonts; additionally, they provide Euro \[Eu] and per mille \[%0] glyphs.
ec.tmac must be called before any language-specific files; it doesn’t take care of .hcode values.

Environment
GROFF_FONT_PATH
A list of directories in which to seek the selected output device’s directory of device and font de-
scription files. See troff(1) and groff_font(5).

Files
/usr/local/share/groff/1.23.0/font/devdvi/DESC
describes the dvi output device.

/usr/local/share/groff/1.23.0/font/devdvi/F
describes the font known as F on device dvi.

/usr/local/share/groff/1.23.0/tmac/dvi.tmac
defines macros for use with the dvi output device. It is automatically loaded by troffrc when the
dvi output device is selected.

/usr/local/share/groff/1.23.0/tmac/ec.tmac
configures the dvi output device to use the EC and TC font families instead of CM (Computer
Modern).

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 36

grodvi(l) General Commands Manual grodvi(l)

Bugs
DVI files produced by grodvi use a different resolution (57816 units per inch) from those produced by TgX.
Incorrectly written drivers which assume the resolution used by TgX, rather than using the resolution speci-
fied in the DVI file will not work with grodvi.

When using the —d option with boxed tables, vertical and horizontal lines can sometimes protrude by one
pixel. This is a consequence of the way TgX requires that the heights and widths of rules be rounded.

See also
tfimtodit(1), groff(1), troff(1), groff_out(S), groff_font(5), groff_char(7), groff_tmac(5)

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 37

groff ()

Name

General Commands Manual groff (1)

groff — front end to the GNU roff document formatting system

Synopsis

groff [-abcCeEgGijkINpRsStUVXzZ] [-d cs] [-d name=string] [-D enc] [-f fam] [-F dir] [-1 dir]
[-K enc] [-L arg] [-m name] [-M dir] [-n num] [-o list] [-P arg] [-r cn] [-r reg=expr] [-T dev]
[-w name] [-W namel] | file . ..]

groff —h

groff —help

groff —v [option .. .] [file ...]
groff ——version [option ...] [file . ..]

Description

groff is the primary front end to the GNU roff document formatting system. GNU roff transforms text in-
put files into typeset output in a variety of formats, such as PDF and HTML. It is also used to format man
pages for viewing on terminals. The groff command orchestrates the execution of preprocessors, the trans-
formation of input documents into a device-independent page description language, and the production of
output from that language.

Options

—h and ——help display a usage message and exit.

Because groff is intended to subsume most users’ direct invocations of the #roff{(1) formatter, the two pro-
grams share a set of options. However, groff has some options that troff does not share, and others which
groff interprets differently. At the same time, not all valid troff options can be given to groff.

groff-specific options

The following options either do not exist for troff or are interpreted differently by groff.
—-D enc Set default input encoding used by preconv(1) to enc; implies —k.

—-e Run egn(1) preprocessor.

-g Run grn(1) preprocessor.

-G Run grap(1) preprocessor; implies —p.

-1 dir Works as troff’s option (see below), but also implies —g and —s. It is passed to soelim(1) and the
output driver, and grn is passed an —M option with dir as its argument.

-j Run chem(1) preprocessor; implies —p.

-k Run preconv(1) preprocessor. Refer to its manual page for its behavior if neither of groff’s =K or
—D options is also specified.

-K enc Set input encoding used by preconv(1) to enc; implies —k.

-1 Send the output to a spooler program for printing. The “print” directive in the device description
file specifies the default command to be used; see groff_font(5). If no such directive is present for
the output device, output is piped to I[pr(1). See options —L and —X.

—L arg Pass arg to the print spooler program. If multiple args are required, each should be passed with a
separate —L option. groff does not prefix an option dash to arg before passing it to the spooler
program.

-M Works as troff’s option (see below), but is also passed to egn(1), grap(1), and grn(1).
-N Prohibit newlines within egn delimiters: pass =N to egn(1).
-p Run pic(1) preprocessor.

—P arg Pass arg to the postprocessor. If multiple args are required, each should be passed with a separate
—P option. groff does not prefix an option dash to arg before passing it to the postprocessor.

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 38

groff (1) General Commands Manual groff (1)

-R Run refer(1) preprocessor. No mechanism is provided for passing arguments to refer because
most refer options have equivalent language elements that can be specified within the document.

-s Run soelim(1) preprocessor.

-S Operate in “safer” mode; see —U below for its opposite. For security reasons, safer mode is en-
abled by default.

-t Run #bI(1) preprocessor.

=T dev Direct troff to format the input for the output device dev. groff then calls an output driver to con-
vert troff ’s output to a form appropriate for dev; see subsection “Output devices” below.

-U Operate in unsafe mode: pass the —U option to pic and troff. See —S.

-v

——version
Write version information for groff and all programs run by it to the standard output stream; that
is, the given command line is processed in the usual way, passing —v to the formatter and any pre-
or postprocessors invoked.

4 Output the pipeline that would be run by groff (as a wrapper program) to the standard output
stream, but do not execute it. If given more than once, the pipeline is both written to the standard
error stream and run.

-X Use gxditview(1) instead of the usual postprocessor to (pre)view a document on an X11 display.

-Z Disable postprocessing. troff output will appear on the standard output stream (unless suppressed
with —z); see groff_out(5) for a description of this format.

Transparent options
The following options are passed as-is to the formatter program troff(1) and described in more detail in its

man page.

-a Generate a plain text approximation of the typeset output.

-b Write a backtrace to the standard error stream on each error or warning.
—-C Start with color output disabled.

-C Enable AT&T troff compatibility mode; implies —c.

—d cs
—d name=string
Define string.

-E Inhibit troff error messages; implies —-Ww.
—f fam Set default font family.

=F dir Search in directory dir for the selected output device’s directory of device and font description
files.

—i Process standard input after the specified input files.
-1 dir Search dir for input files.

—m name
Process name.#mac before input files.

—M dir Search directory dir for macro files.

—n num
Number the first page num.

—o list Output only pages in [ist.

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 39

groff (1) General Commands Manual groff (1)

-rcn
—I reg=expr
Define register.

—-W name
—-W name
Enable (—w) or inhibit (-W) emission of warnings in category name.

'/ Suppress formatted device-independent output of troff .

Usage
The architecture of the GNU roff system follows that of other device-independent roff implementations,
comprising preprocessors, macro packages, output drivers (or “postprocessors”), a suite of utilities, and the
formatter troff at its heart. See roff(7) for a survey of how a roff system works.

The front end programs available in the GNU roff system make it easier to use than traditional roff's that re-
quired the construction of pipelines or use of temporary files to carry a source document from maintainable
form to device-ready output. The discussion below summarizes the constituent parts of the GNU roff sys-
tem. It complements roff(7) with groff -specific information.

Getting started
Those who prefer to learn by experimenting or are desirous of rapid feedback from the system may wish to
start with a “Hello, world!” document.

$ echo "Hello, world!" | groff -Tascii | sed '/4$/d’
Hello, world!

We used a sed command only to eliminate the 65 blank lines that would otherwise flood the terminal
screen. (roff systems were developed in the days of paper-based terminals with 66 lines to a page.)

Today’s users may prefer output to a UTF-8-capable terminal.
$ echo "Hello, world!" | groff —-Tutf8 | sed '/~$/d'

Producing PDF, HTML, or TgX’s DVl is also straightforward. The hard part may be selecting a viewer pro-
gram for the output.

echo "Hello, world!" | groff -Tpdf > hello.pdf
evince hello.pdf

echo "Hello, world!" | groff —-Thtml > hello.html
firefox hello.html

echo "Hello, world!" | groff -Tdvi > hello.dvi

$ xdvi hello.html

Using groff as a REPL
Those with a programmer’s bent may be pleased to know that they can use groff in a read-evaluate-print
loop (REPL). Doing so can be handy to verify one’s understanding of the formatter’s behavior and/or the
syntax it accepts. Turning on all warnings with —ww can aid this goal.

v W A

$ groff —-ww —Tutf8

\# This is a comment. Let's define a register.

.nr a 1

\# Do integer arithmetic with operators evaluated left-to-right.
.nr b \n[a]+5/2

\# Let's get the result on the standard error stream.
.tm \n[b]

3

\# Now we'll define a string.

.ds name Leslie\" This is another form of comment.
.nr b (\nl[a] + (7/2))

\# Center the next two text input lines.

.ce 2

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 40

groff ()

General Commands Manual groff (1)

Hi, *[name].
Your secret number is \n[b].
\# We will see that the division rounded toward zero.
It is
\# Here's an if-else control structure.
.ie (\n[b] % 2) odd.
.el even.
\# This trick sets the page length to the current vertical
\# position, so that blank lines don't spew when we're done.
.p1 \n[nl]u
<Control-D>

Hi, Leslie.

Your secret number is 4.

It is even.

Paper size

In GNU roff, the page dimensions for the formatter troff and for output devices are handled separately. In
the formatter, requests are used to set the page length (.pl), page offset (or left margin, .po), and line length
(). The right margin is not explicitly configured; the combination of page offset and line length provides
the information necessary to derive it. The papersize macro package, automatically loaded by troff, pro-
vides an interface for configuring page dimensions by convenient names, like “letter” or “A4”; see
groff_tmac(5). The default used by the formatter depends on its build configuration; in this installation, it is
“Ad”.

It is up to each macro package to respect the page dimensions configured in this way. Some offer alterna-
tive mechanisms.

For each output device, the size of the output medium can be set in its DESC file. Most also recognize a
command-line option —p to override the default dimensions and an option —I to use landscape orientation.
See groff font(5) for a description of the papersize directive, which takes an argument of the same form as
—p. The output driver’s man page, such as grops(1), may also be helpful. groff uses the command-line op-
tion —P to pass options to output devices; for example, use the following for PostScript output on A4 paper
in landscape orientation.

groff -Tps —-dpaper=a4l -P-pa4 -P-1 —-ms foo.ms > foo.ps

Front end

The groff program is a wrapper around the troff(1) program. It allows one to specify preprocessors via
command-line options and automatically runs the appropriate postprocessor for the selected output device.
Doing so, the manual construction of pipelines or management of temporary files required of users of tradi-
tional roff(7) systems can be avoided. The grog(1) program can be used to infer an appropriate groff com-
mand line to format a document.

Language

Input to a roff system is in plain text interleaved with control lines and escape sequences. The combination
constitutes a document in one of a family of languages we also call roff; see roff(7) for background. An
overview of GNU roff language syntax and features, including lists of all supported escape sequences, re-
quests, and pre-defined registers, can be found in groff(7). GNU roff extensions to the AT&T troff lan-
guage, a common subset of roff dialects extant today, are detailed in groff_diff(7).

Preprocessors

A preprocessor is an interpreter of a domain-specific language that produces roff language output. Fre-
quently, such input is confined to sections or regions of a roff input file (bracketed with macro calls specific
to each preprocessor), which it replaces. Preprocessors therefore often interpret a subset of roff syntax
along with their own language. GNU roff provides reimplementations of most preprocessors familiar to
users of AT&T troff ; these routinely have extended features and/or require GNU troff to format their out-
put. Preprocessors distributed with GNU roff include

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 41

groff (1) General Commands Manual groff (1)

eqn(l) for mathematical formulae,
grn(1) for pictures in gremlin(1) format,
pic(l) for diagrams,

chem(1)
for chemical structure diagrams,

refer(1) for bibliographic references,

soelim(1)
to preprocess files included with roff .so requests, and

tbl(1) for tables.

A preprocessor unique to GNU roff is preconv(l), which converts various input encodings to something
GNU troff can understand. When used, it is run before any other preprocessors.

Macro packages
Macro files are roff input files designed to produce no output themselves but instead ease the preparation of
other roff documents. When a macro file is installed at a standard location and suitable for use by a general
audience, it is termed a macro package.

Macro packages can be loaded prior to any roff input documents with the —m option. The GNU roff sys-
tem implements most well-known macro packages for AT&T troff in a compatible way and extends them.
These have one- or two-letter names arising from intense practices of naming economy in early Unix cul-
ture, a laconic approach that led to many of the packages being identified in general usage with the nroff
and froff option letter used to invoke them, sometimes to punning effect, as with “man” (short for “man-
ual”), and even with the option dash, as in the case of the s package, much better known as ms or even —ms.

Macro packages serve a variety of purposes. Some are “full-service” packages, adopting responsibility for
page layout among other fundamental tasks, and defining their own lexicon of macros for document com-
position; each such package stands alone and a given document can use at most one.

an is used to compose man pages in the format originating in Version 7 Unix (1979); see
groff_man(7). It can be specified on the command line as —man.

doc is used to compose man pages in the format originating in 4.3BSD-Reno (1990); see
groff_mdoc(7). It can be specified on the command line as —mdoc.

e is the Berkeley general-purpose macro suite, developed as an alternative to AT&T’s s; see
groff_me(7). It can be specified on the command line as —me.

m implements the format used by the second-generation AT&T macro suite for general documents, a
successor to s; see groff_mm(7). It can be specified on the command line as —-mm.

om (invariably called “mom”) is a modern package written by Peter Schaffter specifically for GNU
roff. Consult the mom HTML manual (file:///ust/local/share/doc/groff—1.23.0/html/mom/toc
.html) for extensive documentation. She—for mom takes the female pronoun—can be specified
on the command line as —mom.

s is the original AT&T general-purpose document format; see groff’_ms(7). It can be specified on the
command line as —ms.

Others are supplemental. For instance, andoc is a wrapper package specific to GNU roff that recognizes
whether a document uses man or mdoc format and loads the corresponding macro package. It can be spec-
ified on the command line as —mandoc. A man(1) librarian program may use this macro file to delegate
loading of the correct macro package; it is thus unnecessary for man itself to scan the contents of a docu-
ment to decide the issue.

Many macro files augment the function of the full-service packages, or of roff documents that do not em-
ploy such a package—the latter are sometimes characterized as “raw”. These auxiliary packages are de-
scribed, along with details of macro file naming and placement, in groff_tmac(5).

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 42

groff (1) General Commands Manual groff (1)

Formatters
The formatter, the program that interprets roff language input, is troff(1). It provides the features of the
AT&T troff and nroff programs as well as many extensions. The command-line option —C switches troff
into compatibility mode, which tries to emulate AT&T troff as closely as is practical to enable the format-
ting of documents written for the older system.

A shell script, nroff(1), emulates the behavior of AT&T nroff. It attempts to correctly encode the output
based on the locale, relieving the user of the need to specify an output device with the =T option and is
therefore convenient for use with terminal output devices, described in the next subsection.

The formatter generates device-independent, but not device-agnostic, intermediate output in a page descrip-
tion language whose syntax is detailed in groff_out(5).

Output devices
troff output is formatted for a particular output device, typically specified by the =T option to the formatter
or a front end. If neither this option nor the GROFF_TYPESETTER environment variable is used, the de-
fault output device is ps. An output device may be any of the following.

ascii for terminals using the ISO 646 1991:IRV character set and encoding, also known as US-ASCIL.
cpl047 for terminals using the IBM code page 1047 character set and encoding.
dvi for TeX DVI format.

html
xhtml for HTML and XHTML output, respectively.

latin1 for terminals using the ISO Latin-1 (ISO 8859-1) character set and encoding.

Ibp for Canon CaPSL printers (LBP-4 and LBP-8 series laser printers).

1j4 for HP LaserJet4-compatible (or other PCL5-compatible) printers.

pdf for PDF output.

ps for PostScript output.

utf8 for terminals using the ISO 10646 (“Unicode”) character set in UTF-8 encoding.
X75 for previewing with gxditview using 75 dpi resolution and a 10-point base type size.

X75-12 for previewing with gxditview using 75 dpi resolution and a 12-point base type size.
X100 for previewing with gxditview using 100 dpi resolution and a 10-point base type size.
X100-12 for previewing with gxditview using 100 dpi resolution and a 12-point base type size.

Postprocessors
Any program that interprets the output of troff is a GNU roff postprocessor. All of the postprocessors pro-
vided by GNU roff are output drivers, which prepare a document for viewing or printing. Postprocessors
for other purposes, such as page resequencing or statistical measurement of a document, are conceivable.

An output driver supports one or more output devices, each with its own device description file. A device
determines its postprocessor with the postpro directive in its device description file; see groff font(5). The
—X option overrides this selection, causing gxditview to serve as the output driver.

grodvi(1)
provides dvi.

grohtml(1)
provides html and xhtml.

grolbp(1)
provides lbp.

grolj4(1)
provides 1j4.

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 43

groff (1) General Commands Manual groff (1)

gropdf(1)
provides pdf.

grops(1)
provides ps.

grotty(1)
provides ascii, cp1047, latinl, and utf8.

gxditview(1)
provides X75, X75-12, X100, and X100-12, and additionally can preview ps.
Utilities
GNU roff includes a suite of utilities.

gdiffmk(1)
marks differences between a pair of roff input files.

grog(1) infers the groff command a document requires.

Several utilities prepare descriptions of fonts, enabling the formatter to use them when producing output for
a given device.
addftinfo(1)
adds information to AT&T troff font description files to enable their use with GNU troff .
afmtodit(1)
creates font description files for PostScript Type 1 fonts.
pfbtops(1)
translates a PostScript Type 1 font in PFB (Printer Font Binary) format to PFA (Printer Font
ASCII), which can then be interpreted by afintodit.
hpftodit(1)
creates font description files for the HP LaserJet 4 family of printers.
tfmtodit(1)
creates font description files for the TeX DVI device.

xtotroff (1)
creates font description files for X Window System core fonts.

A trio of tools transform material constructed using roff preprocessor languages into graphical image files.
eqn2graph(1)
converts an egn equation into a cropped image.
grap2graph(1)
converts a grap diagram into a cropped image.
pic2graph(1)
converts a pic diagram into a cropped image.

Another set of programs works with the bibliographic data files used by the refer(1) preprocessor.
indxbib(1)

makes inverted indices for bibliographic databases, speeding lookup operations on them.
lkbib(1)

searches the databases.

lookbib(1)
interactively searches the databases.

Exit status
groff exits with a failure status if there was a problem parsing its arguments and a successful status if either
of the options —h or —help was specified. Otherwise, groff runs a pipeline to process its input; if all com-
mands within the pipeline exit successfully, groff does likewise. If not, groff’s exit status encodes a sum-

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 44

groff (1) General Commands Manual groff (1)

mary of problems encountered, setting bit O if a command exited with a failure status, bit 1 if a command
was terminated with a signal, and bit 2 if a command could not be executed. (Thus, if all three misfortunes
befell one’s pipeline, groff would exit with status 270 + 2”1 + 2°2 = 14244 =7.) To troubleshoot pipeline
problems, you may wish to re-run the groff command with the —V option and break the reported pipeline
down into separate stages, inspecting the exit status of and diagnostic messages emitted by each command.

Environment
Normally, the path separator in environment variables ending with PATH is the colon; this may vary de-
pending on the operating system. For example, Windows uses a semicolon instead.

GROFF_BIN_PATH
This search path, followed by PATH, is used to locate commands executed by groff. If it is not
set, the installation directory of the GNU roff executables, /usr/local/bin, is searched before
PATH.

GROFF_COMMAND_PREFIX
GNU roff can be configured at compile time to apply a prefix to the names of the programs it pro-
vides that had a counterpart in AT&T troff, so that name collisions are avoided at run time. The
default prefix is empty.

When used, this prefix is conventionally the letter “g”. For example, GNU troff would be installed
as gtroff. Besides troff, the prefix applies to the preprocessors eqn, grn, pic, refer, tbl, and
soelim; and the utilities indxbib and lookbib.

GROFF_ENCODING
The value of this variable is passed to the preconv(1) preprocessor’s —e option to select the charac-
ter encoding of input files. This variable’s existence implies the groff option —k. If set but empty,
groff calls preconv without an —e option. groff’s —K option overrides GROFF_ENCODING.

GROFF_FONT_PATH
Seek the selected output device’s directory of device and font description files in this list of direc-
tories. See troff(1) and groff_font(5).

GROFF_TMAC_PATH
Seek macro files in this list of directories. See troff(1) and groff_tmac(5).

GROFF_TMPDIR
Create temporary files in this directory. If not set, but the environment variable TMPDIR is set,
temporary files are created there instead. On Windows systems, if neither of the foregoing are set,
the environment variables TMP and TEMP (in that order) are checked also. Otherwise, temporary
files are created in /tmp. The refer(1), grohtml(1), and grops(1) commands use temporary files.

GROFF _TYPESETTER
Set the default output device. If empty or not set, ps is used. The —T option overrides
GROFF_TYPESETTER.

SOURCE_DATE_EPOCH
A time stamp (expressed as seconds since the Unix epoch) to use as the output creation time stamp
in place of the current time. The time is converted to human-readable form using ctime(3) when
the formatter starts up and stored in registers usable by documents and macro packages.

7 The time zone to use when converting the current time (or value of SOURCE_DATE_EPOCH) to
human-readable form; see rzset(3).

Examples
roff systems are best known for formatting man pages. Once a man(1) librarian program has located a man
page, it may execute a groff command much like the following, constructing a pipeline to page the output.

groff -t -man /usr/share/man/manl/groff.l.man | less -R

To process a roff input file using the preprocessors bl and pic and the me macro package in the way to
which AT&T troff users were accustomed, one would type (or script) a pipeline.

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 45

groff (1) General Commands Manual groff (1)

pic foo.me | tbl | troff -me -Tutf8 | grotty
Using groff, this pipe can be shortened to the equivalent command
groff -p -t —me -T utf8 foo.me

An even easier way to do this is to use grog(1) to guess the preprocessor and macro options and execute the
result by using the command substitution feature of the shell.

$(grog —Tutf8 foo.me)

Each command-line option to a postprocessor must be specified with any required leading dashes “-" be-
cause groff passes the arguments as-is to the postprocessor; this permits arbitrary arguments to be transmit-
ted. For example, to pass a title to the gxditview postprocessor, the shell commands
groff -X -P —-title -P 'trial run' mydoc.t
and
groff -X -Z mydoc.t | gxditview —-title 'trial run' -
are equivalent.
Limitations
When paging output for the ascii, cp1047, latinl, and utf8 devices, programs like more(1) and less(1) may
require command-line options to correctly handle some terminal escape sequences; see grotty(1).

On EBCDIC hosts such as OS/390 Unix, the output devices ascii and latinl aren’t available. Conversely,
the output device cp1047 is not available on systems based on the ISO 646 or ISO 8859 character encoding
standards.

Installation directories
GNU roff installs files in varying locations depending on its compile-time configuration. On this installa-
tion, the following locations are used.

/ust/local/bin
Directory containing groff’s executable commands.

/usr/local/share/groff/1.23.0/eign
List of common words for indxbib(1).

/usr/local/share/groff/1.23.0
Directory for data files.

Jusr/dict/papers/Ind
Default index for lkbib(1) and refer(1).

/usr/local/share/doc/groff—1.23.0
Documentation directory.

/usr/local/share/doc/groff—1.23.0/examples
Example directory.

/usr/local/share/groff/1.23.0/font
Font directory.

/usr/local/share/doc/groff—1.23.0/html
HTML documentation directory.

/usr/lib/font
Legacy font directory.

/usr/local/share/groff/site—font
Local font directory.

/usr/local/share/groff/site—tmac
Local macro package (tmac file) directory.

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 46

groff (1) General Commands Manual groff (1)

/usr/local/share/groff/1.23.0/tmac
Macro package (tmac file) directory.

/usr/local/share/groff/1.23.0/oldfont
Font directory for compatibility with old versions of groff’; see grops(1).

/usr/local/share/doc/groff—1.23.0/pdf
PDF documentation directory.

/usr/local/lib/groff/site—tmac
System macro package (fmac file) directory.

groff macro directory
Most macro files supplied with GNU roff are stored in /usr/local/share/groff/1.23.0/tmac for the installa-
tion corresponding to this document. As a rule, multiple directories are searched for macro files; for more
information on that topic and a catalog of macro files GNU roff provides, see groff_tmac(5).

groff device and font description directory
Device and font description files supplied with GNU roff are stored in /usr/local/share/groff/1.23.0/font for
the installation corresponding to this document. As a rule, multiple directories are searched for device and
font description files; see roff(1). For the formats of these files, see groff_font(5).

Availability
Information on how to get groff and related information is available at the groff page of the GNU website
(http://www.gnu.org/software/groff).

Three groff mailing lists are available for bug tracker activity (bug—groff @gnu.org) (read-only), general
discussion (groff@gnu.org), and source code repository commit activity {groff-commit@gnu.org) (read-
only). Details of repository access and more can be found in the file README in the top-level directory of
the groff source distribution.

A free implementation of the grap preprocessor, written by Ted Faber {(faber @lunabase.org), can be found
at the grap website (http://www.lunabase.org/~faber/Vault/software/grap/). groff supports only this grap.

Authors
groff was written by James Clark (jjc@jclark.com). This document was rewritten, enhanced, and put under
the GNU FDL license in 2002 by Bernd Warken {groff—bernd.warken—72 @web.de).

See also
Groff: The GNU Implementation of troff, by Trent A. Fisher and Werner Lemberg, is the primary groff
manual. You can browse it interactively with “info groff”.

Introduction, history, and further reading:

roff(7)

Viewer for groff (and AT&T device-independent troff) documents:
gxditview(1)

Preprocessors:
chem(1), egn(1), neqn(1), glilypond(1), grn(1), preconv(l), gperl(1), pic(1), gpinyin(1l), refer(1),
soelim(1), tbl(1)

Macro packages and package-specific utilities:
groff_hdtbl(7), groff_man(7), groff_man_style(7), groff_mdoc(7), groff_me(T), groff_mm(7),
groff_mmse(T), mmroff(1), groff_ mom(7), pdfmom(l), groff_ ms(7), groff_rfci345(7),
groff_trace(7), groff_www(T)

Bibliographic database management tools:
indxbib(1), lkbib(1), lookbib(1)

Language, conventions, and GNU extensions:
groff(7), groff_char(7), groff_diff(7), groff_filenames(5), groff font(5), groff_tmac(5)

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 47

groff (1) General Commands Manual groff (1)

Intermediate output language:
groff_out(5)
Formatter program:
troff(1)
Formatter wrappers:
nroff(1), pdfroff(1)
Postprocessors for output devices:
grodvi(1), grohtml(1), grolbp(1), grolj4(1), lj4_font(5), gropdf(1), grops(1), grotty(1)
Font support utilities:
addftinfo(1), afmtodit(1), hpftodit(1), pfbtops(1), tfimtodit(1), xtotroff (1)
Graphics conversion utilities:
eqn2graph(l), grap2graph(1), pic2graph(1)
Difference-marking utility:
gdiffink(1)
“groff guess” utility:
grog(1)

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 48

grog(l)

Name

General Commands Manual grog(1)

grog — “groff guess”—infer the groff command a document requires

Synopsis

grog [——run] [—-ligatures] [groff-option ...] [-—] [file .. .]
grog —h

grog —help

grog —v

grog ——version

Description

grog reads its input and guesses which groff(1) options are needed to render it. If no operands are given, or
if file is “=", grog reads the standard input stream. The corresponding groff command is normally written
to the standard output stream. With the option ——run, the inferred command is written to the standard er-
ror stream and then executed.

Options

Details

—h and ——help display a usage message, whereas —v and ——version display version information; all exit
afterward.

——ligatures
includes the arguments —P—y —PU in the inferred groff command. These are supported only by
the pdf output device.

—run writes the inferred command to the standard error stream and then executes it.

9

All other specified short options (that is, arguments beginning with a minus sign followed by a letter)
are interpreted as groff options or option clusters with or without an option argument. Such options are in-
cluded in the constructed groff command line.

grog reads each file operand, pattern-matching strings that are statistically likely to be characteristic of
roff(7) documents. It tries to guess which of the following groff options are required to correctly render the
input: —e, —g, -G, —j, —p, —R, —t (preprocessors); and —man, -mdoc, -mdoc—-old, -me, -mm, —mom,
and —ms (macro packages). The inferred groff command including these options and any file parameters
is written to the standard output stream.

It is possible to specify arbitrary groff options on the command line. These are included in the inferred
command without change. Choices of groff options include —C to enable AT&T troff compatibility mode
and -T to select a non-default output device. If the input is not encoded in US-ASCII, ISO 8859-1, or IBM
code page 1047, specification of a groff option to run the preconv(1) preprocessor is advised; see the —D,
-k, and —K options of groff(1). For UTF-8 input, -k is a good choice.

groff may issue diagnostic messages when an inappropriate —m option, or multiple conflicting ones, are
specified. Consequently, it is best to specify no —m options to grog unless it cannot correctly infer all of
the —m arguments a document requires. A roff document can also be written without recourse to any
macro package. In such cases, grog will infer a groff command without an —m option.

Limitations

grog presumes that the input does not change the escape, control, or no-break control characters. grog does
not parse roff input line continuation or control structures (brace escape sequences and the “if”, “ie”, and
“el” requests) nor groff ’s “while”. Thus the input

LAf N

t .NH 1

.if n .SH

Introduction
will conceal the use of the ms macros NH and SH from grog. Such constructions are regarded by grog’s
implementors as insufficiently common to cause many inference problems. Preprocessors can be even
stricter when matching macro calls that bracket the regions of an input file they replace. pic, for example,
requires PS, PE, and PF calls to immediately follow the default control character at the beginning of a line.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 49

grog(l)

General Commands Manual grog(1)

Detection of the —s option (the soelim(1) preprocessor) is tricky; to correctly infer its necessity would re-
quire grog to recursively open all files given as arguments to the .so request under the same conditions that
soelim itself does so; see its man page. Recall that soelim is only necessary if sourced files need to be pre-
processed. Therefore, as a workaround, you may want to run the input through soelim manually, piping it
to grog, and compare the output to running grog on the input directly. If the “soelim”ed input causes grog
to infer additional preprocessor options, then —s is likely necessary.

$ printf ".TS\nl.\nI'm a table.\n.TE\n" > 3.roff
$ printf ".so 3.roff\n" > 2.roff

$ printf " .XP\n.so 2.roff\n" > 1l.roff

$ grog l.roff

groff -ms l.roff

$ soelim 1.roff | grog

groff -t -ms -

In the foregoing example, we see that this procedure enabled grog to detect tb/(1) macros, so we would add
—s as well as the detected —t option to a revised grog or groff command.

$ grog —-st 1l.roff
groff -st —-ms 1l.roff

Exit status

grog exits with error status 1 if a macro package appears to be in use by the input document, but grog was
unable to infer which one, or 2 if there were problems handling an option or operand. It otherwise exits
with status 0. (If the ——run option is specified, groff ’s exit status is discarded.) Inferring no preprocessors
or macro packages is not an error condition; a valid roff document need not use either. Even plain text is
valid input, if one is mindful of the syntax of the control and escape characters.

Examples

Running
grog /usr/local/share/doc/groff-1.23.0/meintro.me
at the command line results in
groff -me /usr/local/share/doc/groff-1.23.0/meintro.me
because grog recognizes that the file meintro.me is written using macros from the me package. The com-
mand
grog /usr/local/share/doc/groff-1.23.0/pic.ms
outputs
groff -e -p -t -ms /usr/local/share/doc/groff-1.23.0/pic.ms
on the other hand. Besides discerning the ms macro package, grog recognizes that the file pic.ms addition-
ally needs the combination of —t for thl, —e for eqn, and —p for pic.

Consider a file doc/grnexampl.me, which uses the grn preprocessor to include a gremlin(1) picture file in an
me document. Let’s say we want to suppress color output, produce a DVI file, and get backtraces for any
errors that troff encounters. The command

grog —-bc -Idoc -Tdvi doc/grnexmpl.me
is processed by grog into

groff -bc -Idoc -Tdvi -e -g -me doc/grnexmpl.me
where we can see that grog has inferred the me macro package along with the egn and grn preprocessors.
(The input file is located in /usr/local/share/doc/groff—1.23.0 if you’d like to try this example yourself.)

Authors

grog was originally written in Bourne shell by James Clark. The current implementation in Perl was writ-
ten by Bernd Warken (groff—bernd.warken—72@web.de) and heavily revised by G. Branden Robinson
(g.branden.robinson @ gmail.com).

See also

groff(1)

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 50

grohtml(1) General Commands Manual grohtml(1)

Name
grohtml, post—grohtml, pre—grohtml — groff output driver for HTML

Synopsis
pre—grohtml [—epV] [-a anti-aliasing-text-bits] [-D image-directory] [-F font-directory] [-g anti-
aliasing-graphic-bits] [—i resolution] [-1 image-stem] [—0 image-vertical-offset] [-x html-
dialect] [troff-command] [troff-argument] . ..]

pre—grohtml —help

pre—grohtml —v
pre—grohtml ——version

post—grohtml [-bCGhInrVy] [-F font-directory] [=j output-stem] [—s base-point-size] [-S heading-
level] [-x html-dialect] [file . . .]

post—grohtml —help

post—grohtml —v
post—grohtml ——version

Description
The GNU roff system’s HTML support consists of a preprocessor, pre—grohtml, and an output driver,
post—grohtml; together, they translate roff(7) documents to HTML. Users should always invoke grohtml
via the groff(1) command with the —Thtml or —Txhtml options. If no operands are given, or if file is “-”,
grohtml reads the standard input stream. Output is written to the standard output stream. When grohtml is

run by groff , options can be passed to grohtml using groff’s —P option.

grohtml invokes groff twice. In the first pass, the preprocessor pre—grohtml renders pictures, equations,
and tables as images in PostScript format using the ps output driver. In the second pass, the output driver
post—grohtml translates the output of froff(1) to HTML.

grohtml always writes output encoded in UTF-8 and has built-in entities for all non-composite Unicode
characters. In spite of this, groff may issue warnings about unknown special characters if they can’t be
found during the first pass. Such warnings can be safely ignored unless the special characters appear inside
a table or equation.

Options
—-help displays a usage message, while —v and ——version show version information; all exit afterward.
—a anti-aliasing-text-bits
Number of bits of antialiasing information to be used by fext when generating PNG images. The
default is 4 but valid values are 0, 1, 2, and 4. Note that your version of gs needs to support the

—dTextAlphaBits and —dGraphicAlphaBits options in order to exploit antialiasing. A value of 0
stops grohtml from issuing antialiasing commands to gs.

-b Initialize the background color to white.

-C Suppress output of “CreationDate:” HTML comment.

-D image-directory
Instruct grohtml to place all image files into directory image-directory.

—-e This option should not be directly specified; it is an internal option used by groff when —Thtml or
—Txhtml is specified. grohtml’s preprocessor uses it to determine whether egn should be directed
to produce MathML (if —Txhtml is specified).

=F font-directory
Prepend directory font-directory/devname to the search path for font and device description files;
name is the name of the device, usually html.

-G Suppress output of “Creator:” HTML comment.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 51

grohtml(1) General Commands Manual grohtml(1)

Usage

—g anti-aliasing-graphic-bits
Number of bits of antialiasing information to be used by graphics when generating PNG images.
The default is 4 but valid values are 0, 1, 2, and 4. Note your version of gs needs to support the
—dTextAlphaBits and —dGraphicAlphaBits options in order to exploit antialiasing. A value of 0
stops grohtml from issuing antialiasing commands to gs.

-h Generate section and number headings by using ... and increasing the font size, rather
than using the <Hn>...</Hn> tags.

—i resolution
Select the resolution for all images. By default this is 100 pixels per inch. Example: —i200 indi-
cates 200 pixels per inch.

-1 image-stem
Determine the image file name stem. If omitted, grohtml uses grohtml—XXXXX (where XXXXX
is the process ID). A dash is appended to the stem to separate it from the following image number.

—j output-stem
Instruct grohtml to split the HTML output into multiple files. Output is written to a new file at
each section heading (but see option —S below) named output-stem—n.html.

-1 Turn off the production of automatic section links at the top of the document.

-n Generate simple heading anchors whenever a section/number heading is found. Without the op-
tion the anchor value is the textual heading. This can cause problems when a heading contains a
“?” on older versions of some browsers. This flag is automatically turned on if a heading contains
an image.

—0 image-vertical-offset
Specify the vertical offset of images in points.

-p Display page rendering progress to the standard error stream. grohtml only displays a page num-
ber when an image is required.

-r Turn off the automatic header and footer line (HTML rule).

—s base-point-size
Set the base point size of the source file. Thereafter when this point size is used in the source it
will correspond to the HTML base size. Every increase of two points in the source will yield a
<big> tag, and conversely when a decrease of two points is seen a <small> tag is emitted.

=S heading-level
When splitting HTML output (see option —j above), split at each nested heading level defined by
heading-level, or higher). The default is 1.

o\ Create an XHTML or HTML validator button at the bottom of each page of the document.

—X html-dialect
Select HTML dialect. Currently, htmi-dialect should be either the digit 4 or the letter x, which in-
dicates whether grohtml should generate HTML 4 or XHTML, respectively. This option should
not be directly invoked by the user as it is an internal option utilized by groff when —Thtml or
—Txhtml is specified.

-y Produce a right-justified groff signature at the end of the document. This is only generated if the
-V flag is also specified.

Font styles called R, I, B, and BI are mounted at font positions 1 to 4, respectively.

Dependencies

grohtml is dependent upon the PNG utilities (pnmcut, pnmcrop, pnmtopng) and Ghostscript (gs).
pnmtopng (version 2.37.6 or greater) and pnmcut from the netpbm package (version 9.16 or greater) will
work also. It is also dependent upon psselect from the PSUTtils package. Images are generated whenever a
table, picture, equation or line (such as a baseline rule or box rule) is encountered.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 52

grohtml(1) General Commands Manual grohtml(1)

Files

grohtml uses temporary files. See groff(1) for details about where such files are created.

Environment
GROFF_FONT_PATH
A list of directories in which to seek the selected output device’s directory of device and font de-
scription files. See troff(1) and groff_font(5).

SOURCE_DATE_EPOCH
A timestamp (expressed as seconds since the Unix epoch) to use as the output creation timestamp
in place of the current time. The time is converted to human-readable form using ctime(3) and
recorded in an HTML comment.

7 The time zone to use when converting the current time (or value of SOURCE_DATE_EPOCH) to
human-readable form; see rzset(3).

Bugs
grohtml is still beta code.

grohtml does not truly support hyphenation, but you can fool it into hyphenating long input lines, which
can appear in HTML output with a hyphenated word followed by a space but no line break.

See also
groff(1), troff(1), groff_font(5)

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 53

grolbp(1) General Commands Manual grolbp(1)

Name

grolbp — groff output driver for Canon CaPSL printers

Synopsis

grolbp [-1] [—¢ num-copies] [-F font-directory] [—o orientation] [-p paper-size] [-w width] | file . ..]
grolbp [——copies=num-copies] [-—fontdir= font-directory] [-—landscape] [——linewidth=width]
[-—orientation=orientation] [-—papersize=paper-size] [file . . .]

grolbp -h

grolbp —help
grolbp -v

grolbp ——version

Description

The GNU roff LBP output driver translates the output of #roff(1) into a CaPSL and VDM format suitable
for Canon LBP-4 and LBP-8 printers. Normally, grolbp is invoked by groff(1) when the latter is given the
“~T Ibp” option. (In this installation, ps is the default output device.) Use groff’s —P option to pass any
options shown above to grolbp. If no file arguments are given, or if file is “=", grolbp reads the standard
input stream. Output is written to the standard output stream.

For compatibility with grolj4(1), an additional drawing command is available.

\D'R dh dv'
Draw a rule (i.e., a solid black rectangle), with one corner at the current position, and the diago-
nally opposite corner at the current position +(dh,dv).

Options

—h and —help display a usage message, while —v and ——version show version information; all exit after-
ward.

—C num-copies
——copies=num-copies
Print num-copies copies of each page.

=F font-directory

——fontdir= font-directory
Prepend directory font-directory/devname to the search path for font and device description files;
name is the name of the device, usually lbp.

-1
——landscape
Print the document with a landscape orientation.

—o0 orientation
——orientation=orientation
Print the document with orientation orientation, which must be ‘portrait’ or ‘landscape’.

—Pp paper-size

——papersize=paper-size
Set the paper size to paper-size, which must be a valid paper size description as indicated in sec-
tion “Paper Sizes”, below.

—-w width
——linewidth=width
Set the default line thickness to width thousandths of an em; the default is 0.04 em.

Typefaces

The driver supports the Dutch, Swiss, and Swiss-Narrow scalable typefaces, each in the regular, bold, italic,
and bold-italic styles. Additionally, the bitmapped, monospaced Courier and Elite typefaces are available
in regular, bold, and italic styles; Courier at 8 and 12 points, Elite at 8 and 10 points. The following chart
summarizes the groff font names used to access them.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 54

grolbp(1) General Commands Manual grolbp(1)

Typeface Regular Bold Ttalic Bold-Italic
Dutch TR TB TI TBI
Swiss HR HB HI HBI
Swiss Narrow HNR HNB HNI HNBI
Courier CR CB CI
Elite ER EB EI

Paper sizes

The paper size can be set in the DESC file or with command-line options to grolbp. If the paper size is
specified both ways, the command-line options take precedence over the contents of the DESC file (this ap-
plies to the page orientation too). groff font(5) describes how to set the paper dimensions in the DESC file.
To set the paper size on the command line, add

-p paper-size
or

——papersize=paper-size
to the other grolbp options, where paper-size is in the same format as in the DESC file. If no paper size is
specified in the DESC file or on the command line, a default size of A4 is used.

Page orientation

As with the page size, the orientation of the page (portrait or landscape) can be set in the DESC file or
with command-line options. These keywords are case insensitive. To set the orientation in the DESC file,
insert a line

orientation portrait
or

orientation landscape
as desired. The first valid orientation command in the DESC file is used. To set the page orientation with
command-line options you can use the —o or ——orientation options with the same parameters (portrait or
landscape) as in the DESC file, or the —I option to select landscape orientation.

Font description files
In addition to the font description file directives documented in groff font(5), grolbp recognizes lbpname,
which maps the groff font name to the font name used internally by the printer. Its syntax is as follows.
lbpname printer-font-name
Ibpname’s argument is case-sensitive. The printer’s font names are encoded as follows.

For bitmapped fonts, printer-font_name has the form

N(base-font—-name)font-style)
base-font-name is the font name as it appears in the printer’s font listings without the first letter, up to (but
not including) the font size. font-style can be one of the letters R, I, or B, indicating the roman, italic, and
bold styles, respectively. For instance, if the printer’s “font listing A” shows “Nelite]12.ISO_USA”, the
corresponding entry in the groff font description file is

lbpname Nelitel
You may need to modify grolbp to add support for new bitmapped fonts, since the available font names and
font sizes of bitmapped fonts (as documented above) are hard-coded into the program.

For scalable fonts, printer-font-name is identical to the font name as it appears in the printer’s “font listing
A”. For instance, to select the “Swiss” font in bold-italic style, which appears in the font listing as
“Swiss—BoldOblique”,

lbpname Swiss—BoldOblique
is the required directive, and this is what we find in the groff font description file HBI for the Ibp device.

Environment
GROFF_FONT_PATH
A list of directories in which to seek the selected output device’s directory of device and font de-
scription files. See troff(1) and groff_font(5).

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 55

grolbp(1) General Commands Manual grolbp(1)

Files
/usr/local/share/groff/1.23.0/font/devibp/DESC
describes the Ibp output device.

/usr/local/share/groff/1.23.0/font/devibp/F
describes the font known as F' on device lbp.

/usr/local/share/groff/1.23.0/tmac/lbp.tmac
defines macros for use with the Ibp output device. It is automatically loaded by troffrc when the
Ibp output device is selected.

See also
groff(1), troff(1), groff_out(5), groff_font(5), groff_char(7)

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 56

grolj4(1) General Commands Manual grolj4(1)

Name
grolj4 — groff output driver for HP LaserJet 4 family printers

Synopsis
grolj4 [-1] [-c num-copies] [-d [n]] [-F font-directory] [-p paper-size] [-w line-width] [file . . .]

grolj4 —help

grolj4 —v
grolj4 ——version

Description
The GNU roff LJ4 output driver translates the output of troff(1) into a PCLS format suitable for an HP
LaserJet 4 printer. Normally, grolj4 is invoked by groff(1) when the latter is given the “~T 1j4” option. (In
this installation, ps is the default output device.) Use groff’s —P option to pass any options shown above to
grolj4. If no file arguments are given, or if file is “=”, grolj4 reads the standard input stream. Output is
written to the standard output stream.

An additional drawing command is available beyond those documented in groff(7).

\D'R dh dv'
Draw a rule (solid black rectangle), with one corner at the current position, and the diagonally op-
posite corner at the current position +(dh,dv). Afterwards the current position will be at the oppo-
site corner. This generates a PCL fill rectangle command, and so will work on printers that do not
support HPGL/2 unlike the other \D commands.

Options
—-help displays a usage message, while —v and ——version show version information; all exit afterward.
—C num-copies
Print num-copies copies of each page.

-1 Print the document with a landscape orientation.
—d [n] Use duplex mode n: 1 is long-side binding; 2 is short-side binding; default is 1.

—Pp paper-size
Set the paper size to paper-size, which must be one of letter, legal, executive, a4, com10, monarch,
c5, b5, dL

—w line-width
Set the default line thickness to line-width thousandths of an em. If this option isn’t specified, the
line thickness defaults to 0.04 em.

=F font-directory
Prepend directory font-directory/devname to the search path for font and device description files;
name is the name of the device, usually 1j4.

The following four commands are available additionally in the font description files:

pclweight N
The integer value N must be in the range —7 to +7; default is 0.

pclstyle N
The integer value N must be in the range 0 to 32767; default is 0.

pclproportional N
A boolean flag which can be either 0 or 1; default is 0.

pcltypeface N
The integer value N must be in the range 0 to 65535; default is 0.

Environment
GROFF_FONT_PATH
A list of directories in which to seek the selected output device’s directory of device and font de-
scription files. See troff(1) and groff_font(5).

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 57

grolj4(1)

Files

Bugs

General Commands Manual grolj4(1)

/usr/local/share/groff/1.23.0/font/devlj4/DESC
describes the 1j4 output device.

/usr/local/share/groff/1.23.0/font/devlj4/F
describes the font known as F on device 1j4.

/usr/local/share/groff/1.23.0/font/devlj4/generate/Makefile
is a make(1) script that uses hpftodit(1) to prepare the foregoing font description files from HP
TFM data; in can be used to regenerate the groff font descriptions in the event the TFM files are
updated.

/usr/local/share/groff/1.23.0/font/devlj4/generate/special.awk
is an awk(1) script that corrects the Intellifont-based height metrics for several glyphs in the S
(special) font for TrueType CG Times used in the HP LaserJet 4000 and later.

/usr/local/share/groff/1.23.0/font/devlj4/generate/special. map
/usr/local/share/groff/1.23.0/font/devlj4/generate/symbol.map
/usr/local/share/groff/1.23.0/font/devlj4/generate/text.map
/usr/local/share/groff/1.23.0/font/devlj4/generate/wingdings.map
map MSL indices and HP Unicode Private Use Area assignments to groff special character identi-
fiers.

/usr/local/share/groff/1.23.0/tmac/lj4.tmac
defines macros for use with the 1j4 output device. It is automatically loaded by troffrc when the
1j4 output device is selected.

Small dots.

See also

lj4_font(5), groff(1), troff(1), groff_out(S), groff_font(5), groff_char(7)

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 58

gropdf (1) General Commands Manual gropdf (1)

Name

gropdf — groff output driver for Portable Document Format

Synopsis

gropdf [—dels] [-F dir] [-1 dir] [-p paper-size] [—u [cmapfile]] [~y foundry] [file ...]

gropdf —v
gropdf ——version

Description

The GNU roff PDF output driver translates the output of froff(1) into Portable Document Format. Nor-
mally, gropdf is invoked by groff(1) when the latter is given the “~T pdf” option. (In this installation, ps is
the default output device.) Use groff’s —P option to pass any options shown above to gropdf. If no file ar-
guments are given, or if file is “=", gropdf reads the standard input stream. Output is written to the stan-
dard output stream.

See section “Font installation” below for a guide to installing fonts for gropdf .

Options

Usage

—v and ——version show version information; both exit afterward.
—d Include debug information as comments within the PDF. Also produces an uncompressed PDF.
—-e Forces gropdf to embed all fonts (even the 14 base PDF fonts).

—-F dir Prepend directory dir/devname to the search path for font, and device description files; name is
the name of the device, usually pdf.

—I dir Search the directory dir for files named in \X'pdf: pdfpic' escape sequences. —I may be specified
more than once; each dir is searched in the given order. To search the current working directory
before others, add “~I.” at the desired place; it is otherwise searched last.

-1 Orient the document in landscape format.

—Pp paper-size
Set physical dimension of output medium. This overrides the papersize, paperlength, and paper-
width commands in the DESC file; it accepts the same arguments as the papersize command.
See groff_font(5) for details.

-s Append a comment line to end of PDF showing statistics, i.e. number of pages in document.
Ghostscript’s ps2pdf complains about this line if it is included, but works anyway.

—u [cmapfile]
Gropdf normally includes a ToUnicode CMap with any font created using text.enc as the encod-
ing file, this makes it easier to search for words which contain ligatures. You can include your
own CMap by specifying a cmapfile or have no CMap at all by omitting the argument.

-y foundry
Set the foundry to use for selecting fonts of the same name.

The input to gropdf must be in the format output by #roff(1). This is described in groff_out(5).

In addition, the device and font description files for the device used must meet certain requirements: The
resolution must be an integer multiple of 72 times the sizescale. The pdf device uses a resolution of 72000
and a sizescale of 1000.

The device description file must contain a valid paper size; see groff_font(5) for more information. gropdf
uses the same Type 1 Adobe PostScript fonts as the grops device driver. Although the PDF Standard al-
lows the use of other font types (like TrueType) this implementation only accepts the Type 1 PostScript
font. Fewer Type 1 fonts are supported natively in PDF documents than the standard 35 fonts supported by
grops and all PostScript printers, but all the fonts are available since any which aren’t supported natively
are automatically embedded in the PDF.

gropdf supports the concept of foundries, that is different versions of basically the same font. During in-

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 59

gropdf (1) General Commands Manual gropdf (1)

stall a Foundry file controls where fonts are found and builds groff fonts from the files it discovers on your
system.

Each font description file must contain a command
internalname psname

which says that the PostScript name of the font is psname. Lines starting with # and blank lines are ig-
nored. The code for each character given in the font file must correspond to the code in the default encod-
ing for the font. This code can be used with the \N escape sequence in troff to select the character, even if
the character does not have a groff name. Every character in the font file must exist in the PostScript font,
and the widths given in the font file must match the widths used in the PostScript font.

Note that gropdf is currently only able to display the first 256 glyphs in any font. This restriction will be
lifted in a later version.

gropdf can automatically include the downloadable fonts necessary to print the document. Fonts may be in
PFA or PFB format.

Any downloadable fonts which should, when required, be included by gropdf must be listed in the file /us#/
local/share/groff/1.23.0/font/devpdf/download; this should consist of lines of the form

Sfoundry font filename

where foundry is the foundry name or blank for the default foundry. font is the PostScript name of the
font, and filename is the name of the file containing the font; lines beginning with # and blank lines are ig-
nored; fields must be separated by tabs (spaces are not allowed); filename is searched for using the same
mechanism that is used for groff font metric files. The download file itself is also sought using this mecha-
nism; currently, only the first file found in the font search path is read. Foundry names are usually a single
character (such as ‘U’ for the URW foundry) or empty for the default foundry. This default uses the same
fonts as ghostscript uses when it embeds fonts in a PDF file.

In the default setup there are styles called R, I, B, and BI mounted at font positions 1 to 4. The fonts are
grouped into families A, BM, C, H, HN, N, P, and T having members in each of these styles:

AR AvantGarde-Book

Al AvantGarde-BookOblique
AB AvantGarde-Demi

ABI AvaniGarde-DemiOblique
BMR Bookman-Light

BMI Bookman-Lightltalic

BMB Bookman-Demi

BMBI Bookman-Demiltalic

CR Courier

Cl Courier-Oblique

CB Courier-Bold

CBI Courier-BoldOblique
HR Helvetica

HI Helvetica-Oblique

HB Helvetica-Bold

HBI Helvetica-BoldOblique
HNR Helvetica-Narrow

HNI Helvetica-Narrow-Oblique

HNB Helvetica-Narrow-Bold

HNBI Helvetica-Narrow-BoldOblique
NR NewCenturySchlbk-Roman
NI NewCenturySchlbk-Italic
NB NewCenturySchlbk-Bold

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 60

gropdf (1) General Commands Manual gropdf (1)

NBI NewCenturySchlbk-BoldlItalic
PR Palatino-Roman

PI Palatino-Italic

PB Palatino-Bold

PBI Palatino-Boldltalic

TR Times-Roman

TI Times-Italic

TB Times-Bold

TBI Times-BoldlItalic

There is also the following font which is not a member of a family:
ZCMI ZapfChancery-MediumItalic

There are also some special fonts called S for the PS Symbol font. The lower case greek characters are au-
tomatically slanted (to match the SymbolSlanted font (SS) available to PostScript). Zapf Dingbats is avail-
able as ZD; the “hand pointing left” glyph (\[lh]) is available since it has been defined using the \X'pdf:
xrev' extension which reverses the direction of letters within words.

The default color for \m and \M is black.

gropdf understands some of the X commands produced using the \X escape sequences supported by grops.
Specifically, the following is supported.
\X'ps: invis'
Suppress output.
\X'ps: endinvis'
Stop suppressing output.

\X'ps: exec gsave currentpoint 2 copy translate » rotate neg exch neg exch translate'
where 7 is the angle of rotation. This is to support the align command in gpic.

\X'ps: exec grestore'
Again used by gpic to restore after rotation.

\X'ps: exec n setlinejoin'
where n can be one of the following values.
0 = Miter join
1 = Round join
2 = Bevel join
\X'ps: exec 7 setlinecap'
where n can be one of the following values.

0 = Butt cap
1 = Round cap, and
2 = Projecting square cap

\X'ps: ... pdfmark'
All the pdfimark macros installed by using —m pdfmark or —m mspdf (see documentation in pdf-
mark.pdf). A subset of these macros are installed automatically when you use —Tpdf so you
should not need to use ‘—m pdfmark’ for using most of the PDF functionality.

gropdf also supports a subset of the commands introduced in present.tmac. Specifically it supports:-

PAUSE
BLOCKS
BLOCKE

Which allows you to create presentation type PDFs. Many of the other commands are already available in
other macro packages.

These commands are implemented with groff X commands:-

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 61

gropdf (1) General Commands Manual gropdf (1)

\X'ps: exec % % % % PAUSE'
The section before this is treated as a block and is introduced using the current BLOCK transition
setting (see “\X'pdf: transition"” below). This command can be introduced using the macro .pdf-
pause.

\X'ps: exec % % % % BEGINONCE'
Any text following this command (up to %%%%ENDONCE) is shown only once, the next
% %% %PAUSE will remove it. If producing a non presentation pdf, i.e. ignoring the pauses, see
GROPDF_NOSLIDE below, this text is ignored.

\X'ps: exec % % % % ENDONCE'
This terminates the block defined by %% % %BEGINONCE. This pair of commands is what im-
plements the .BLOCKS Once/.BLOCKE commands in present.tmac.

The mom macro set already has integration with these extensions so you can build slides with mom.

If you use present.tmac with gropdf there is no need to run the program presentps(1) since the output will
already be a presentation pdf.

All other ps: tags are silently ignored.
One \X special used by the DVI driver is also recognised:

\X'papersize=paper-size'
where the paper-size parameter is the same as the papersize command. See groff font(5) for de-
tails. This means that you can alter the page size at will within the PDF file being created by
gropdf. 1f you do want to change the paper size, it must be done before you start creating the

page.
In addition, gropdf supports its own suite of pdf: tags. The following tags are supported:

\X'pdf: pdfpic file alignment width height line-length'
Place an image of the specified width containing the PDF drawing from file file of desired width
and height (if height is missing or zero then it is scaled proportionally). If alignment is —L the
drawing is left aligned. If it is —C or —R a linelength greater than the width of the drawing is re-
quired as well. If width is specified as zero then the width is scaled in proportion to the height.

\X'pdf: xrev'
This toggles a flag which reverses the direction of printing letter by letter, i.e., each separate letter
is reversed, not the entire word. This is useful for reversing the direction of glyphs in the Dingbats
font. To return to normal printing repeat the command again.

\X’pdf: markstart /ANN definition’
The macros which support PDF Bookmarks use this call internally to start the definition of book-
mark hotspot (user will have called ‘.pdfhref L’ with the text which will become the ‘hot spot’ re-
gion). Normally this is never used except from within the pdfmark macros.

\X'pdf: markstart /ANN-definition'

\X'pdf: markend'
The macros which support PDF bookmarks use these calls internally to start and stop (respec-
tively) the definition of bookmark hot spot; the user will have called “.pdfhref L” with the text
which will become the hot spot region). Normally, these are never used except from within the
pdfmark macros.

\X'pdf: marksuspend’

\X'pdf: markrestart'
If you are using page traps to produce headings, footings, etc., you need to use these in case a ‘hot
spot’ crosses a page boundary, otherwise any text output by the heading or footing macro will be
marked as part of the ‘hot spot’. To stop this happening just place ‘.pdfmarksuspend’ and ‘.pdf-
markrestart’ at the start and end of the page trap macro, respectively. (These are just convenience
macros which emit the corresponding \X escapes sequence. These macros must be used only
within page traps.)

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 62

gropdf (1) General Commands Manual gropdf (1)

\X'pdf: pagename name'
This gives the current page a name.

There are two default names for any document which do not need to be declared ‘fop’ and ‘bot-

>

tom’.
The convenience command for this is .pdfpagename.

\X’pdf: switchtopage when name'
Normally each new page is appended to the end of the document, this command allows following
pages to be inserted at a ‘named’ position within the document (see pagename command above).
‘when’ can be either ‘after’ or ‘before’. If it is ommitted it defaults to ‘before’.

The convenience command for this is .pdfswitchtopage. It should be used at the end of the page
before you want the switch to happen.

This allows pages such as a TOC to be moved to elsewhere in the document, but more esoteric
uses are possible.

\X'pdf: transition feature mode duration dimension motion direction scale bool'
where feature can be either SLIDE or BLOCK. When it is SLIDE the transition is used when a
new slide is introduced to the screen, if BLOCK then this transition is used for the individual
blocks which make up the slide.

mode is the transition type between slides:-

Split - Two lines sweep across the screen, revealing the new page. The lines may be ei-
ther horizontal or vertical and may move inward from the edges of the page or outward
from the center, as specified by the dimension and motion entries, respectively.

Blinds - Multiple lines, evenly spaced across the screen, synchronously sweep in the
same direction to reveal the new page. The lines may be either horizontal or vertical, as
specified by the dimension entry. Horizontal lines move downward; vertical lines move
to the right.

Box - A rectangular box sweeps inward from the edges of the page or outward from the
center, as specified by the motion entry, revealing the new page.

Wipe - A single line sweeps across the screen from one edge to the other in the direction
specified by the direction entry, revealing the new page.

Dissolve - The old page dissolves gradually to reveal the new one.

Glitter - Similar to Dissolve, except that the effect sweeps across the page in a wide band
moving from one side of the screen to the other in the direction specified by the direction
entry.

R - The new page simply replaces the old one with no special transition effect; the direc-
tion entry shall be ignored.

Fly - (PDF 1.5) Changes are flown out or in (as specified by motion), in the direction
specified by direction, to or from a location that is offscreen except when direction is
None.

Push - (PDF 1.5) The old page slides off the screen while the new page slides in, pushing
the old page out in the direction specified by direction.

Cover - (PDF 1.5) The new page slides on to the screen in the direction specified by di-
rection, covering the old page.

Uncover - (PDF 1.5) The old page slides off the screen in the direction specified by di-
rection, uncovering the new page in the direction specified by direction.

Fade - (PDF 1.5) The new page gradually becomes visible through the old one.

duration is the length of the transition in seconds (default 1).

dimension (Optional; Split and Blinds transition styles only) The dimension in which the specified
transition effect shall occur: H Horizontal, or V Vertical.

motion (Optional; Split, Box and Fly transition styles only) The direction of motion for the speci-
fied transition effect: I Inward from the edges of the page, or O Outward from the center of the

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 63

gropdf (1)

General Commands Manual gropdf (1)

page.
direction (Optional; Wipe, Glitter, Fly, Cover, Uncover and Push transition styles only) The di-
rection in which the specified transition effect shall moves, expressed in degrees counterclockwise
starting from a left-to-right direction. If the value is a number, it shall be one of: 0 = Left to right,
90 = Bottom to top (Wipe only), 180 = Right to left (Wipe only), 270 = Top to bottom, 315 = Top-
left to bottom-right (Glitter only) The value can be None, which is relevant only for the Fly transi-
tion when the value of scale is not 1.0.

scale (Optional; PDF 1.5; Fly transition style only) The starting or ending scale at which the
changes shall be drawn. If motion specifies an inward transition, the scale of the changes drawn
shall progress from scale to 1.0 over the course of the transition. If motion specifies an outward
transition, the scale of the changes drawn shall progress from 1.0 to scale over the course of the
transition

bool (Optional; PDF 1.5; Fly transition style only) If true, the area that shall be flown in is rectan-
gular and opaque.
This command can be used by calling the macro .pdftransition using the parameters described

above. Any of the parameters may be replaced with a "." which signifies the parameter retains its
previous value, also any trailing missing parameters are ignored.

Note: not all PDF Readers support any or all these transitions.

\X'pdf: background cmd left top right bottom weight'
\X'pdf: background off"
\X'pdf: background footnote bottom'

produces a background rectangle on the page, where

cmd is the command, which can be any of “pagelfilllbox” in combination. Thus, “pagefill”
would draw a rectangle which covers the whole current page size (in which case the rest
of the parameters can be omitted because the box dimensions are taken from the current
media size). “boxfill”, on the other hand, requires the given dimensions to place the box.
Including “fill” in the command will paint the rectangle with the current fill colour (as
with \M[]) and including “box” will give the rectangle a border in the current stroke
colour (as with \m[]).

cmd may also be “off” on its own, which will terminate drawing the current box. If you
have specified a page colour with “pagefill”, it is always the first box in the stack, and if
you specify it again, it will replace the first entry. Be aware that the “pagefill” box ren-
ders the page opaque, so tools that “watermark” PDF pages are unlikely to be successful.
To return the background to transparent, issue an “off” command with no other boxes
open.

Finally, cmd may be “footnote” followed by a new value for botfom, which will be used
for all open boxes on the current page. This is to allow room for footnote areas that grow
while a page is processed (to accommodate multiple footnotes, for instance). (If the
value is negative, it is used as an offset from the bottom of the page.)

left

top

right

bottom are the coordinates of the box. The fop and bottom coordinates are the minimum and
maximum for the box, since the actual start of the box is groff’s drawing position when
you issue the command, and the bottom of the box is the point where you turn the box
“off”. The top and bottom coordinates are used only if the box drawing extends onto the
next page; ordinarily, they would be set to the header and footer margins.

weight provides the line width for the border if “box” is included in the command.

The convenience macro for this escape sequence is .pdfbackground. An sbhoxes macro file is also
available; see groff_tmac(5).

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 64

gropdf (1) General Commands Manual gropdf (1)

Importing graphics
gropdf supports only the inclusion of other PDF files for inline images. Such a PDF file may, however,
contain any of the graphic formats supported by the PDF standard, such as JPEG/JFIF, PNG, and GIF. Any
application that outputs PDF can thus be used to prepare files for embedding in documents processed by

groff and gropdf .
The PDF file you wish to insert must be a single page and the drawing must just fit inside the media size of
the PDF file. In inkscape(1) or gimp(1), for example, make sure the canvas size just fits the image.

The PDF parser gropdf implements has not been rigorously tested with all applications that produce PDF.

If you find a single-page PDF which fails to import properly, try processing it with the pdftk(1) program.
pdftk existing-file output new-file

You may find that new-file imports successfully.

TrueType and other font formats
gropdf does not yet support any font formats besides Adobe Type 1 (PFA or PFB).

Font installation
The following is a step-by-step font installation guide for gropdy.

* Convert your font to something groff understands. This is a PostScript Type 1 font in PFA or PFB for-
mat, together with an AFM file. A PFA file begins as follows.
% !PS—AdobeFont-1.0:
A PFB file contains this string as well, preceded by some non-printing bytes. In the following steps, we
will consider the use of CTAN’s BrushScriptX-Italic ¢https://ctan.org/tex—archive/fonts/brushscr) font in
PFA format.

* Convert the AFM file to a groff font description file with the afimtodit(1) program. For instance,
$ afmtodit BrushScriptX-Italic.afm textmap BSI
converts the Adobe Font Metric file BrushScriptX—Italic.afm to the groff font description file BSI.

If you have a font family which provides regular upright (roman), bold, italic, and bold-italic styles,
(where “italic” may be “oblique” or “slanted”), we recommend using R, B, I, and BI, respectively, as
suffixes to the groff font family name to enable groff’s font family and style selection features. An ex-
ample is groff’s built-in support for Times: the font family name is abbreviated as T, and the groff font
names are therefore TR, TB, TI, and TBI. In our example, however, the BrushScriptX font is available
in a single style only, italic.

* Install the groff font description file(s) in a devpdf subdirectory in the search path that groff uses for de-
vice and font file descriptions. See the GROFF_FONT_PATH entry in section “Environment” of troff(1)
for the current value of the font search path. While groff doesn’t directly use AFM files, it is a good idea
to store them alongside its font description files.

» Register fonts in the devpdf/download file so they can be located for embedding in PDF files gropdf gen-
erates. Only the first download file encountered in the font search path is read. If in doubt, copy the de-
fault download file (see section “Files” below) to the first directory in the font search path and add your
fonts there. The PostScript font name used by gropdf is stored in the internalname field in the groff
font description file. (This name does not necessarily resemble the font’s file name.) If the font in our
example had originated from a foundry named Z, we would add the following line to download.

Z—BrushScriptX-Italic—BrushScriptX-Italic.pfa
A tab character, depicted as —, separates the fields. The default foundry has no name: its field is empty
and entries corresponding to it start with a tab character, as will the one in our example.

 Test the selection and embedding of the new font.
printf "\\f[BSI]Hello, world!\n" | groff -T pdf -P -e >hello.pdf
see hello.pdf

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 65

gropdf (1) General Commands Manual gropdf (1)

Environment

Files

GROFF_FONT_PATH
A list of directories in which to seek the selected output device’s directory of device and font de-
scription files. If, in the download file, the font file has been specified with a full path, no directo-
ries are searched. See troff(1) and groff_font(5).

GROPDF _NOSLIDE
If this is set true, gropdf will ignore all commands which produce a presentation pdf, and produce
a normal pdf instead.

SOURCE_DATE_EPOCH
A timestamp (expressed as seconds since the Unix epoch) to use as the output creation timestamp
in place of the current time. The time is converted to human-readable form using Perl’s local-
time() function and recorded in a PDF comment.

7 The time zone to use when converting the current time (or value of SOURCE_DATE_EPOCH) to
human-readable form; see rzset(3).

/usr/local/share/groff/1.23.0/font/devpdf/DESC
describes the pdf output device.

/ustr/local/share/groff/1.23.0/font/devpdf/F
describes the font known as F on device pdf.

/ust/local/share/groff/1.23.0/font/devpdf/U—F
describes the font from the URW foundry (versus the Adobe default) known as F on device pdf.

/usr/local/share/groff/1.23.0/font/devpdf/download
lists fonts available for embedding within the PDF document (by analogy to the ps device’s down-
loadable font support).

/usr/local/share/groff/1.23.0/font/devpdf/Foundry
is a data file used by the groff build system to locate PostScript Type 1 fonts.

/usr/local/share/groff/1.23.0/font/devpdf/enc/text.enc
describes the encoding scheme used by most PostScript Type 1 fonts; the encoding directive of
font description files for the pdf device refers to it.

/usr/local/share/groff/1.23.0/tmac/pdf.tmac
defines macros for use with the pdf output device. It is automatically loaded by troffrc when the
pdf output device is selected.

/usr/local/share/groff/1.23.0/tmac/pdfpic.tmac
defines the PDFPIC macro for embedding images in a document; see groff _tmac(5). It is auto-
matically loaded by troffrc.

See also

/usr/local/share/doc/groff—1.23.0/sboxes/msboxes.ms
/usr/local/share/doc/groff—1.23.0/sboxes/msboxes.pdf
“Using PDF boxes with groff and the ms macros”, by Deri James.

afmtodit(1), groff(1), troff(1), groff_font(5), groff_out(5)

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 66

grops(1) General Commands Manual grops(1)

Name
grops — groff output driver for PostScript
Synopsis
grops [-glm] [-b n] [-c n] [-F dir] [-1 dir] [-p paper-format] [-P prologue-file] [-w n] [file .. .]
grops —help
grops —v

grops ——version

Description
The GNU roff PostScript output driver translates the output of #roff(1) into PostScript. Normally, grops is
invoked by groff(1) when the latter is given the “~T ps” option. (In this installation, ps is the default output
device.) Use groff’s —P option to pass any options shown above to grops. If no file arguments are given,
or if file is “=", grotty reads the standard input stream. Output is written to the standard output stream.

When called with multiple file arguments, grops doesn’t produce a valid document structure (one conform-
ing to the Document Structuring Conventions). To print such concatenated output, it is necessary to deacti-
vate DSC handling in the printing program or previewer.

See section “Font installation” below for a guide to installing fonts for grops.

Options

—-help displays a usage message, while —v and ——version show version information; all exit afterward.

-bn Work around problems with spoolers, previewers, and older printers. Normally, grops produces
output at PostScript LanguageLevel 2 that conforms to version 3.0 of the Document Structuring
Conventions. Some software and devices can’t handle such a data stream. The value of n deter-
mines what grops does to make its output acceptable to such consumers. If n is 0, grops employs
no workarounds, which is the default; it can be changed by modifying the broken directive in
grops’s DESC file.

Add 1 to suppress generation of % % BeginDocumentSetup and % % EndDocumentSetup com-
ments; this is needed for early versions of TranScript that get confused by anything between the
% % EndProlog comment and the first % % Page comment.

Add 2 to omit lines in included files beginning with %!, which confuse Sun’s pageview previewer.

Add 4 to omit lines in included files beginning with % %Page, % % Trailer and % % EndProlog;
this is needed for spoolers that don’t understand % % BeginDocument and % % EndDocument
comments.

Add 8 to write %!PS—Adobe-2.0 rather than % !PS—Adobe-3.0 as the first line of the PostScript
output; this is needed when using Sun’s Newsprint with a printer that requires page reversal.

Add 16 to omit media size information (that is, output neither a % % DocumentMedia comment
nor the setpagedevice PostScript command). This was the behavior of groff 1.18.1 and earlier; it
is needed for older printers that don’t understand PostScript LanguageLevel 2, and is also neces-
sary if the output is further processed to produce an EPS file; see subsection “Escapsulated Post-
Script” below.

-cn Output n copies of each page.

-F dir Prepend directory dir/devname to the search path for font and device description and PostScript
prologue files; name is the name of the device, usually ps.

-g Generate PostScript code to guess the page length. The guess is correct only if the imageable area
is vertically centered on the page. This option allows you to generate documents that can be
printed on both U.S. letter and A4 paper formats without change.

—I dir Search the directory dir for files named in \X'ps: file' and \X'ps: import' escape sequences. —I
may be specified more than once; each dir is searched in the given order. To search the current
working directory before others, add “~I .” at the desired place; it is otherwise searched last.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 67

grops(1) General Commands Manual grops(1)

-1 Use landscape orientation rather than portrait.

-m Turn on manual feed for the document.

—p paper-format
Set physical dimensions of output medium, overriding the papersize, paperlength, and
paperwidth directives in the DESC file. paper-format can be any argument accepted by the
papersize directive; see groff font(5).

=P prologue-file
Use the file prologue-file, sought in the groff font search path, as the PostScript prologue, overrid-
ing the default (see section “Files” below) and the environment variable GROPS_PROLOGUE.

—-wn Draw rules (lines) with a thickness of n thousandths of an em. The default thickness is 40
(0.04 em).

Usage
The input to grops must be in the format output by #roff(1), described in groff_out(5). In addition, the de-
vice and font description files for the device used must meet certain requirements. The device resolution
must be an integer multiple of 72 times the sizescale. The device description file must contain a valid paper
size; see groff_font(5). Each font description file must contain a directive
internalname psname
which says that the PostScript name of the font is psname.

A font description file may also contain a directive

encoding enc-file
which says that the PostScript font should be reencoded using the encoding described in enc-file; this file
should consist of a sequence of lines of the form

pschar code
where pschar is the PostScript name of the character, and code is its position in the encoding expressed as
a decimal integer; valid values are in the range 0 to 255. Lines starting with # and blank lines are ignored.
The code for each character given in the font description file must correspond to the code for the character
in encoding file, or to the code in the default encoding for the font if the PostScript font is not to be reen-
coded. This code can be used with the \N escape sequence in troff to select the character, even if it does
not have a groff glyph name. Every character in the font descripiton file must exist in the PostScript font,
and the widths given in the font descripiton file must match the widths used in the PostScript font. grops
assumes that a character with a groff name of space is blank (makes no marks on the page); it can make
use of such a character to generate more efficient and compact PostScript output.

grops is able to display all glyphs in a PostScript font; it is not limited to 256 of them. enc-file (or the de-
fault encoding if no encoding file is specified) just defines the order of glyphs for the first 256 characters;
all other glyphs are accessed with additional encoding vectors which grops produces on the fly.

grops can embed fonts in a document that are necessary to render it; this is called “downloading”. Such
fonts must be in PFA format. Use pfbrops(1) to convert a Type 1 font in PFB format. Downloadable fonts
must be listed a download file containing lines of the form
psname file

where psname is the PostScript name of the font, and file is the name of the file containing it; lines begin-
ning with # and blank lines are ignored; fields may be separated by tabs or spaces. file is sought using the
same mechanism as that for groff font description files. The download file itself is also sought using this
mechanism; currently, only the first matching file found in the device and font description search path is
used.

If the file containing a downloadable font or imported document conforms to the Adobe Document Struc-
turing Conventions, then grops interprets any comments in the files sufficiently to ensure that its own out-
put is conforming. It also supplies any needed font resources that are listed in the download file as well as
any needed file resources. It is also able to handle inter-resource dependencies. For example, suppose that
you have a downloadable font called Garamond, and also a downloadable font called Garamond-Outline
which depends on Garamond (typically it would be defined to copy Garamond’s font dictionary, and change
the PaintType), then it is necessary for Garamond to appear before Garamond-Outline in the PostScript

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 68

grops(1) General Commands Manual grops(1)

document. grops handles this automatically provided that the downloadable font file for Garamond-Outline
indicates its dependence on Garamond by means of the Document Structuring Conventions, for example by
beginning with the following lines.

% !PS—Adobe-3.0 Resource-Font
%¥DocumentNeededResources: font Garamond
$EndComments

%¥%IncludeResource: font Garamond
In this case, both Garamond and Garamond-Outline would need to be listed in the download file. A down-
loadable font should not include its own name in a % % DocumentSuppliedResources comment.

o\

o\

grops does not interpret % %DocumentFonts comments. The % %DocumentNeededResources,
% % DocumentSuppliedResources, % % IncludeResource, % % BeginResource, and % % EndResource
comments (or possibly the old Y% %DocumentNeededFonts, % % DocumentSuppliedFonts,
% % IncludeFont, % % BeginFont, and % % EndFont comments) should be used.

The default stroke and fill color is black. For colors defined in the “rgb” color space, setrgbcolor is used;
for “cmy” and “cmyk”, setcmykcolor; and for “gray”, setgray. setcmykcolor is a PostScript
Languagelevel 2 command and thus not available on some older printers.

Typefaces
Styles called R, 1, B, and BI mounted at font positions 1 to 4. Text fonts are grouped into families A, BM,
C,H, HN, N, P, and T, each having members in each of these styles.

AR AvantGarde-Book

Al AvantGarde-BookOblique
AB AvantGarde-Demi

ABI AvaniGarde-DemiOblique
BMR Bookman-Light

BMI Bookman-Lightltalic

BMB Bookman-Demi

BMBI Bookman-Demiltalic

CR Courier

CI Courier-Oblique

CB Courier-Bold

CBI Courier-BoldOblique
HR Helvetica

HI Helvetica-Oblique

HB Helvetica-Bold

HBI Helvetica-BoldOblique
HNR Helvetica-Narrow

HNI Helvetica-Narrow-Oblique

HNB Helvetica-Narrow-Bold

HNBI Helvetica-Narrow-BoldOblique
NR NewCenturySchlbk-Roman
NI NewCenturySchlbk-Italic
NB NewCenturySchlbk-Bold
NBI NewCenturySchlbk-BoldlItalic
PR Palatino-Roman

PI Palatino-Italic

PB Palatino-Bold

PBI Palatino-Boldltalic

TR Times-Roman

TI Times-Italic

TB Times-Bold

TBI Times-Boldltalic

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 69

grops(1) General Commands Manual grops(1)

Another text font is not a member of a family.
ZCMI ZapfChancery-MediumItalic

Special fonts include S, the PostScript Symbol font; ZD, Zapf Dingbats; SS (slanted symbol), which con-
tains oblique forms of lowercase Greek letters derived from Symbol; EURQO, which offers a Euro glyph for
use with old devices lacking it; and ZDR, a reversed version of ZapfDingbats (with symbols flipped about
the vertical axis). Most glyphs in these fonts are unnamed and must be accessed using \N. The last three
are not standard PostScript fonts, but supplied by groff and therefore included in the default download file.

Device control commands
grops recognizes device control commands produced by the \X escape sequence, but interprets only those
that begin with a “ps:” tag.

\X'ps: exec code'

Execute the arbitrary PostScript commands code. The PostScript currentpoint is set to the groff
drawing position when the \X escape sequence is interpreted before executing code. The origin is
at the top left corner of the page; x coordinates increase to the right, and y coordinates down the
page. A procedure u is defined that converts groff basic units to the coordinate system in effect
(provided the user doesn’t change the scale). For example,

.nr x 1i

\X'ps: exec \nx u 0 rlineto stroke'
draws a horizontal line one inch long. code may make changes to the graphics state, but any
changes persist only to the end of the page. A dictionary containing the definitions specified by
the def and mdef commands is on top of the dictionary stack. If your code adds definitions to this
dictionary, you should allocate space for them using “\X'ps: mdef »n'”. Any definitions persist
only until the end of the page. If you use the \Y escape sequence with an argument that names a
macro, code can extend over multiple lines. For example,

.nr x 1i

.de y

ps: exec

\nx u 0 rlineto

stroke

\Yy
is another way to draw a horizontal line one inch long. The single backslash before “nx”—the
only reason to use a register while defining the macro “y”—is to convert a user-specified dimen-
sion “1i” to groff basic units which are in turn converted to PostScript units with the u procedure.

grops wraps user-specified PostScript code into a dictionary, nothing more. In particular, it
doesn’t start and end the inserted code with save and restore, respectively. This must be supplied
by the user, if necessary.

\X'ps: file name'
This is the same as the exec command except that the PostScript code is read from file name.

\X'ps: def code'
Place a PostScript definition contained in code in the prologue. There should be at most one defin-
ition per \X command. Long definitions can be split over several \X commands; all the code argu-
ments are simply joined together separated by newlines. The definitions are placed in a dictionary
which is automatically pushed on the dictionary stack when an exec command is executed. If you
use the \Y escape sequence with an argument that names a macro, code can extend over multiple
lines.

\X'ps: mdef n code'
Like def, except that code may contain up to n definitions. grops needs to know how many defini-
tions code contains so that it can create an appropriately sized PostScript dictionary to contain
them.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 70

grops(1) General Commands Manual grops(1)

\X'ps: import file llx lly urx ury width [height]'
Import a PostScript graphic from file. The arguments llx, lly, urx, and ury give the bounding box
of the graphic in the default PostScript coordinate system. They should all be integers: /Ix and lly
are the x and y coordinates of the lower left corner of the graphic; urx and ury are the x and y co-
ordinates of the upper right corner of the graphic; width and height are integers that give the de-
sired width and height in groff basic units of the graphic.

The graphic is scaled so that it has this width and height and translated so that the lower left corner
of the graphic is located at the position associated with \X command. If the height argument is
omitted it is scaled uniformly in the x and y axes so that it has the specified width.

The contents of the \X command are not interpreted by troff, so vertical space for the graphic is
not automatically added, and the width and height arguments are not allowed to have attached
scaling indicators.

If the PostScript file complies with the Adobe Document Structuring Conventions and contains a
% % BoundingBox comment, then the bounding box can be automatically extracted from within
groff input by using the psbb request.

See groff_tmac(5) for a description of the PSPIC macro which provides a convenient high-level
interface for inclusion of PostScript graphics.

\X'ps: invis'

\X'ps: endinvis'
No output is generated for text and drawing commands that are bracketed with these \X com-
mands. These commands are intended for use when output from troff is previewed before being
processed with grops; if the previewer is unable to display certain characters or other constructs,
then other substitute characters or constructs can be used for previewing by bracketing them with
these \X commands.

For example, gxditview is not able to display a proper \[em] character because the standard X11
fonts do not provide it; this problem can be overcome by executing the following request

.char \[em] \X'ps: invis"'\
\Z"\v'-.25m"'"\h'.05m"\D'1 .9m O0'\h'.O05m'"'\
\X'ps: endinvis'\ [em]

In this case, gxditview is unable to display the \[em] character and draws the line, whereas grops
prints the \[em] character and ignores the line (this code is already in file Xps.tmac, which is
loaded if a document intended for grops is previewed with gxditview).

If a PostScript procedure BPhook has been defined via a “ps: def” or “ps: mdef” device control command,
it is executed at the beginning of every page (before anything is drawn or written by groff). For example,
to underlay the page contents with the word “DRAFT” in light gray, you might use

.de XX

ps: def

/BPhook

{ gsave .9 setgray clippath pathbbox exch 2 copy
.5 mul exch .5 mul translate atan rotate pop pop
/NewCenturySchlbk-Roman findfont 200 scalefont setfont
(DRAFT) dup stringwidth pop -.5 mul -70 moveto show
grestore }

def

.devicem XX

Or, to cause lines and polygons to be drawn with square linecaps and mitered linejoins instead of the round
linecaps and linejoins normally used by grops, use

.de XX

ps: def

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 71

grops(1) General Commands Manual grops(1)

/BPhook { 2 setlinecap 0 setlinejoin } def

.devicem XX
(square linecaps, as opposed to butt linecaps (“0 setlinecap”), give true corners in boxed tables even though
the lines are drawn unconnected).

Encapsulated PostScript
grops itself doesn’t emit bounding box information. The following script, groff2eps, produces an EPS file.

#! /bin/sh
groff -P-bl6 "$1" > "$1".ps
gs —dNOPAUSE -sDEVICE=bbox -— "$1".ps 2> "$1".bbox

sed —e "/”*%%0Orientation/r $1.bbox" \
-e "/~%!PS-Adobe-3.0/s/$/ EPSF-3.0/" "$1".ps > "S$1".eps
rm "$1".ps "$1".bbox

You can then use “groff2eps foo” to convert file foo to foo.eps.

TrueType and other font formats
TrueType fonts can be used with grops if converted first to Type 42 format, a PostScript wrapper equivalent
to the PFA format described in pfbtops(1). Several methods exist to generate a Type 42 wrapper; some of
them involve the use of a PostScript interpreter such as Ghostscript—see gs(1).

One approach is to use FontForge ¢https://fontforge.org/), a font editor that can convert most outline font
formats. Here’s an example of using the Roboto Slab Serif font with groff. Several variables are used so
that you can more easily adapt it into your own script.

MAP=/usr/local/share/groff/1.23.0/font/devps/generate/textmap
TTF=/usr/share/fonts/truetype/roboto/slab/RobotoSlab-Regular.ttf
BASE=$ (basename "S$STTF")

INT=${BASES.ttf}

PFA=$INT.pfa

AFM=$INT.afm

GFN=RSR

DIR=$HOME/.local/groff/font

mkdir -p "$DIR"/devps

fontforge —-lang=ff —-c "Open (\"STTF\");\

Generate (\"SDIR/devps/SPFA\");"

afmtodit "$DIR/devps/S$SAFM" "S$SMAP" "S$DIR/devps/S$GEN"

printf "S$BASE\tS$PFA\n" >> "S$DIR/devps/download"

fontforge and afmtodit may generate warnings depending on the attributes of the font. The test procedure
is simple.

printf ".ft RSR\nHello, world!\n" | groff -F "$DIR" > hello.ps

Once you’re satisifed that the font works, you may want to generate any available related styles (for in-
stance, Roboto Slab also has “Bold”, “Light”, and “Thin” styles) and set up GROFF_FONT _PATH in your
environment to include the directory you keep the generated fonts in so that you don’t have to use the —F
option.

Font installation
The following is a step-by-step font installation guide for grops.

* Convert your font to something groff understands. This is a PostScript Type 1 font in PFA format or a
PostScript Type 42 font, together with an AFM file. A PFA file begins as follows.
% !PS—AdobeFont-1.0:
A PFB file contains this string as well, preceded by some non-printing bytes. If your font is in PFB for-
mat, use groff’s pfbtops(1) program to convert it to PFA. For TrueType and other font formats, we rec-
ommend fontforge, which can convert most outline font formats. A Type 42 font file begins as follows.
%!PS-TrueTypeFont

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 72

grops(1)

General Commands Manual grops(1)

This is a wrapper format for TrueType fonts. Old PostScript printers might not support them (that is,
they might not have a built-in TrueType font interpreter). In the following steps, we will consider the use
of CTAN’s BrushScriptX-Italic ¢https://ctan.org/tex—archive/fonts/brushscr) font in PFA format.

* Convert the AFM file to a groff font description file with the afintodit(1) program. For instance,
$ afmtodit BrushScriptX-Italic.afm textmap BSI
converts the Adobe Font Metric file BrushScriptX—Italic.afm to the groff font description file BSI.

If you have a font family which provides regular upright (roman), bold, italic, and bold-italic styles
(where “italic” may be “oblique” or “slanted”), we recommend using the letters R, B, I, and BI, respec-
tively, as suffixes to the groff font family name to enable groff’s font family and style selection features.
An example is groff’s built-in support for Times: the font family name is abbreviated as T, and the groff
font names are therefore TR, TB, TI, and TBI. In our example, however, the BrushScriptX font is avail-
able in a single style only, italic.

* Install the groff font description file(s) in a devps subdirectory in the search path that groff uses for de-
vice and font file descriptions. See the GROFF_FONT_PATH entry in section “Environment” of troff(1)
for the current value of the font search path. While groff doesn’t directly use AFM files, it is a good idea
to store them alongside its font description files.

» Register fonts in the devps/download file so they can be located for embedding in PostScript files grops
generates. Only the first download file encountered in the font search path is read. If in doubt, copy the
default download file (see section “Files” below) to the first directory in the font search path and add
your fonts there. The PostScript font name used by grops is stored in the internalname field in the groff
font description file. (This name does not necessarily resemble the font’s file name.) We add the follow-
ing line to download.

BrushScriptX-Italic—BrushScriptX-Italic.pfa
A tab character, depicted as —, separates the fields.

 Test the selection and embedding of the new font.
printf "\\f[BSI]Hello, world!\n" | groff -T ps -P -e >hello.ps
see hello.pdf

Old fonts

groff versions 1.19.2 and earlier contained descriptions of a slightly different set of the base 35 PostScript
level 2 fonts defined by Adobe. The older set has 229 glyphs and a larger set of kerning pairs; the newer
one has 314 glyphs and includes the Euro glyph. For backwards compatibility, these old font descriptions
are also installed in the /usr/local/share/groff/1.23.0/oldfont/devps directory.

To use them, make sure that grops finds the fonts before the default system fonts (with the same names): ei-
ther give grops the —F command-line option,
$ groff -Tps -P-F -P/usr/local/share/groff/1.23.0/oldfont
or add the directory to groff’s font and device description search path environment variable,
$ GROFF_FONT_PATH=/usr/local/share/groff/1.23.0/oldfont \
groff -Tps
when the command runs.

Environment

GROFF_FONT_PATH
A list of directories in which to seek the selected output device’s directory of device and font de-
scription files. See troff(1) and groff_font(5).

GROPS_PROLOGUE
If this is set to foo, then grops uses the file foo (in the font path) instead of the default prologue
file prologue. The option —P overrides this environment variable.

SOURCE_DATE_EPOCH
A timestamp (expressed as seconds since the Unix epoch) to use as the output creation timestamp
in place of the current time. The time is converted to human-readable form using ctime(3) and
recorded in a PostScript comment.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 73

grops(1)

General Commands Manual grops(1)

7 The time zone to use when converting the current time (or value of SOURCE_DATE_EPOCH) to
human-readable form; see rzset(3).

Files
/usr/local/share/groff/1.23.0/font/devps/DESC
describes the ps output device.
/usr/local/share/groff/1.23.0/font/devps/F
describes the font known as F' on device ps.
/usr/local/share/groff/1.23.0/font/devps/download
lists fonts available for embedding within the PostScript document (or download to the device).
/usr/local/share/groff/1.23.0/font/devps/prologue
is the default PostScript prologue prefixed to every output file.
/usr/local/share/groff/1.23.0/font/devps/text.enc
describes the encoding scheme used by most PostScript Type 1 fonts; the encoding directive of
font description files for the ps device refers to it.
/usr/local/share/groff/1.23.0/font/devps/generate/textmap
maps names in the Adobe Glyph List to groff special character identifiers.
/usr/local/share/groff/1.23.0/tmac/ps.tmac
defines macros for use with the ps output device. It is automatically loaded by troffrc when the ps
output device is selected.
/usr/local/share/groff/1.23.0/tmac/pspic.tmac
defines the PSPIC macro for embedding images in a document; see groff tmac(5). It is automati-
cally loaded by troffrc.
/usr/local/share/groff/1.23.0/tmac/psold.tmac
provides replacement glyphs for text fonts that lack complete coverage of the ISO Latin-1 charac-
ter set; using it, groff can produce glyphs like eth () and thorn (p) that older PostScript printers
do not natively support.
grops creates temporary files using the template “gropsXXXXXX”; see groff(1) for details on their storage
location.
See also

PostScript Language Document Structuring Conventions Specification <http://partners.adobe.com/public/
developer/en/ps/5001.DSC_Spec.pdf)

afmtodit(1), groff(1), troff(1), pfbtops(1), groff_char(7), groff_font(5), groff_out(5), groff_tmac(5)

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 74

grotty(1) General Commands Manual grotty(1)

Name
grotty — groff output driver for typewriter-like (terminal) devices

Synopsis
grotty [-dfho] [—i|-r] [-F dir] [file ...]

grotty —c [-bBdfhouU] [-F dir] [file .. .]
grotty —help

grotty —v
grotty ——version

Description

The GNU roff TTY (“Teletype”) output driver translates the output of #7off(1) into a form suitable for type-
writer-like devices, including terminal emulators. Normally, grotty is invoked by groff(1) when the latter is
given one of the “~T ascii”, “~T latin1”, —Tlatin1, or “~T utf8” options on systems using ISO character
encoding standards, or with “~T ¢p1047” or “~T utf8” on EBCDIC-based hosts. (In this installation, ps is
the default output device.) Use groff’s —P option to pass any options shown above to grotty. If no file ar-
guments are given, or if file is “=", grotty reads the standard input stream. Output is written to the standard
output stream.

By default, grotty emits SGR escape sequences (from ISO 6429, popularly called “ANSI escapes”) to
change text attributes (bold, italic, underline, reverse video [“negative image”] and colors). Devices sup-
porting the appropriate sequences can view roff documents using eight different background and fore-
ground colors. Following ISO 6429, the following colors are defined in tty.tmac: black, white, red, green,
blue, yellow, magenta, and cyan. Unrecognized colors are mapped to the default color, which is dependent
on the settings of the terminal. OSC 8 hyperlinks are produced for these devices.

In keeping with long-standing practice and the rarity of terminals (and emulators) that support oblique or
italic fonts, italicized text is represented with underlining by default—but see the —i option below.

SGR and OSC support in pagers
When paging grotty’s output with less(1), the latter program must be instructed to pass SGR and OSC se-
quences through to the device; its —R option is one way to achieve this (less version 566 or later is required
for OSC 8 support). Consequently, programs like man(1) that page roff documents with less must call it
with an appopriate option.

Legacy output format
The —c option tells grotty to use an output format compatible with paper terminals, like the Teletype ma-
chines for which roff and nroff were first developed but which are no longer in wide use. SGR escape se-
quences are not emitted; bold, italic, and underlining character attributes are thus not manipulated. Instead,
grotty overstrikes, representing a bold character ¢ with the sequence “c BACKSPACE c¢”, an italic character
¢ with the sequence “_ BACKSPACE c”, and bold italics with “_ BACKSPACE ¢ BACKSPACE c¢”. This
rendering is inherently ambiguous when the character c is itself the underscore.

The legacy output format can be rendered on a video terminal (or emulator) by piping grotry’s output
through u/(1), which may render bold italics as reverse video. Some implementations of more(1) are also
able to display these sequences; you may wish to experiment with that command’s —b option. less renders
legacy bold and italics without requiring options. In contrast to the terminal output drivers of some other
roff implementations, grotty never outputs reverse line feeds. There is therefore no need to filter its output
through col(1).

Device control commands
grotty understands one device control function produced by the roff \X escape sequence in a document.
\X'tty: link [uri [key=value] ...]'
Embed a hyperlink using the OSC 8 terminal escape sequence. Specifying uri starts hyperlinked
text, and omitting it ends the hyperlink. When uri is present, any number of additional key/value
pairs can be specified; their interpretation is the responsibility of the pager or terminal. Spaces or
tabs cannot appear literally in uri, key, or value; they must be represented in an alternate form.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 75

grotty(1)

General Commands Manual grotty(1)

Device description files
If the DESC file for the character encoding contains the “unicode” directive, grotty emits Unicode charac-
ters in UTF-8 encoding. Otherwise, it emits characters in a single-byte encoding depending on the data in
the font description files. See groff _font(5).

A font description file may contain a directive “internalname n” where n is a decimal integer. If the 01 bit
in n is set, then the font is treated as an italic font; if the 02 bit is set, then it is treated as a bold font.

Typefaces

grotty supports the standard four styles: R (roman), I (italic), B (bold), and BI (bold-italic). Because the
output driver operates in nroff mode, attempts to set or change the font family or type size are ignored.

Options

—-help displays a usage message, while —v and ——version show version information; all exit afterward.

-0

=T

-u
-U

Environment

Suppress the use of overstriking for bold characters in legacy output format.
Use only overstriking for bold-italic characters in legacy output format.

Use grotty’s legacy output format (see subsection “Legacy output format” above). SGR and OSC
escape sequences are not emitted.

Ignore all \D drawing escape sequences in the input. By default, grotty renders \D'l..." escape se-
quences that have at least one zero argument (and so are either horizontal or vertical) using Uni-
code box drawing characters (for the utf8 device) or the —, |, and + characters (for all other de-
vices). grotty handles \D'p..." escape sequences that consist entirely of horizontal and vertical
lines similarly.

Emit a form feed at the end of each page having no output on its last line.

Prepend directory dir/devname to the search path for font and device description files; name de-
scribes the output device’s character encoding, one of ascii, latinl, utf8, or cp1047.

Use literal horizontal tab characters in the output. Tabs are assumed to be set every 8 columns.

Render oblique-styled fonts (I and BI) with the SGR attribute for italic text rather than underlined
text. Many terminals don’t support this attribute; however, xterm(l), since patch #314
(2014-12-28), does. Ignored if —c is also specified.

Suppress overstriking (other than for bold and/or underlined characters when the legacy output
format is in use).

Render oblique-styled fonts (I and BI) with the SGR attribute for reverse video text rather than un-
derlined text. Ignored if —c or —i is also specified.

Suppress the use of underlining for italic characters in legacy output format.

Use only underlining for bold-italic characters in legacy output format.

GROFF_FONT_PATH

A list of directories in which to seek the selected output device’s directory of device and font de-
scription files. See troff(1) and groff_font(5).

GROFF_NO_SGR

Files

If set, grotty’s legacy output format is used just as if the —¢ option were specified; see subsection
“Legacy output format” above.

/usr/local/share/groff/1.23.0/font/devascii/DESC

describes the ascii output device.

/usr/local/share/groff/1.23.0/font/devascii/F

describes the font known as F on device ascii.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 76

grotty(1) General Commands Manual grotty(1)

/usr/local/share/groff/1.23.0/font/devcp1047/DESC
describes the ¢p1047 output device.

/usr/local/share/groff/1.23.0/font/devcp1047/F
describes the font known as F on device cp1047.

/usr/local/share/groff/1.23.0/font/devlatinl/DESC
describes the latin1 output device.

/usr/local/share/groff/1.23.0/font/devlatinl/F
describes the font known as F on device latinl.

/usr/local/share/groff/1.23.0/font/devutfS/DESC
describes the utf8 output device.

/usr/local/share/groff/1.23.0/font/devutf8/F
describes the font known as F on device utf8.

/usr/local/share/groff/1.23.0/tmac/tty.tmac
defines macros for use with the ascii, cp1047, latinl, and utf8 output devices. It is automatically
loaded by troffrc when any of those output devices is selected.

/usr/local/share/groff/1.23.0/tmac/tty—char.tmac
defines fallback characters for use with grotty. See nroff(1).

Limitations
grotty is intended only for simple documents.

* There is no support for fractional horizontal or vertical motions.
* roff \D escape sequences producing anything other than horizontal and vertical lines are not supported.
* Characters above the first line (that is, with a vertical drawing position of 0) cannot be rendered.

* Color handling differs from other output drivers. The groff requests and escape sequences that set the
stroke and fill colors instead set the foreground and background character cell colors, respectively.

Examples
The following groff document exercises several features for which output device support varies: (1) bold
style; (2) italic (underline) style; (3) bold-italic style; (4) character composition by overstriking (“codper-
ate”); (5) foreground color; (6) background color; and (7) horizontal and vertical line-drawing.

You might see \f[B]bold\f[] and \f[I]litalic\f[].

Some people see \f[BI]both\f[].

If the output device does (not) co\z\[ad]operate,

you might see \m[red]red\m[].

Black on cyan can have a \M[cyan]\m[black]prominent\m[]\M[]
\D'1 1i O0'\D'1 0 2i'\D'1 1i 0' look.

A" If in nroff mode, end page now.

.if n .pl \n[nllu

Given the foregoing input, compare and contrast the output of the following.

$ groff -T ascii file
$ groff -T utf8 -P -i file
$ groff -T utf8 -P -c file | ul
See also
“Control Functions for Coded Character Sets” (ECMA-48) 5th edition, Ecma International, June 1991. A
gratis version of ISO 6429, this document includes a normative description of SGR escape sequences.
Available at (http://www.ecma—international.org/publications/files/ECMA—-ST/Ecma—0438.pdf).

“Hyperlinks in Terminal Emulators” (https://gist.github.com/egmontkob/eb114294efbcd5ad
b1944c9f3cb5feda), Egmont Koblinger.

groff(1), troff(1), groff_out(5), groff_font(5), groff_char(7), ul(1), more(l), less(1), man(1)

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 77

hpftodit(1) General Commands Manual hpftodit(1)

Name
hpftodit — create font description files for use with groff —Tlj4

Synopsis
hpftodit [-aqs] [—i n] tfin-file map-file font-description

hpftodit —d tfin-file [map-file]
hpftodit ——help

hpftodit —v
hpftodit ——version

Description
hpftodit creates a font description file for use with a Hewlett-Packard LaserJet 4-series (or newer) printer
with the grolj4(1) output driver of groff(1), using data from an HP tagged font metric (TFM) file. tfm-file is
the name of the font’s TFM file; Intellifont and TrueType TFM files are supported, but symbol set TFM
files are not. map-file is a file giving the groff special character identifiers for glyphs in the font; this file
should consist of a sequence of lines of the form

mucl c2 ... [# comment]
where m is a decimal integer giving the glyph’s MSL (Master Symbol List) number, u is a hexadecimal in-
teger giving its Unicode character code, and c/, c¢2, ... are its groff glyph names (see groff_char(7) for a

list). The values can be separated by any number of spaces and/or tabs. The Unicode value must use up-
percase hexadecimal digits A—F, and must lack a leading “0x”, “u”, or “U+”. Unicode values correspond-
ing to composite glyphs are decomposed; that is “u00C0” becomes “u0041_0300". A glyph without a
groff special character identifier may be named uXXXX if the glyph corresponds to a Unicode value, or as
an unnamed glyph “——="". If the given Unicode value is in the Private Use Area (PUA) (OxE000—-0xF8FF),
the glyph is included as an unnamed glyph. Refer to groff diff (1) for additional information about un-

named glyphs and how to access them.

Blank lines and lines beginning with “#” are ignored. A “#” following one or more groff names begins a
comment. Because “#” is a valid groff name, it must appear first in a list of groff names if a comment is
included, as in

3 0023 # # number sign
or

3 0023 # sh # number sign
whereas in

3 0023 sh # # number sign
the first “#” is interpreted as the beginning of the comment.

Output is written in groff font(5) format to font-description, a file named for the intended groff font name;
if this operand is “~”, the font description is written to the standard output stream.

If the —i option is used, hpftodit automatically will generate an italic correction, a left italic correction, and
a subscript correction for each glyph (the significance of these parameters is explained in groff_font(5)).

Options

—-help displays a usage message, while —v and ——version show version information; all exit afterward.

-a Include glyphs in the TFM file that are not included in map-file. A glyph with corresponding Uni-
code value is given the name uXXXX; a glyph without a Unicode value is included as an unnamed
glyph “——=". A glyph with a Unicode value in the Private Use Area (OXE0O00—OxF8FF) is also in-
cluded as an unnamed glyph.

This option provides a simple means of adding Unicode-named and unnamed glyphs to a font
without including them in the map file, but it affords little control over which glyphs are placed in
a regular font and which are placed in a special font. The presence or absence of the —s option has
some effect on which glyphs are included: without it, only the “text” symbol sets are searched for
matching glyphs; with it, only the “mathematical” symbol sets are searched. Nonetheless, restrict-
ing the symbol sets searched isn’t very selective—many glyphs are placed in both regular and spe-
cial fonts. Normally, —a should be used only as a last resort.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 78

hpftodit(1)

Files

—d

General Commands Manual hpftodit(1)

Dump information about the TFM file to the standard output stream; use this to ensure that a TFM
file is a proper match for a font, and that its contents are suitable. The information includes the
values of important TFM tags and a listing (by MSL number for Intellifont TFM files or by Uni-
code value for TrueType TFM files) of the glyphs included in the TFM file. The unit of measure
“DU” for some tags indicates design units; there are 8782 design units per em for Intellifont fonts,
and 2048 design units per em for TrueType fonts. Note that the accessibility of a glyph depends
on its inclusion in a symbol set; some TFM files list many glyphs but only a few symbol sets.

The glyph listing includes the glyph index within the TFM file, the MSL or Unicode value, and the
symbol set and character code that will be used to print the glyph. If map-file is given, groff
names are given for matching glyphs. If only the glyph index and MSL or Unicode value are
given, the glyph does not appear in any supported symbol set and cannot be printed.

With the —d option, map-file is optional, and output-font is ignored if given.

Generate an italic correction for each glyph so that its width plus its italic correction is equal to n
thousandths of an em plus the amount by which the right edge of the glyphs’s bounding box is to
the right of its origin. If a negative italic correction would result, use a zero italic correction in-
stead.

Also generate a subscript correction equal to the product of the tangent of the slant of the font and
four fifths of the x-height of the font. If a subscript correction greater than the italic correction
would result, use a subscript correction equal to the italic correction instead.

Also generate a left italic correction for each glyph equal to n thousandths of an em plus the
amount by which the left edge of the glyphs’s bounding box is to the left of its origin. The left
italic correction may be negative.

This option normally is needed only with italic or oblique fonts; a value of 50 (0.05 em) usually is
a reasonable choice.

Suppress warnings about glyphs in the map file that were not found in the TFM file. Warnings
never are given for unnamed glyphs or by glyphs named by their Unicode values. This option is
useful when sending the output of Apftodit to the standard output stream.

Add the special directive to the font description file, affecting the order in which HP symbol sets
are searched for each glyph. Without this option, the “text” sets are searched before the “mathe-
matical” symbol sets. With it, the search order is reversed.

/usr/local/share/groff/1.23.0/font/devlj4/DESC

describes the 1j4 output device.

/usr/local/share/groff/1.23.0/font/devlj4/F

describes the font known as F on device 1j4.

/usr/local/share/groff/1.23.0/font/devlj4/generate/Makefile

is a make(1) script that uses hpftodit(1) to prepare the groff font description files above from HP
TFM data; in can be used to regenerate them in the event the TFM files are updated.

/usr/local/share/groff/1.23.0/font/devlj4/generate/special.awk

is an awk(1) script that corrects the Intellifont-based height metrics for several glyphs in the S
(special) font for TrueType CG Times used in the HP LaserJet 4000 and later.

/usr/local/share/groff/1.23.0/font/devlj4/generate/special. map
/usr/local/share/groff/1.23.0/font/devlj4/generate/symbol.map
/usr/local/share/groff/1.23.0/font/devlj4/generate/text.map
/usr/local/share/groff/1.23.0/font/devlj4/generate/wingdings.map

See also
groff(1), groff_diff (1), grolj4(1), groff_fon«(5), lj4_foni(5)

map MSL indices and HP Unicode PUA assignments to groff special character identifiers.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 79

indxbib(1) General Commands Manual indxbib(1)

Name

indxbib — make inverted index for bibliographic databases

Synopsis

indxbib [-w] [-¢ common-words-file] [-d dir] [list-file] [-h min-hash-table-size] [-1 excluded-fields]
[-k max-keys-per-record] [-1 min-key-length] [-n threshold] [—o file] [t max-key-length]
[file ...]

indxbib —help

indxbib —v

indxbib ——version

Description

indxbib makes an inverted index for the bibliographic databases in each file for use with refer(l),
lookbib(1), and lkbib(1). Each created index is named file.i; writing is done to a temporary file which is
then renamed to this. If no file operands are given on the command line because the —f option has been
used, and no —o option is given, the index will be named Ind.i.

Bibliographic databases are divided into records by blank lines. Within a record, each field starts with a %
character at the beginning of a line. Fields have a one letter name that follows the % character.

The values set by the —¢, -1, —n, and —t options are stored in the index: when the index is searched, keys
will be discarded and truncated in a manner appropriate to these options; the original keys will be used for
verifying that any record found using the index actually contains the keys. This means that a user of an in-
dex need not know whether these options were used in the creation of the index, provided that not all the
keys to be searched for would have been discarded during indexing and that the user supplies at least the
part of each key that would have remained after being truncated during indexing. The value set by the —i
option is also stored in the index and will be used in verifying records found using the index.

Options

—-help displays a usage message, while —v and ——version show version information; all exit afterward.

—c common-words-file
Read the list of common words from common-words-file instead of /usr/local/share/groff/1.23.0/
eign.

—d dir Use dir as the name of the directory to store in the index, instead of that returned by getcwd(2).
Typically, dir will be a symbolic link whose target is the current working directory.

—f list-file
Read the files to be indexed from list-file. If list-file is —, files will be read from the standard input
stream. The —f option can be given at most once.

—h min-hash-table-size
Use the first prime number greater than or equal to the argument for the size of the hash table.
Larger values will usually make searching faster, but will make the index file larger and cause
indxbib to use more memory. The default hash table size is 997.

—i excluded-fields
Don’t index the contents of fields whose names are in excluded-fields. Field names are one char-
acter each. If this option is not present, indxbib excludes fields X, Y, and Z.

-k max-keys-per-record
Use no more keys per input record than specified in the argument. If this option is not present, the
maximum is 100.

=1 min-key-length
Discard any key whose length in characters is shorter than the value of the argument. If this op-
tion is not present, the minimum key length is 3.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 80

indxbib(1) General Commands Manual indxbib(1)

—n threshold
Discard the threshold most common words from the common words file. If this option is not
present, the 100 most common words are discarded.

—0 basename
Name the index basename.i.
—t max-key-length
Truncate keys to max-key-length in characters. If this option is not present, keys are truncated to 6

characters.
-w Index whole files. Each file is a separate record.
Files
file.i index for file
Ind.i default index name
lusr/local/share/groff/1.23.0/eign
contains the list of common words. The traditional name, “eign”, is an abbreviation of “English
ignored [word list]”.
indxbibXXXXXX
temporary file
See also

“Some Applications of Inverted Indexes on the Unix System”, by M. E. Lesk, 1978, AT&T Bell Laborato-
ries Computing Science Technical Report No. 69.

refer(1), lkbib(1), lookbib(1)

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 81

lkbib(1) General Commands Manual lkbib(1)

Name
Ikbib — search bibliographic databases

Synopsis
Ikbib [-n] [-i fields] [-p file] [t n] key ...

1kbib ——help

Ikbib —v
Ikbib ——version

Description
lkbib searches bibliographic databases for references that contain the keys key ... and prints any references
found on the standard output. lkbib will search any databases given by —p options, and then a default data-
base. The default database is taken from the REFER environment variable if it is set, otherwise it is /usr/
dict/papers/Ind. For each database file to be searched, if an index file.i created by indxbib(1) exists, then it
will be searched instead; each index can cover multiple databases.

Options
—-help displays a usage message, while —v and ——version show version information; all exit afterward.
—i string
When searching files for which no index exists, ignore the contents of fields whose names are in
string.

—p file Search file. Multiple —p options can be used.
-tn Only require the first n characters of keys to be given. Initially, # is 6.

Environment
REFER
Default database.

Files
Jusr/dict/papers/Ind
Default database to be used if the REFER environment variable is not set.

file.i Index files.

See also
“Some Applications of Inverted Indexes on the Unix System”, by M. E. Lesk, 1978, AT&T Bell Laborato-
ries Computing Science Technical Report No. 69.

refer(1), lookbib(1), indxbib(1)

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 82

lookbib(1) General Commands Manual lookbib(1)

Name

lookbib — search bibliographic databases

Synopsis

lookbib [-i string] [-t n] file ...
lookbib ——help

lookbib —v
lookbib ——version

Description

lookbib prints a prompt on the standard error (unless the standard input is not a terminal), reads from the
standard input a line containing a set of keywords, searches the bibliographic databases file ... for refer-
ences containing those keywords, prints any references found on the standard output, and repeats this
process until the end of input. For each database file to be searched, if an index file.i created by indxbib(1)
exists, then it will be searched instead; each index can cover multiple databases.

Options
—-help displays a usage message, while —v and ——version show version information; all exit afterward.
—i string
When searching files for which no index exists, ignore the contents of fields whose names are in
string.
-tn Only require the first n characters of keys to be given. Initially, # is 6.
Files

file.i Index files.

See also

“Some Applications of Inverted Indexes on the Unix System”, by M. E. Lesk, 1978, AT&T Bell Laborato-
ries Computing Science Technical Report No. 69.

refer(1), lkbib(1), indxbib(1)

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 83

mmroff (1) General Commands Manual mmroff (1)

Name

mmroff — cross-referencing front end for GNU roff mm macro package
Synopsis

mmroff [—x] groff-arguments
Description

mmroff is a simple preprocessor for groff, used for expanding cross references in mm; see groff_mm(7).
groff is executed twice, first with —z and —rRef=1 to collect all cross references and then to do the real pro-
cessing when the cross-reference file is up to date.

Options
—X Just create the cross-reference file. This can be used to refresh the cross-reference file; it isn’t al-
ways needed to have accurate cross references and by using this option groff will only be run
once.
Authors

mmroff was written by Jorgen Hiigg (jh@axis.se) of Lund, Sweden.

See also
groff_mm(7), groff_mmse(7), groff(1), troff(1), tbl(1), pic(1), eqn(1)

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 84

negn(1) General Commands Manual negn(1)

Name
neqn — format equations for character-cell terminal output

Synopsis
neqn [egn-options]
Description
negn invokes the egn(1) command with the ascii output device.
eqn does not support low-resolution, typewriter-like devices, although it may work adequately for very sim-
ple input.
See also
eqn(l)

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 85

nroff (1)

Name

General Commands Manual nroff (1)

nroff — format documents with groff for TTY (terminal) devices

Synopsis

nroff [-bcCEhikpRStUVz] [-d cs] [-d name=string] [-K enc] [-m name] [-M dir] [-n num] [-o list]
[-P arg] [-r cn] [-r reg=expr] [-T dev] [-w name] [-W name] [file .. .]

nroff ——help

nroff —v
nroff ——version

Description

nroff formats documents written in the groff(7) language for typewriter-like devices such as terminal emu-
lators. GNU nroff emulates the AT&T nroff command using groff(1). nroff generates output via grotty(1),
groff’s terminal output driver, which needs to know the character encoding scheme used by the device.
Consequently, acceptable arguments to the —T option are ascii, latinl, utf8, and cp1047; any others are ig-
nored. If neither the GROFF_TYPESETTER environment variable nor the —T command-line option (which
overrides the environment variable) specifies a (valid) device, nroff consults the locale to select an appro-
priate output device. It first tries the locale(1) program, then checks several locale-related environment
variables; see section “Environment” below. If all of the foregoing fail, —Tascii is implied.

The -b, —¢, -C, -d, -E, —i, -m, -M, -n, —o, —-r, —-U, —w, —W, and -z options have the effects described
in troff(1). —c¢ and —h imply “~P-¢” and “~P-h”, respectively; —c is also interpreted directly by troff. In
addition, this implementation ignores the AT&T nroff options —e, —q, and —s (which are not implemented
in groff). The options -k, -K, —p, —P, —R, —t, and —S are documented in groff(1). =V causes nroff to dis-
play the constructed groff command on the standard output stream, but does not execute it. —v and ——ver-
sion show version information about nroff and the programs it runs, while ——help displays a usage mes-
sage; all exit afterward.

Exit status

nroff exits with error status 2 if there was a problem parsing its arguments, with status 0 if any of the op-
tions —V, —v, ——version, or ——help were specified, and with the status of groff otherwise.

Environment

Files

Notes

Normally, the path separator in environment variables ending with PATH is the colon; this may vary de-
pending on the operating system. For example, Windows uses a semicolon instead.

GROFF_BIN_PATH
is a colon-separated list of directories in which to search for the groff executable before searching
in PATH. If unset, /usr/local/bin is used.

GROFF_TYPESETTER
specifies the default output device for groff .

LC ALL

LC_CTYPE

LANG

LESSCHARSET
are pattern-matched in this order for contents matching standard character encodings supported by
groff in the event no —T option is given and GROFF_TYPESETTER is unset, or the values speci-
fied are invalid.

/usr/local/share/groff/1.23.0/tmac/tty—char.tmac
defines fallback definitions of roff special characters. These definitions more poorly optically ap-
proximate typeset output compared to those of ty.fmac in favor of communicating semantic infor-
mation. nroff loads it automatically.

Pager programs like more(1) and less(1) may require command-line options to correctly handle some out-
put sequences; see grotty(1).

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 86

nroff (1) General Commands Manual nroff (1)

See also
groff(1), troff(1), grotty(1), locale(1), roff(7)

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 87

pdfmom(1) General Commands Manual pdfmom(1)

Name

pdfmom — produce PDF documents using the mom macro package for groff

Synopsis

pdfmom [-Tpdf] [groff-options] [file .. .]
pdfmom -Tps [pdfroff-options] [groff-options] [file .. .]

pdfmom —v

Description

Bugs

pdfmom is a wrapper around groff(1) that facilitates the production of PDF documents from files formatted
with the mom macros.

pdfmom prints to the standard output, so output must usually be redirected to a destination file. The size of
the final PDF can be reduced by piping the output through ps2pdf(1).

If called with the —Tpdf option (which is the default), pdfinom processes files using groff’’s native PDF dri-
ver, gropdf(1). If =Tps is given, processing is passed over to pdfroff, which uses groff”’s PostScript driver.
In either case, multiple runs of the source file are performed in order to satisfy any forward references in the
document.

pdfmom accepts all the same options as groff. If =Tps is given, the options associated with pdfroff are ac-
cepted as well. Please note that when pdfmom calls pdfroff , the

—mpdfmark -mom ——no-toc
options are implied and should not be given on the command line. Equally, it is not necessary to supply the
—mom or —m mom options when —Tps is absent.

PDF integration with the mom macros is discussed in full in the manual “Producing PDFs with groff and
mom”, which was itself produced with pdfimom.

If called with the —v option, pdfimom simply displays its version information and exits.

pdfmom sometimes issues warnings of the type
can't transparently output node at top level
but this is more of an annoyance than a bug, and may safely be ignored.

Authors

pdfimom was written by Deri James {(deri @chuzzlewit.myzen.co.uk) and Peter Schaffter {peter@schaffter
.ca).

See also

/usr/local/share/doc/groff—1.23.0/pdf/mom—pdf.pdf
“Producing PDFs with groff and mom”, by Deri James and Peter Schaffter. This file, together
with its source, mom—pdf.mom, is part of the groff distribution.

groff(1), gropdf(1), pdfroff(1), ps2pdf (1)

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 88

pdfroff (1) General Commands Manual pdfroff (1)

Name

pdfroff — construct files in Portable Document Format using groff

Synopsis

pdfroff [groff-option] [-—emit—ps] [-——no—toc—relocation] [-—no—kill-null-pages]
[——stylesheet=name] [-—no—pdf-output] [-—pdf-output=name] [-—no-reference—dictionary]
[—-reference—dictionary=name] [-—report—progress] [-—keep—temporary—files] [file .. .]

pdfroff —h

pdfroff ——help

pdfroff —v [groff-option . . .]
pdfroff ——version [groff-option . . .]

groff-option is any short option supported by groff(1) except for =h, =T, and —v; see section “Usage” be-
low.

Description

Usage

pdfroff is a wrapper program for the GNU text processing system, groff. It transparently handles the me-
chanics of multiple pass groff processing, when applied to suitably marked up groff source files, such that
tables of contents and body text are formatted separately, and are subsequently combined in the correct or-
der, for final publication as a single PDF document. A further optional “style sheet” capability is provided;
this allows for the definition of content which is required to precede the table of contents, in the published
document.

For each invocation of pdfroff , the ultimate groff output stream is post-processed by the Ghostscript gs(1)
interpreter to produce a finished PDF document.

pdfroff makes no assumptions about, and imposes no restrictions on, the use of any groff macro packages
which the user may choose to employ, in order to achieve a desired document format; however, it does in-
clude specific built in support for the pdfinark macro package, should the user choose to employ it. Specifi-
cally, if the pdfhref macro, defined in the pdfmmark.tmac package, is used to define public reference marks,
or dynamic links to such reference marks, then pdfroff performs as many preformatting groff passes as re-
quired, up to a maximum limit of four, in order to compile a document reference dictionary, to resolve ref-
erences, and to expand the dynamically defined content of links.

The command line is parsed in accordance with normal GNU conventions, but with one exception—when
specifying any short form option (i.e., a single character option introduced by a single hyphen), and if that
option expects an argument, then it must be specified independently (i.e., it may not be appended to any
group of other single character short form options).

Long form option names (i.e., those introduced by a double hyphen) may be abbreviated to their minimum
length unambiguous initial substring.

Otherwise, pdfroff usage closely mirrors that of groff itself. Indeed, with the exception of the —h, —v, and
=T dev short form options, and all long form options, which are parsed internally by pdfiroff, all options
and file name arguments specified on the command line are passed on to groff, to control the formatting of
the PDF document. Consequently, pdfroff accepts all options and arguments, as specified in groff(1),
which may also be considered as the definitive reference for all standard pdfroff options and argument us-
age.

Options

pdfroff accepts all of the short form options (i.e., those introduced by a single hyphen), which are available
with groff itself. In most cases, these are simply passed transparently to groff’; the following, however, are
handled specially by pdfroff.

-h Same as —help; see below.

—i Process standard input, after all other specified input files. This is passed transparently to groff,
but, if grouped with other options, it must be the first in the group. Hiding it within a group breaks
standard input processing, in the multiple-pass groff processing context of pdfroff.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 89

pdfroff (1) General Commands Manual pdfroff (1)

=T dev Only -T ps is supported by pdfroff. Attempting to specify any other device causes pdfroff to
abort.

-v Same as ——version; see below.

See groff(1) for a description of all other short form options, which are transparently passed through
pdfroff to groff .

All long form options (i.e., those introduced by a double hyphen) are interpreted locally by pdfroff’; they
are not passed on to groff , unless otherwise stated below.

—=help Causes pdfroff to display a summary of the its usage syntax, and supported options, and then exit.

——emit—ps
Suppresses the final output conversion step, causing pdfroff to emit PostScript output instead of
PDF. This may be useful to capture intermediate PostScript output when using a specialised post-
processor, such as gpresent for example, in place of the default Ghostscript PDF writer.

——keep-temporary—files
Suppresses the deletion of temporary files, which normally occurs after pdfroff has completed
PDF document formatting; this may be useful when debugging formatting problems.

See section “Files” below for a description of the temporary files used by pdfroff .

——no—pdf-output
May be used with the ——reference—dictionary=name option (described below) to eliminate the
overhead of PDF formatting when running pdfioff to create a reference dictionary for use in a dif-
ferent document.

——no-reference—dictionary
May be used to eliminate the overhead of creating a reference dictionary, when it is known that the
target PDF document contains no public references, created by the pdfhref macro.

——no—toc-relocation
May be used to eliminate the extra groff processing pass, which is required to generate a table of
contents, and relocate it to the start of the PDF document, when processing any document which
lacks an automatically generated table of contents.

——no-kill-null-pages
While preparing for simulation of the manual collation step, which is traditionally required to relo-
cate a table of contents to the start of a document, pdfroff accumulates a number of empty page
descriptions into the intermediate PostScript output stream. During the final collation step, these
empty pages are normally discarded from the finished document; this option forces pdfroff to
leave them in place.

——pdf-output=name
Specifies the name to be used for the resultant PDF document; if unspecified, the PDF output is
written to standard output. A future version of pdfroff may use this option, to encode the docu-
ment name in a generated reference dictionary.

——reference—dictionary=name
Specifies the name to be used for the generated reference dictionary file; if unspecified, the refer-
ence dictionary is created in a temporary file, which is deleted when pdfroff completes processing
of the current document. This option must be specified, if it is desired to save the reference dictio-
nary, for use in references placed in other PDF documents.

——report—progress
Causes pdfroff to display an informational message on standard error, at the start of each groff
processing pass.

——stylesheet=name
Specifies the name of an input file, to be used as a style sheet for formatting of content, which is to
be placed before the table of contents, in the formatted PDF document.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 90

pdfroff (1) General Commands Manual pdfroff (1)

——version
Causes pdfroff to display a version identification message. The entire command line is then
passed transparently to groff, in a one pass operation only, in order to display the associated groff
version information, before exiting.

Environment
The following environment variables may be set, and exported, to modify the behaviour of pdfroff.

PDFROFF_COLLATE
Specifies the program to be used for collation of the finished PDF document.

This collation step may be required to move tables of contents to the start of the finished PDF doc-
ument, when formatting with traditional macro packages, which print them at the end. However,
users should not normally need to specity PDFROFF_COLLATE, (and indeed, are not encouraged
to do so). If unspecified, pdfroff uses sed(1) by default, which normally suffices.

If PDFROFF_COLLATE is specified, then it must act as a filter, accepting a list of file name argu-
ments, and write its output to the standard output stream, whence it is piped to the
PDFROFF_POSTPROCESSOR_COMMAND, to produce the finished PDF output.

When specifying PDFROFF_COLLATE, it is normally necessary to also specify
PDFROFF _KILL NULL PAGES.

PDFROFF_COLLATE is ignored, if pdfroff is invoked with the ——no-kill-null-pages option.

PDFROFF _KILL NULL _PAGES
Specifies options to be passed to the PDFROFF_COLLATE program.

It should not normally be necessary to specifty PDFROFF_KILL_NULL PAGES. The internal de-
fault is a sed(1) script, which is intended to remove completely blank pages from the collated out-
put stream, and which should be appropriate in most applications of pdfroff. However, if any al-
ternative to sed(1) is specified for PDFROFF_COLLATE, then it is likely that a corresponding al-
ternative specification for PDFROFF_KILL_NULL_PAGES is required.

As in the case of PDFROFF_COLLATE, PDFROFF_KILL_NULL_PAGES is ignored, if pdfroff
is invoked with the ——no-Kkill-null-pages option.

PDFROFF_POSTPROCESSOR_COMMAND
Specifies the command to be used for the final document conversion from PostScript intermediate
output to PDE. It must behave as a filter, writing its output to the standard output stream, and must
accept an arbitrary number of files ... arguments, with the special case of “~” representing the
standard input stream.

If unspecified, PDFROFF_POSTPROCESSOR_COMMAND defaults to
gs —dBATCH —-dQUIET —-dNOPAUSE -dSAFER -sDEVICE=pdfwrite \
-sOutputFile=-

GROFF_TMPDIR
Identifies the directory in which pdfroff should create temporary files. If GROFF_TMPDIR is not
specified, then the variables TMPDIR, TMP and TEMP are considered in turn as possible tempo-
rary file repositories. If none of these are set, then temporary files are created in the current direc-
tory.

GROFF_GHOSTSCRIPT _INTERPRETER
Specifies the program to be invoked when pdfroff converts groff PostScript output to PDF. If
PDFROFF_POSTPROCESSOR_COMMAND is specified, then the command name it specifies is
implicitly assigned to GROFF_GHOSTSCRIPT _INTERPRETER, overriding any explicit setting
specified in the environment. If GROFF_GHOSTSCRIPT_INTERPRETER is not specified, then
pdfroff searches the process PATH, looking for a program with any of the well known names for
the Ghostscript interpreter; if no Ghostscript interpreter can be found, pdfroff aborts.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 91

pdfroff (1) General Commands Manual pdfroff (1)

GROFF_AWK_INTERPRETER
Specifies the program to be invoked when pdfroff is extracting reference dictionary entries from a
groff intermediate message stream. If GROFF_AWK_INTERPRETER is not specified, then
pdfroff searches the process PATH, looking for any of the preferred programs, gawk, mawk,
nawk, and awk, in that order; if none of these are found, pdfroff issues a warning message, and
continue processing; however, in this case, no reference dictionary is created.

OSTYPE
Typically defined automatically by the operating system, OSTYPE is used on Microsoft
Win32/MS-DOS platforms only, to infer the default PATH_SEPARATOR character, which is used
when parsing the process PATH to search for external helper programs.

PATH _SEPARATOR
If set, PATH_SEPARATOR overrides the default separator character, (‘:> on POSIX/Unix systems,
inferred from OSTYPE on Microsoft Win32/MS-DOS), which is used when parsing the process
PATH to search for external helper programs.

SHOW_PROGRESS
If this is set to a non-empty value, then pdfroff always behaves as if the ——report—progress op-
tion is specified on the command line.

Files
Input and output files for pdfroff may be named according to any convention of the user’s choice. Typi-
cally, input files may be named according to the choice of the principal normatting macro package, e.g.,
file.ms might be an input file for formatting using the ms macros (s.tmac); normally, the final output file
should be named file.pdf .

Temporary files created by pdfroff are placed in the file system hierarchy, in or below the directory speci-
fied by environment variables (see section “Environment” above). If mktemp(1) is available, it is invoked to
create a private subdirectory of the nominated temporary files directory, (with subdirectory name derived
from the template pdfroff—XXXXXXXXXX); if this subdirectory is successfully created, the temporary files
will be placed within it, otherwise they will be placed directly in the directory nominated in the environ-
ment.

All temporary files themselves are named according to the convention pdf$$.*, where $$ is the standard
shell variable representing the process identifier of the pdfroff process itself, and * represents any of the ex-
tensions used by pdfroff to identify the following temporary and intermediate files.

pdf $$.tmp
A scratch pad file, used to capture reference data emitted by groff , during the reference dictionary
compilation phase.

pdf $$.ref
The reference dictionary, as compiled in the last but one pass of the reference dictionary compila-
tion phase; (at the start of the first pass, this file is created empty; in successive passes, it contains
the reference dictionary entries, as collected in the preceding pass).

If the ——reference—dictionary=name option is specified, this intermediate file becomes perma-
nent, and is named name, rather than pdf $$.ref .

pdf 8.cmp
Used to collect reference dictionary entries during the active pass of the reference dictionary com-
pilation phase. At the end of any pass, when the content of pdf$$.cmp compares as identical to
pdf $$.ref , (or the corresponding file named by the ——reference—dictionary=name option), then
reference dictionary compilation is terminated, and the document reference map is appended to
this intermediate file, for inclusion in the final formatting passes.

pdf $$.1c
An intermediate PostScript file, in which “Table of Contents” entries are collected, to facilitate re-
location before the body text, on ultimate output to the Ghostscript postprocessor.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 92

pdfroff (1) General Commands Manual pdfroff (1)

pdfS.ps
An intermediate PostScript file, in which the body text is collected prior to ultimate output to the
Ghostscript postprocessor, in the proper sequence, after pdf $$.tc.

Authors
pdfroff was written by Keith Marshall (keith.d.marshall @ntlworld.com).

See also
Groff: The GNU Implementation of troff, by Trent A. Fisher and Werner Lemberg, is the primary groff
manual. You can browse it interactively with “info groff”.

Since pdfroff provides a superset of all groff capabilities, the above manual, or its terser reference page,
groff(7) may also be considered definitive references to all standard capabilities of pdfroff, with this docu-
ment providing the reference to pdfroff’s extended features.

While pdfroff imposes neither any restriction on, nor any requirement for, the use of any specific groff
macro package, a number of supplied macro packages, and in particular those associated with the package
pdfimark.tmac, are best suited for use with pdfroff as the preferred formatter.

/usr/local/share/doc/groff—1.23.0/pdf/pdfmark.pdf
“Portable Document Format Publishing with GNU Troff”, by Keith Marshall, offers detailed docu-
mentation on the use of these packages. This file, together with its source, pdfmark.ms, is part of
the groff distribution.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 93

pfbtops(1) General Commands Manual pfbtops(1)

Name
pfbtops — translate Printer Font Binary files to PostScript ASCII

Synopsis
pfbtops [pfb-file]
pfbtops —help
pfbtops —v
pfbtops ——version
Description
pfbtops translates a PostScript font in Printer Font Binary (PFB) format to Printer Font ASCII (PFA) for-
mat, splitting overlong lines in text packets into smaller chunks. If pfb-file is omitted, the PFB file will be

read from the standard input stream. The PFA font will be written on the standard output stream. Post-
Script fonts for MS-DOS were historically supplied in PFB format.

The resulting PFA font can be used with groff(1) if it is first listed in /usr/local/share/groff/1.23.0/font/
devps/download and /usr/local/share/groff/1.23.0/font/devpdf/download. The —help option displays a us-
age message, while —v and ——version show version information; all exit afterward.

See also
grops(1), gropdf(1)

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 94

pic(1)

Name

General Commands Manual pic(l)

pic — compile pictures for troff or TeX

Synopsis

pic [-nCSU] [file .. .]
pic —t [-czCSU] [file .. .]
pic ——help

pic -v
pic ——version

Description

The GNU implementation of pic is part of the groff(1) document formatting system. pic is a troff(1) pre-
processor that compiles descriptions of diagrammatic pictures embedded in troff or TgX input files into the
language understood by TgX or troff. It copies the contents of each file to the standard output stream, ex-
cept that lines between .PS and either .PE or .PF are interpreted as picture descriptions. Ending a pic pic-
ture with .PE leaves the page position at the bottom of the picture; ending it with .PF leaves the position at
the top. Normally, pic is not executed directly by the user, but invoked by specifying the —p option to
groff(1). If no file operands are given on the command line, or if file is “~”, the standard input stream is
read.

It is the user’s responsibility to provide appropriate definitions of the PS, PE, and PF macros. When the
macro package being used does not supply such definitions (for example, old versions of —ms), appropriate
definitions can be obtained with —mpic; these will center each picture.

Options

Usage

—-help displays a usage message, while —v and ——version show version information; all exit afterward.

—-C Be more compatible with #pic. Implies —t. Lines beginning with \ are not passed through trans-
parently. Lines beginning with . are passed through with the initial . changed to \. A line begin-
ning with .ps is given special treatment: it takes an optional integer argument specifying the line
thickness (pen size) in milliinches; a missing argument restores the previous line thickness; the de-
fault line thickness is 8 milliinches. The line thickness thus specified takes effect only when a
non-negative line thickness has not been specified by use of the thickness attribute or by setting
the linethick variable.

-C Recognize .PS, .PE, and .PF even when followed by a character other than space or newline.

-n Don’t use groff extensions to the troff drawing commands. You should use this if you are using a
postprocessor that doesn’t support these extensions. The extensions are described in groff_out(5).
The —n option also causes pic not to use zero-length lines to draw dots in froff mode.

-S Safer mode; do not execute sh commands. This option, enabled by default, can be useful when
operating on untrustworthy input.

-t TgX mode.

-U Unsafe mode; revert the default option —S.

e/ In TgX mode draw dots using zero-length lines.

The following options supported by other versions of pic are ignored:

-D Draw all lines using the \D escape sequence. pic always does this.

=T dev Generate output for the troff device dev. This is unnecessary because the troff output generated
by pic is device-independent.

This section describes only the differences between GNU pic and the original version of pic. Many of
these differences also apply to newer versions of Unix pic. A complete documentation is available in the
file

/usr/local/share/doc/groff—1.23.0/pic.ms

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 95

pic(l) General Commands Manual pic(l)

TEX mode
TEX mode is enabled by the —t option. In TgX mode, pic will define a vbox called \graph for each picture.
Use the figname command to change the name of the vbox. You must yourself print that vbox using, for
example, the command

\centerline{\box\graph}

Actually, since the vbox has a height of zero (it is defined with \vtop) this will produce slightly more verti-
cal space above the picture than below it;

\centerline{\raise 1em\box\graph}
would avoid this.

To make the vbox having a positive height and a depth of zero (as used e.g., by IXTgX’s graphics.sty), de-
fine the following macro in your document:

\def\gpicbox#1{ %
\vbox{\unvbhox\csname #1\endcsname\kern Opt}}

Now you can simply say \gpicbox{graph} instead of \box\graph.

You must use a TgX driver that supports fpic version 2 specials. (zpic was a fork of AT&T pic by Tim Mor-
gan of the University of California at Irvine that diverged from its source around 1984. It is best known to-
day for lending its name to a group of \special commands it produced for TgX.)

Lines beginning with \ are passed through transparently; a % is added to the end of the line to avoid un-
wanted spaces. You can safely use this feature to change fonts or to change the value of \baselineskip.
Anything else may well produce undesirable results; use at your own risk. Lines beginning with a period
are not given any special treatment.

Commands
for variable = exprl to expr2 [by [*]expr3] do X body X
Set variable to exprl. While the value of variable is less than or equal to expr2, do body and in-
crement variable by expr3; if by is not given, increment variable by 1. If expr3 is prefixed by *
then variable will instead be multiplied by expr3. The value of expr3 can be negative for the addi-
tive case; variable is then tested whether it is greater than or equal to expr2. For the multiplicative
case, expr3 must be greater than zero. If the constraints aren’t met, the loop isn’t executed. X can
be any character not occurring in body.

if expr then X if-true X [else Y if-false Y]
Evaluate expr; if it is non-zero then do if-frue, otherwise do if-false. X can be any character not
occurring in if-true. Y can be any character not occurring in if-false.

printarg...
Concatenate the arguments and print as a line on the standard error stream. Each arg must be an
expression, a position, or text. This is useful for debugging.

command arg ...
Concatenate the arguments and pass them through as a line to froff or TgX. Each arg must be an
expression, a position, or text. This has a similar effect to a line beginning with . or \, but allows
the values of variables to be passed through. For example,

.PS
x = 14
command ".ds string x is " x "."
.PE
*[string]
prints

x is 14.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 96

pic(1)

General Commands Manual pic(l)

sh X command X

Pass command to a shell. X can be any character not occurring in command.

copy " filename"

Include filename at this point in the file.

copy [" filename"'] thru X body X [until "word"']
copy [" filename''] thru macro [until "word"']

This construct does body once for each line of filename; the line is split into blank-delimited
words, and occurrences of $i in body, for i between 1 and 9, are replaced by the i-th word of the
line. If filename is not given, lines are taken from the current input up to .PE. If an until clause is
specified, lines will be read only until a line the first word of which is word; that line will then be
discarded. X can be any character not occurring in body. For example,

.PS
copy thru % circle at ($1,$2) % until "END"
12
3 4
56
END
box
.PE

is equivalent to

.PS
circle at (1,2)
circle at (3,4)
circle at (5,6)
box
.PE

The commands to be performed for each line can also be taken from a macro defined earlier by
giving the name of the macro as the argument to thru.

reset variablel[,] variable?2 . ..

Reset pre-defined variables variablel, variable2 ... to their default values. If no arguments are
given, reset all pre-defined variables to their default values. Assigning a value to scale also causes
all pre-defined variables that control dimensions to be reset to their default values times the new
value of scale.

plot expr ["'text"]

This is a text object which is constructed by using fext as a format string for sprintf with an argu-
ment of expr. If text is omitted a format string of "' %g"" is used. Attributes can be specified in the
same way as for a normal text object. Be very careful that you specify an appropriate format
string; pic does only very limited checking of the string. This is deprecated in favour of sprintf.

variable := expr

This is similar to = except variable must already be defined, and expr will be assigned to variable
without creating a variable local to the current block. (By contrast, = defines the variable in the
current block if it is not already defined there, and then changes the value in the current block
only.) For example, the following:

.PS

KX e X

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 97

pic(1)

General Commands Manual pic(l)

print x y
.PE

prints
53
Arguments of the form
X anything X
are also allowed to be of the form
{ anything }

In this case anything can contain balanced occurrences of { and }. Strings may contain X or imbalanced
occurrences of { and }.

Expressions

The syntax for expressions has been significantly extended:

x ™ y (exponentiation)

sin(x)

cos(x)

atan2(y, x)

log(x) (base 10)

exp(x) (base 10, i.e. 10%)

sqrt(x)

int(x)

rand() (return a random number between 0 and 1)
rand(x) (return a random number between 1 and x; deprecated)
srand(x) (set the random number seed)
max(el, e2)

min(el, e2)

le

el && e2

el ||l e2

el ==e2

el 1=e2

el >=¢2

el >e2

el <=e2

el <e2

strl" == "str2"

stri" 1= "str2"

String comparison expressions must be parenthesised in some contexts to avoid ambiguity.

Other changes

A bare expression, expr, is acceptable as an attribute; it is equivalent to dir expr, where dir is the current
direction. For example

line 2i

means draw a line 2 inches long in the current direction. The ‘i’ (or ‘I’) character is ignored; to use another
measurement unit, set the scale variable to an appropriate value.

The maximum width and height of the picture are taken from the variables maxpswid and maxpsht. Ini-
tially, these have values 8.5 and 11.

Scientific notation is allowed for numbers. For example

x = Se-2

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 98

pic(1)

General Commands Manual pic(l)

Text attributes can be compounded. For example,
""foo'' above ljust
is valid.
There is no limit to the depth to which blocks can be examined. For example,

[A: [B: [C: box]]] with .A.B.C.sw at 1,2
circle at last [].A.B.C

is acceptable.
Arcs now have compass points determined by the circle of which the arc is a part.
Circles, ellipses, and arcs can be dotted or dashed. In TgX mode splines can be dotted or dashed also.

Boxes can have rounded corners. The rad attribute specifies the radius of the quarter-circles at each corner.
If no rad or diam attribute is given, a radius of boxrad is used. Initially, boxrad has a value of 0. A box
with rounded corners can be dotted or dashed.

Boxes can have slanted sides. This effectively changes the shape of a box from a rectangle to an arbitrary
parallelogram. The xslanted and yslanted attributes specify the x and y offset of the box’s upper right cor-
ner from its default position.

The .PS line can have a second argument specifying a maximum height for the picture. If the width of zero
is specified the width will be ignored in computing the scaling factor for the picture. GNU pic will always
scale a picture by the same amount vertically as well as horizontally. This is different from DWB 2.0 pic
which may scale a picture by a different amount vertically than horizontally if a height is specified.

Each text object has an invisible box associated with it. The compass points of a text object are determined
by this box. The implicit motion associated with the object is also determined by this box. The dimensions
of this box are taken from the width and height attributes; if the width attribute is not supplied then the
width will be taken to be textwid; if the height attribute is not supplied then the height will be taken to be
the number of text strings associated with the object times textht. Initially, textwid and textht have a value
of 0.

In (almost all) places where a quoted text string can be used, an expression of the form
sprintf("' format"', arg,. ..)

can also be used; this will produce the arguments formatted according to format, which should be a string
as described in printf(3) appropriate for the number of arguments supplied. Only the flags “#”, “=7, “+”,
and “” [sp]ace), a minimum field width, an optional precision, and the conversion specifications %e, %E,

%f, %g, %G, and % % are supported.

The thickness of the lines used to draw objects is controlled by the linethick variable. This gives the thick-
ness of lines in points. A negative value means use the default thickness: in TEX output mode, this means
use a thickness of 8 milliinches; in TgX output mode with the —¢ option, this means use the line thickness
specified by .ps lines; in troff output mode, this means use a thickness proportional to the pointsize. A zero
value means draw the thinnest possible line supported by the output device. Initially, it has a value of —1.
There is also a thick[ness] attribute. For example,

circle thickness 1.5

would draw a circle using a line with a thickness of 1.5 points. The thickness of lines is not affected by the
value of the scale variable, nor by the width or height given in the .PS line.

Boxes (including boxes with rounded corners or slanted sides), circles and ellipses can be filled by giving
them an attribute of filled]. This takes an optional argument of an expression with a value between 0 and
1; 0 will fill it with white, 1 with black, values in between with a proportionally gray shade. A value
greater than 1 can also be used: this means fill with the shade of gray that is currently being used for text
and lines. Normally this will be black, but output devices may provide a mechanism for changing this.
Without an argument, then the value of the variable fillval will be used. Initially, this has a value of 0.5.
The invisible attribute does not affect the filling of objects. Any text associated with a filled object will be

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 99

pic(1)

General Commands Manual pic(l)

added after the object has been filled, so that the text will not be obscured by the filling.

Three additional modifiers are available to specify colored objects: outline[d] sets the color of the outline,
shaded the fill color, and colo[u]r[ed] sets both. All three keywords expect a suffix specifying the color, as
shown below.

circle shaded ''green'' outline ''black"

Currently, color support isn’t available in TEX mode. Predefined color names for groff are in the device
macro files, for example ps.tmac; additional colors can be defined with the .defcolor request (see the man-
ual page of troff(1) for more details).

To change the name of the vbox in TEX mode, set the pseudo-variable figname (which is actually a spe-
cially parsed command) within a picture. Example:

PS
figname = foobar;

.PE
The picture is then available in the box \foobar.

pic assumes that at the beginning of a picture both glyph and fill color are set to the default value.

Arrow heads will be drawn as solid triangles if the variable arrowhead is non-zero and either TgX mode is
enabled or the —n option has not been given. Initially, arrowhead has a value of 1. Solid arrow heads are
always filled with the current outline color.

The troff output of pic is device-independent. The —T option is therefore redundant. All numbers are
taken to be in inches; numbers are never interpreted to be in troff machine units.

Objects can have an aligned attribute. This will only work if the postprocessor is grops(1) or gropdf(1).
Any text associated with an object having the aligned attribute will be rotated about the center of the object
so that it is aligned in the direction from the start point to the end point of the object. This attribute will
have no effect on objects whose start and end points are coincident.

In places where nth is allowed, 'exprth’' is also allowed. “'th* is a single token: no space is allowed be-
tween the apostrophe and the “th”. For example,

for i = 1 to 4 do {
line from 'i'th box.nw to 'i+l'th box.se

Conversion

To obtain a stand-alone picture from a pic file, enclose your pic code with .PS and .PE requests; roff con-
figuration commands may be added at the beginning of the file, but no roff text.

It is necessary to feed this file into groff without adding any page information, so you must check which
.PS and .PE requests are actually called. For example, the mm macro package adds a page number, which
is very annoying. At the moment, calling standard groff without any macro package works. Alternatively,
you can define your own requests, e.g., to do nothing:

.de PS
.de PE

groff itself does not provide direct conversion into other graphics file formats. But there are lots of possi-
bilities if you first transform your picture into PostScript® format using the groff option —=Tps. Since this
ps-file lacks BoundingBox information it is not very useful by itself, but it may be fed into other conversion
programs, usually named ps2other or pstoother or the like. Moreover, the PostScript interpreter Ghost-
script (gs(1)) has built-in graphics conversion devices that are called with the option

gs —sDEVICE=<devname>

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 100

pic(1)

General Commands Manual pic(l)

Call
gs —help
for a list of the available devices.

An alternative may be to use the —Tpdf option to convert your picture directly into PDF format. The Medi-
aBox of the file produced can be controlled by passing a —P—p papersize to groff .

As the Encapsulated PostScript File Format EPS is getting more and more important, and the conversion
wasn’t regarded trivial in the past you might be interested to know that there is a conversion tool named
ps2eps which does the right job. It is much better than the tool ps2epsi packaged with gs.

For bitmapped graphic formats, you should use pstopnm; the resulting (intermediate) pnm(5) file can be
then converted to virtually any graphics format using the tools of the netpbm package.

Files
/usr/local/share/groff/1.23.0/tmac/pic.tmac
Example definitions of the PS, PE, and PF macros.
Bugs
Characters that are invalid as input to GNU #roff (see the groff Texinfo manual or groff _char(7) for a list)
are rejected even in TEX mode.
The interpretation of fillval is incompatible with the pic in Tenth Edition Research Unix, which interprets O
as black and 1 as white.
See also

/usr/local/share/doc/groff—1.23.0/pic.ps
“Making Pictures with GNU pic”, by Eric S. Raymond. This file, together with its source, pic.ms,
is part of the groff distribution.

“PIC—A Graphics Language for Typesetting: User Manual”, by Brian W. Kernighan, 1991, AT&T Bell
Laboratories Computing Science Technical Report No. 116

ps2eps is available from CTAN mirrors, e.g., {ftp:/ftp.dante.de/tex—archive/support/ps2eps/)
W. Richard Stevens, Turning PIC into HTML {http://www .kohala.com/start/troff/pic2html.html)
W. Richard Stevens, Examples of pic Macros {http://www kohala.com/start/troff/pic.examples.ps)

troff(1), groff_out(5), tex(1), gs(1), ps2eps(1), pstopnm(1), ps2epsi(1), pnm(5)

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 101

pic2graph(1) General Commands Manual pic2graph(1)

Name

pic2graph — convert a PIC diagram into a cropped image

Synopsis

pic2graph [—unsafe] [-format output-format) [—eqn delimiters] [convert-arguments]
pic2graph —help

pic2graph —v
pic2graph ——version

Description

pic2graph reads a pic(1) program from the standard input and writes an image file, by default in Portable
Network Graphics (PNG) format, to the standard output. It furthermore translates egn(1) constructs, so it
can be used for generating images of mathematical formulae.

The input PIC code should not be wrapped with the .PS and .PE/.PF macros that normally guard it within
groff(1) documents.

Arguments not recognized by pic2graph are passed to the ImageMagick or GraphicsMagick program
convert(1l). By specifying these, you can give your image a border, set the image’s pixel density, or per-
form other useful transformations.

The output image is clipped using convert’s —trim option to the smallest possible bounding box that con-
tains all the black pixels.

Options

—-help displays a usage message, while —v and ——version show version information; all exit afterward.

—eqn delimiters
Use delimiters as the opening and closing characters that delimit egn directives; the default is
“$$”. The option argument delimiters should be a two-character string, but an empty string ("") is
accepted as a directive to disable egn processing.

—format output-format
Write the image in output-format, which must be understood by convert; the default is PNG.

—unsafe
Run groff in unsafe mode, enabling the PIC command sh to execute arbitrary Unix shell com-
mands. The groff default is to forbid this.

Environment

GROFF_TMPDIR

TMPDIR

T™P

TEMP These environment variables are searched in the given order to determine the directory where tem-
porary files will be created. If none are set, /tmp is used.

Authors

pic2graph was written by Eric S. Raymond (esr@thyrsus.com), based on a recipe by W. Richard Stevens.

See also

W. Richard Stevens, Turning PIC into HTML {http://www .kohala.com/start/troff/pic2html.html)
eqn2graph(l), grap2graph(1), pic(1), eqn(1), groff(1), convert(1)

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 102

preconv(1) General Commands Manual preconv(1)

Name

preconv — prepare files for typesetting with groff

Synopsis

preconv [—dr] [-D default-encoding] [—e encoding] [file .. .]

preconv —h
preconv —help

preconv —v
preconv ——version

Description

preconv reads each file, converts its encoded characters to a form #roff(1) can interpret, and sends the result
to the standard output stream. Currently, this means that code points in the range 0-127 (in US-ASCII,
ISO 8859, or Unicode) remain as-is and the remainder are converted to the groff special character form
“N[uXXXX]", where XXXX is a hexadecimal number of four to six digits corresponding to a Unicode code
point. By default, preconv also inserts a roff .If request at the beginning of each file, identifying it for the
benefit of later processing (including diagnostic messages); the —r option suppresses this behavior.

In typical usage scenarios, preconv need not be run directly; instead it should be invoked with the -k or -K
options of groff. If no file operands are given on the command line, or if file is “~”, the standard input
stream is read.

precony tries to find the input encoding with the following algorithm, stopping at the first success.
1. If the input encoding has been explicitly specified with option —e, use it.

2. Check whether the input starts with a Unicode Byte Order Mark. If so, determine the encoding as
UTF-8, UTF-16, or UTF-32 accordingly.

3. If the input stream is seekable, check the first and second input lines for a recognized GNU Emacs file-
local variable identifying the character encoding, here referred to as the “coding tag” for brevity. If
found, use it.

4. If the input stream is seekable, and if the uchardet library is available on the system, use it to try to in-
fer the encoding of the file.

If the —D option specifies an encoding, use it.

6. Use the encoding specified by the current locale (LC_CTYPE), unless the locale is “C”, “POSIX”, or
empty, in which case assume Latin-1 (ISO 8859-1).

The coding tag and uchardet methods in the above procedure rely upon a seekable input stream; when pre-
cony reads from a pipe, the stream is not seekable, and these detection methods are skipped. If character
encoding detection of your input files is unreliable, arrange for one of the other methods to succeed by us-
ing preconv’s =D or —e options, or by configuring your locale appropriately. groff also supports a
GROFF_ENCODING environment variable, which can be overridden by its —K option. Valid values for
(or parameters to) all of these are enumerated in the lists of recognized coding tags in the next subsection,
and are further influenced by iconv library support.

Coding tags

Text editors that support more than a single character encoding need tags within the input files to mark the
file’s encoding. While it is possible to guess the right input encoding with the help of heuristics that are re-
liable for a preponderance of natural language texts, they are not absolutely reliable. Heuristics can fail on
inputs that are too short or don’t represent a natural language.

Consequently, preconv supports the coding tag convention used by GNU Emacs (with some restrictions).
This notation appears in specially marked regions of an input file designated for “file-local variables”.

preconv interprets the following syntax if it occurs in a roff comment in the first or second line of the input
file. Both “\"” and “‘#” comment forms are recognized, but the control (or no-break control) character must
be the default and must begin the line. Similarly, the escape character must be the default.

—*— [...;] ecoding: encodingl[; ...] —*-—

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 103

preconv(1) General Commands Manual preconv(1)

The only variable precony interprets is “coding”, which can take the values listed below.

The following list comprises all MIME “charset” parameter values recognized, case-insensitively, by pre-
cony.
big5, cpl047, euc—jp, euc—kr, gb2312, is0—-8859-1, is0—8859-2, is0—8859-5, is0—8859-7,
150—8859-9, is0—8859-13, 1s0—8859—-15, koi8—r, us—ascii, utf—8, utf—16, utf—16be, utf—16le

In addition, the following list of other coding tags is recognized, each of which is mapped to an appropriate

value from the list above.
ascii, chinese—big5, chinese—euc, chinese—iso—8bit, cn—big5, cn—gb, cn—gb—-2312, cp878, csascii,
csisolatinl, cyrillic—iso—8bit, cyrillic-koi8, euc—china, euc—cn, euc—japan, euc—japan—1990,
euc—korea, greek—iso—8bit, is0o—10646/utf, iso—10646/utf-8, iso—latin—1, iso—latin—2,
iso—latin—-5, iso—latin—7, iso—latin—9, japanese—euc, japanese—iso—8bit, jis8, koi8, korean—euc,
korean—iso—8bit, latin—0, Ilatinl, latin—1, latin—2, latin—5, latin—7, Ilatin—9, mule—utf-8§,
mule—utf-16, mule—utf-16be, mule—utf—16—-be, mule—utf—16be—with—signature, mule—utf—16le,
mule—utf-16—-le, mule—utf—16le—with—signature, utf§, utf—16-be, utf—16—be—with—signature,
utf—16be—with—signature, utf—16-le, utf—16-le—with—signature, utf—16le—with—signature

ELINNTS

Trailing “~dos”, “—unix”, and “—mac” suffixes on coding tags (which indicate the end-of-line convention
used in the file) are disregarded for the purpose of comparison with the above tags.

iconv support
While preconv recognizes all of the coding tags listed above, it is capable on its own of interpreting only
three encodings: Latin-1, code page 1047, and UTF-8. If iconv support is configured at compile time and
available at run time, all others are passed to iconv library functions, which may recognize many additional
encoding strings. The command “preconv —v” discloses whether iconv support is configured.

The use of iconv means that characters in the input that encode invalid code points for that encoding may be
dropped from the output stream or mapped to the Unicode replacement character (U+FFFD). Compare the

following examples using the input “café” (note the “€” with an acute accent), which due to its short length
challenges inference of the encoding used.

printf 'caf\351\n' | LC_ALL=en_US.UTF-8 preconv
printf 'caf\351\n' | preconv -e us-ascii
printf 'caf\351\n' | preconv -e latin-1

The fate of the accented “e” differs in each case. In the first, uchardet fails to detect an encoding (though
the library on your system may behave differently) and preconv falls back to the locale settings, where oc-
tal 351 starts an incomplete UTF-8 sequence and results in the Unicode replacement character. In the sec-
ond, it is not a representable character in the declared input encoding of US-ASCII and is discarded by
iconv. In the last, it is correctly detected and mapped.

Limitations
preconv cannot perform any transformation on input that it cannot see. Examples include files that are in-
terpolated by preprocessors that run subsequently, including soelim(1); files included by troff itself through
“s0” and similar requests; and string definitions passed to troff through its —d command-line option.

Options
—h and —help display a usage message, while —v and ——version show version information; all exit after-
ward.
—d Emit debugging messages to the standard error stream.

-D default-encoding
Report default-encoding if all detection methods fail.

—e encoding
Skip detection and assume encoding; see groff’s =K option.

-r Write files “raw”; do not add .If requests.

See also
groff(1), iconv(3), locale(7)

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 104

refer(1)

Name

General Commands Manual refer(1)

refer — process bibliographic references for groff

Synopsis

refer [-benCPRS] [-a n] [-B field.macro] [-c fields] [-f n] [—i fields] [-k field] [-] range-expression]
[-p database-file] [—-s fields] [-t n] [file ...]

refer ——help

refer —v
refer ——version

Description

The GNU implementation of refer is part of the groff(1) document formatting system. refer is a troff(1)
preprocessor that prepares bibilographic citations by looking up keywords specified in a roff(7) input docu-
ment, obviating the need to type such annotations, and permitting the citation style in formatted output to
be altered independently and systematically. It copies the contents of each file to the standard output
stream, except that it interprets lines between .[and .] as citations to be translated into groff input, and lines
between .R1 and .R2 as instructions regarding how citations are to be processed. Normally, refer is not ex-
ecuted directly by the user, but invoked by specifying the —R option to groff(1). If no file operands are
given on the command line, or if file is “~", the standard input stream is read.

Each citation specifies a reference. The citation can specify a reference that is contained in a bibliographic
database by giving a set of keywords that only that reference contains. Alternatively it can specify a refer-
ence by supplying a database record in the citation. A combination of these alternatives is also possible.

For each citation, refer can produce a mark in the text. This mark consists of some label which can be sep-
arated from the text and from other labels in various ways. For each reference it also outputs groff(7) lan-
guage commands that can be used by a macro package to produce a formatted reference for each citation.
The output of refer must therefore be processed using a suitable macro package, such as me, mm, mom, or
ms. The commands to format a citation’s reference can be output immediately after the citation, or the ref-
erences may be accumulated, and the commands output at some later point. If the references are accumu-
lated, then multiple citations of the same reference will produce a single formatted reference.

The interpretation of lines between .R1 and .R2 as prepreocessor commands is a feature of GNU refer.
Documents making use of this feature can still be processed by AT&T refer just by adding the lines

.de R1

.ig R2

to the beginning of the document. This will cause froff(1) to ignore everything between .R1 and .R2. The
effect of some commands can also be achieved by options. These options are supported mainly for compat-
ibility with AT&T refer. It is usually more convenient to use commands.

refer generates .If requests so that file names and line numbers in messages produced by commands that
read refer output will be correct; it also interprets lines beginning with .If so that file names and line num-
bers in the messages and .If lines that it produces will be accurate even if the input has been preprocessed
by a command such as soelim(1).

Options

—-help displays a usage message, while —v and ——version show version information; all exit afterward.

Most options are equivalent to commands (for a description of these commands, see subsection “Com-
mands” below).

-b no-label-in—text; no—label-in—reference
—-e accumulate

-n no—default—database

-C compatible

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 105

refer(1)

General Commands Manual refer(1)

-pP move—punctuation
-S label ""(A.n|Q) ', ' (D.y|D)"; bracket-label " ("') "; "'
-an reverse An

—c fields capitalize fields

—fn label %n

—i fields search—ignore fields
-k label L~%a

-k field label field~%a

-1 label A.nD.y%a

-1m label A.n+mD.y%a
-1,n label A.nD.y—n%a

-1 myn label A.n+mD.y—n%a
—p db-file database db-file

—S spec sort spec

-tn search—truncate n

The next options are equivalent to commands with the addition that the file names specified on the com-
mand line are processed as if they were arguments to the bibliography command instead of in the normal

way.

-B

annotate X AP; no-label-in-reference

-B field.macro annotate field macro; no-label-in—reference

The following option has no synonymous command.

-R
Usage

Don’t recognize lines beginning with .R1/.R2.

Bibliographic databases
The bibliographic database is a text file consisting of records separated by one or more blank lines. Within
each record fields start with a % at the beginning of a line. Each field has a one character name that imme-
diately follows the %. It is best to use only upper and lower case letters for the names of fields. The name
of the field should be followed by exactly one space, and then by the contents of the field. Empty fields are

ignored.

% A

%B
% C
%D

% E

% G

The conventional meaning of each field is as follows:

The name of an author. If the name contains a suffix such as “Jr.”, it should be separated from the
last name by a comma. There can be multiple occurrences of the %A field. The order is signifi-
cant. Itis a good idea always to supply an %A field or a %Q field.

For an article that is part of a book, the title of the book.
The place (city) of publication.

The date of publication. The year should be specified in full. If the month is specified, the name
rather than the number of the month should be used, but only the first three letters are required. It
is a good idea always to supply a %D field; if the date is unknown, a value such as in press or un-
known can be used.

For an article that is part of a book, the name of an editor of the book. Where the work has editors
and no authors, the names of the editors should be given as %A fields and “, (ed.)” or “, (eds.)”
should be appended to the last author.

U.S. government ordering number.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 106

refer(1)

General Commands Manual refer(1)

%1 The publisher (issuer).

%J For an article in a journal, the name of the journal.

%K Keywords to be used for searching.

%L Label.

%N Journal issue number.

% 0O Other information. This is usually printed at the end of the reference.
%P Page number. A range of pages can be specified as m—n.

%Q The name of the author, if the author is not a person. This will only be used if there are no %A
fields. There can only be one %Q field.

%R Technical report number.

%S Series name.

%'T Title. For an article in a book or journal, this should be the title of the article.
%V Volume number of the journal or book.

%X Annotation.

For all fields except %A and %E, if there is more than one occurrence of a particular field in a record, only
the last such field will be used.

If accent strings are used, they should follow the character to be accented. This means that an ms document
must call the .AM macro when it initializes. Accent strings should not be quoted: use one \ rather than two.
Accent strings are an obsolescent feature of the me and ms macro packages; modern documents should use
groff special character escape sequences instead; see groff_char(7).

Citations

Citations have a characteristic format.
. [opening-text
flags keywords
fields
.lclosing-text

The opening-text, closing-text, and flags components are optional. Only one of the keywords and fields
components need be specified.

The keywords component says to search the bibliographic databases for a reference that contains all the
words in keywords. It is an error if more than one reference is found.

The fields components specifies additional fields to replace or supplement those specified in the reference.
When references are being accumulated and the keywords component is non-empty, then additional fields
should be specified only on the first occasion that a particular reference is cited, and will apply to all cita-
tions of that reference.

The opening-text and closing-text components specify strings to be used to bracket the label instead of
those in the bracket—label command. If either of these components is non-empty, the strings specified in
the bracket—label command will not be used; this behavior can be altered using the [and] flags. Leading
and trailing spaces are significant for these components.

The flags component is a list of non-alphanumeric characters each of which modifies the treatment of this
particular citation. AT&T refer will treat these flags as part of the keywords and so will ignore them since
they are non-alphanumeric. The following flags are currently recognized.

Use the label specified by the short-label command, instead of that specified by the label com-
mand. If no short label has been specified, the normal label will be used. Typically the short label
is used with author-date labels and consists of only the date and possibly a disambiguating letter;
the “#” is supposed to be suggestive of a numeric type of label.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 107

refer(1) General Commands Manual refer(1)

[Precede opening-text with the first string specified in the bracket-label command.
] Follow closing-text with the second string specified in the bracket—label command.

An advantage of using the [and] flags rather than including the brackets in opening-text and closing-text is
that you can change the style of bracket used in the document just by changing the bracket—label com-
mand. Another is that sorting and merging of citations will not necessarily be inhibited if the flags are
used.

If a label is to be inserted into the text, it will be attached to the line preceding the .[line. If there is no such
line, then an extra line will be inserted before the .[line and a warning will be given.

There is no special notation for making a citation to multiple references. Just use a sequence of citations,
one for each reference. Don’t put anything between the citations. The labels for all the citations will be at-
tached to the line preceding the first citation. The labels may also be sorted or merged. See the description
of the <> label expression, and of the sort—adjacent—labels and abbreviate—label-ranges commands. A
label will not be merged if its citation has a non-empty opening-text or closing-text. However, the labels
for a citation using the] flag and without any closing-text immediately followed by a citation using the [
flag and without any opening-text may be sorted and merged even though the first citation’s opening-text or
the second citation’s closing-text is non-empty. (If you wish to prevent this, use the non-printing input
break escape sequence \& as the first citation’s closing-text.)

Commands
Commands are contained between lines starting with .R1 and .R2. Recognition of these lines can be pre-
vented by the —R option. When a .R1 line is recognized any accumulated references are flushed out. Nei-
ther .R1 nor .R2 lines, nor anything between them, is output.

Commands are separated by newlines or semicolons. A number sign (#) introduces a comment that extends
to the end of the line, but does not conceal the newline. Each command is broken up into words. Words
are separated by spaces or tabs. A word that begins with a (neutral) double quote ('') extends to the next
double quote that is not followed by another double quote. If there is no such double quote, the word ex-
tends to the end of the line. Pairs of double quotes in a word beginning with a double quote collapse to one
double quote. Neither a number sign nor a semicolon is recognized inside double quotes. A line can be
continued by ending it with a backslash “\”’; this works everywhere except after a number sign.

Each command name that is marked with * has an associated negative command no—name that undoes the
effect of name. For example, the no—sort command specifies that references should not be sorted. The
negative commands take no arguments.

In the following description each argument must be a single word; field is used for a single upper or lower
case letter naming a field; fields is used for a sequence of such letters; m and n are used for a non-negative
numbers; string is used for an arbitrary string; file is used for the name of a file.

abbreviate* fields stringl string?2 string3 string4
Abbreviate the first names of fields. An initial letter will be separated from another initial letter
by stringl, from the last name by string2, and from anything else (such as “von” or “de”) by
string3. These default to a period followed by a space. In a hyphenated first name, the initial of
the first part of the name will be separated from the hyphen by string4; this defaults to a period.
No attempt is made to handle any ambiguities that might result from abbreviation. Names are ab-
breviated before sorting and before label construction.

abbreviate—label-ranges™ string
Three or more adjacent labels that refer to consecutive references will be abbreviated to a label
consisting of the first label, followed by string, followed by the last label. This is mainly useful
with numeric labels. If string is omitted, it defaults to “-".

accumulate*
Accumulate references instead of writing out each reference as it is encountered. Accumulated
references will be written out whenever a reference of the form

-0
$LISTS

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 108

refer(1) General Commands Manual refer(1)

-1

is encountered, after all input files have been processed, and whenever a .R1 line is recognized.

annotate* field string
field is an annotation; print it at the end of the reference as a paragraph preceded by the line

String

If string is omitted, it will default to AP; if field is also omitted it will default to X. Only one field
can be an annotation.

articles string . ..
Each string is a definite or indefinite article, and should be ignored at the beginning of T fields

[T I3

when sorting. Initially, “a”, “an”, and “the” are recognized as articles.

bibliography file ...
Write out all the references contained in each bibliographic database file. This command should
come last in an .R1/.R2 block.

bracket-label stringl string2 string3
In the text, bracket each label with stringl and string2. An occurrence of string2 immediately fol-
lowed by stringl will be turned into string3. The default behavior is as follows.
bracket-label *([. *(.] ", "

capitalize fields
Convert fields to caps and small caps.

compatible*
Recognize .R1 and .R2 even when followed by a character other than space or newline.

database file . ..
Search each bibliographic database file. For each file, if an index file.i created by indxbib(1) ex-
ists, then it will be searched instead; each index can cover multiple databases.

date—as—label* string
string is a label expression that specifies a string with which to replace the D field after construct-
ing the label. See subsection “Label expressions” below for a description of label expressions.
This command is useful if you do not want explicit labels in the reference list, but instead want to
handle any necessary disambiguation by qualifying the date in some way. The label used in the
text would typically be some combination of the author and date. In most cases you should also
use the no-label-in—reference command. For example,
date—-as-label D.+yD.y%a*D.-y
would attach a disambiguating letter to the year part of the D field in the reference.

default—database*
The default database should be searched. This is the default behavior, so the negative version of
this command is more useful. refer determines whether the default database should be searched
on the first occasion that it needs to do a search. Thus a no—default—database command must be
given before then, in order to be effective.

discard* fields
When the reference is read, fields should be discarded; no string definitions for fields will be out-
put. Initially, fields are XYZ.

et—al* string mn
Control use of et al. in the evaluation of @ expressions in label expressions. If the number of au-
thors needed to make the author sequence unambiguous is u and the total number of authors is ¢
then the last 7 —u authors will be replaced by string provided that # —u is not less than m and ¢ is
not less than n. The default behavior is as follows.
et-al " et al" 2 3

Note the absence of a dot from the end of the abbreviation, which is arguably not correct. (Ef all.]
is short for et alli, as etc. is short for et cetera.)

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 109

refer(1) General Commands Manual refer(1)

include file
Include file and interpret the contents as commands.

join—authors stringl string2 string3
Join multiple authors together with strings. When there are exactly two authors, they will be
joined with stringl. When there are more than two authors, all but the last two will be joined with
string2, and the last two authors will be joined with string3. If string3 is omitted, it will default to
stringl; if string2 is also omitted it will also default to stringl. For example,
join-authors " and " ", " ", and "
will restore the default method for joining authors.

label-in—reference*
When outputting the reference, define the string [F to be the reference’s label. This is the default
behavior, so the negative version of this command is more useful.

label-in—text*
For each reference output a label in the text. The label will be separated from the surrounding text
as described in the bracket—label command. This is the default behavior, so the negative version
of this command is more useful.

label string
string is a label expression describing how to label each reference.

separate—label-second—parts string
When merging two-part labels, separate the second part of the second label from the first label
with string. See the description of the <> label expression.

move—punctuation*
In the text, move any punctuation at the end of line past the label. It is usually a good idea to give
this command unless you are using superscripted numbers as labels.

reverse* string
Reverse the fields whose names are in string. Each field name can be followed by a number which
says how many such fields should be reversed. If no number is given for a field, all such fields will
be reversed.

search—ignore* fields
While searching for keys in databases for which no index exists, ignore the contents of fields. Ini-
tially, fields XYZ are ignored.

search—truncate* n
Only require the first n characters of keys to be given. In effect when searching for a given key
words in the database are truncated to the maximum of # and the length of the key. Initially, n
is 6.

short-label* string
string is a label expression that specifies an alternative (usually shorter) style of label. This is used
when the # flag is given in the citation. When using author-date style labels, the identity of the au-
thor or authors is sometimes clear from the context, and so it may be desirable to omit the author
or authors from the label. The short-label command will typically be used to specify a label con-
taining just a date and possibly a disambiguating letter.

sort* string
Sort references according to string. References will automatically be accumulated. string should
be a list of field names, each followed by a number, indicating how many fields with the name
should be used for sorting. “+4” can be used to indicate that all the fields with the name should be
used. Also . can be used to indicate the references should be sorted using the (tentative) label.
(Subsection “Label expressions” below describes the concept of a tentative label.)

sort—adjacent—labels*
Sort labels that are adjacent in the text according to their position in the reference list. This com-
mand should usually be given if the abbreviate—label-ranges command has been given, or if the

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 110

refer(1)

General Commands Manual refer(1)

label expression contains a <> expression. This will have no effect unless references are being ac-
cumulated.

Label expressions
Label expressions can be evaluated both normally and tentatively. The result of normal evaluation is used
for output. The result of tentative evaluation, called the fentative label, is used to gather the information
that normal evaluation needs to disambiguate the label. Label expressions specified by the date—as—label
and short-label commands are not evaluated tentatively. Normal and tentative evaluation are the same for
all types of expression other than @, *, and % expressions. The description below applies to normal evalu-
ation, except where otherwise specified.

field
fieldn

'string'

@

% n
% a
%0 A
%01
%1

expr*

expr+n
expr—n

expr.l

expr.u
expr.c
expr.r

expr.a

expr.y
expr.+y

The n-th part of field. If n is omitted, it defaults to 1.
The characters in string literally.

All the authors joined as specified by the join—authors command. The whole of each author’s
name will be used. However, if the references are sorted by author (that is, the sort specification
starts with “A+"), then authors’ last names will be used instead, provided that this does not intro-
duce ambiguity, and also an initial subsequence of the authors may be used instead of all the au-
thors, again provided that this does not introduce ambiguity. The use of only the last name for the
i-th author of some reference is considered to be ambiguous if there is some other reference, such
that the first i — 1 authors of the references are the same, the i-th authors are not the same, but the i-
th authors last names are the same. A proper initial subsequence of the sequence of authors for
some reference is considered to be ambiguous if there is a reference with some other sequence of
authors which also has that subsequence as a proper initial subsequence. When an initial subse-
quence of authors is used, the remaining authors are replaced by the string specified by the et—al
command; this command may also specify additional requirements that must be met before an ini-
tial subsequence can be used. @ tentatively evaluates to a canonical representation of the authors,
such that authors that compare equally for sorting purpose will have the same representation.

The serial number of the reference formatted according to the character following the %. The ser-
ial number of a reference is 1 plus the number of earlier references with same tentative label as
this reference. These expressions tentatively evaluate to an empty string.

If there is another reference with the same tentative label as this reference, then expr, otherwise an
empty string. It tentatively evaluates to an empty string.

The first (+) or last (=) n upper or lower case letters or digits of expr. roff special characters (such
as \('a) count as a single letter. Accent strings are retained but do not count towards the total.

expr converted to lowercase.

expr converted to uppercase.

expr converted to caps and small caps.
expr reversed so that the last name is first.

expr with first names abbreviated. Fields specified in the abbreviate command are abbreviated
before any labels are evaluated. Thus .a is useful only when you want a field to be abbreviated in
a label but not in a reference.

The year part of expr.

The part of expr before the year, or the whole of expr if it does not contain a year.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 111

refer(1)

General Commands Manual refer(1)

expr.=y
The part of expr after the year, or an empty string if expr does not contain a year.

expr.n The last name part of expr.

exprl~expr2
exprl except that if the last character of exprl is — then it will be replaced by expr2.

exprl expr2
The concatenation of exprl and expr2.

exprl|expr2
If exprl is non-empty then exprl otherwise expr2.

exprl &expr2
If exprl is non-empty then expr2 otherwise an empty string.

expri?expr2:expr3
If exprl is non-empty then expr2 otherwise expr3.

<expr> The label is in two parts, which are separated by expr. Two adjacent two-part labels which have
the same first part will be merged by appending the second part of the second label onto the first
label separated by the string specified in the separate—label-second—parts command (initially, a
comma followed by a space); the resulting label will also be a two-part label with the same first
part as before merging, and so additional labels can be merged into it. It is permissible for the first
part to be empty; this may be desirable for expressions used in the short-label command.

(expr) The same as expr. Used for grouping.

The above expressions are listed in order of precedence (highest first); & and | have the same precedence.

Macro interface

Each reference starts with a call to the macro]-. The string [F will be defined to be the label for this refer-
ence, unless the no—label-in—-reference command has been given. There then follows a series of string de-
finitions, one for each field: string [X corresponds to field X. The register [P is set to 1 if the P field con-
tains a range of pages. The [T, [A and [O registers are set to 1 according as the T, A and O fields end with
any of .?! (an end-of-sentence character). The [E register will be set to 1 if the [E string contains more than
one name. The reference is followed by a call to the][macro. The first argument to this macro gives a
number representing the type of the reference. If a reference contains a J field, it will be classified as
type 1, otherwise if it contains a B field, it will be type 3, otherwise if it contains a G or R field it will be
type 4, otherwise if it contains an I field it will be type 2, otherwise it will be type 0. The second argument
is a symbolic name for the type: other, journal-article, book, article—in—book, or tech—report. Groups
of references that have been accumulated or are produced by the bibliography command are preceded by a
call to the]< macro and followed by a call to the]> macro.

Environment
REFER
If set, overrides the default database.
Files
/usr/dict/papers/Ind

Bugs

Default database.
file.i Index files.

/usr/local/share/groff/1.23.0/tmac/refer.tmac
defines macros and strings facilitating integration with macro packages that wish to support refer.

refer uses temporary files. See the groff(1) man page for details of where such files are created.

In label expressions, <> expressions are ignored inside .char expressions.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 112

refer(1) General Commands Manual refer(1)

Examples
We can illustrate the operation of refer with a sample bibliographic database containing one entry and a
simple roff document to cite that entry.

$ cat > my-db-file

%A Daniel P.\& Friedman

%$A Matthias Felleisen

%$C Cambridge, Massachusetts

$D 1996

%I The MIT Press

%T The Little Schemer, Fourth Edition
$ refer -p my-db-file

Read the book

-0

friedman

-1

on your summer vacation.

<Control+D>

J1f 1 -

Read the book* ([.1*(.]

.ds [F 1

1=

.ds [A Daniel P. Friedman and Matthias Felleisen
.ds [C Cambridge, Massachusetts

.ds [D 1996

.ds [I The MIT Press

.ds [T The Little Schemer, Fourth Edition
.nr [T O

.nr [A O

.10 2 book

1f 5 -

on your summer vacation.

The foregoing shows us that refer (a) produces a label “17’; (b) brackets that label with interpolations of the
“[.” and “.]” strings; (c) calls a macro “]-"; (d) defines strings and registers containing the label and bibli-
ographic data for the reference; (e) calls a macro “][”’; and (f) uses the If request to restore the line numbers
of the original input. As discussed in subsection “Macro interface” above, it is up to the document or a
macro package to employ and format this information usefully. Let us see how we might turn groff_ms(7)
to this task.

$ REFER=my-db-file groff -R -ms
.LP

Read the book

-

friedman

-1

on your summer vacation.
Commentary is available.*{**}
CFS *{**}

Space reserved for penetrating insight.
.FE

ms’s automatic footnote numbering mechanism is not aware of refer’s label numbering, so we have manu-
ally specified a (superscripted) symbolic footnote for our non-bibliographic aside.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 113

refer(1) General Commands Manual refer(1)

See also
“Some Applications of Inverted Indexes on the Unix System”, by M. E. Lesk, 1978, AT&T Bell Laborato-
ries Computing Science Technical Report No. 69.

indxbib(1), lookbib(1), lkbib(1)

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 114

soelim(1) General Commands Manual soelim(1)

Name

soelim — recursively interpolate source requests in roff files
Synopsis

soelim [-Crt] [-I dir] [input-file . . .]

soelim ——help

soelim —v

soelim ——version
Description

GNU soelim is a preprocessor for the groff(7) document formatting system. soelim works as a filter to
eliminate source requests in roff(7) input files; that is, it replaces lines of the form “.so included-file” within
each text input-file with the contents of included-file, recursively. By default, it writes .If requests as well to
record the name and line number of each input-file and included-file, so that any diagnostics produced by
later processing can be accurately traced to the original input. Options allow this information to be sup-
pressed (—r) or supplied in TEX comments instead (—t). In the absence of input-file arguments, soelim reads
the standard input stream. Output is written to the standard output stream.

To embed a backslash “\” in the name of a macro-file, write “\\” or “\e”. To embed a space, write “\ ”
(backslash followed by a space). Any other escape sequence in macro-file, including “\[rs]”, prevents
soelim from replacing the source request.

The dot must be at the beginning of a line and must be followed by “so” without intervening spaces or tabs
for soelim to handle it. This convention allows source requests to be “protected” from processing by
soelim, for instance as part of macro definitions or .if requests.

There must also be at least one space between “so” and its macro-file argument. The —C option overrides
this requirement.

The foregoing is the limit of soelim’s understanding of roff languages; it does not, for example, replace the
input line

.if 1 .so otherfile
with the contents of otherfile. With its —r option, therefore, soelim can be used to process text files in gen-
eral, to flatten a tree of input documents.

soelim was designed to handle situations where the target of a roff source request requires a preprocessor
such as egn(1), pic(1), refer(1), or tbl(1). The usual processing sequence of groff(1) is as follows. In the di-
agrams below, the traditional names for soelim and troff are used; on this system, the GNU versions are in-
stalled as soelim and troff .

input sourced
file file

' '

preprocessor —= troff — postprocessor

'

output
file

That is, files sourced with .so are normally read only by troff (the actual formatter). soelim is not required
for troff to source files.

If a file to be sourced should also be preprocessed, it must already be read before the input file passes
through the preprocessor. soelim, normally invoked via groff”’s —s option, handles this.

groff 1.23.0.rc1.2692-2d9%e 21 June 2022 115

soelim(1) General Commands Manual soelim(1)

input
file

'

soelim — preprocessor — troff —~ postprocessor

T '

sourced output
file file
Options
——help displays a usage message, while —v and ——version show version information; all exit afterward.
-C Recognize .so even when followed by a character other than space or newline.

-1 dir Search the directory dir path for input- and included-files. —1 may be specified more than once;
each dir is searched in the given order. To search the current working directory before others, add
“—I.” at the desired place; it is otherwise searched last.

-r Write files “raw”’; do not add .If requests.

-t Emit TgX comment lines starting with “%” indicating the current file and line number, rather than
Jf requests for the same purpose.

If both —r and -t are given, the last one specified controls.

See also
groff(1)

groff 1.23.0.rc1.2692-2d9%e 21 June 2022 116

thl(1) General Commands Manual thi(1)

Name
tbl — prepare tables for groff documents

Synopsis
tbl [-C] [file ...]
tbl —help
tbl —v
tbl ——version

Description
The GNU implementation of #bl is part of the groff(1) document formatting system. bl is a troff(1) pre-
processor that translates descriptions of tables embedded in its input into the language, groff(7), understood
by troff. It copies the contents of each file to the standard output stream, except that lines between .TS and
.TE are interpreted as table descriptions. While GNU ¢b/’s input syntax is highly compatible with AT&T
tbl, the output GNU 1bl produces cannot be processed by AT&T troff'; GNU troff (or a troff implementing
any GNU extensions employed) must be used. Normally, tbl is not executed directly by the user, but in-
voked by specifying the —t option to groff(1). If no file operands are given on the command line, or if file
is “=”, the standard input stream is read.

Overview

tbl expects to find table descriptions between input lines that begin with .TS (table start) and .TE (table
end). Within each such rable region, another description can be preceded with an input line beginning with
T&.

(Experienced roff users should observe that th/ is not a roff language interpreter: the default control charac-
ter must be used, and no spaces or tabs are permitted between the control character and the macro name.
These tbl input tokens remain as-is in the output, where they become ordinary macro calls. Macro pack-
ages often define TS, T&, and TE macros to handle issues of table placement on the page. b/ produces
groff code to define these macros as empty if their definitions do not exist when the formatter encounters a
table region.)

Each table region may begin with region options, and must contain one or more fable definitions; each table
definition contains a format specification followed by one or more input lines (rows) of entries. These en-
tries comprise the table data.

Region options

The line immediately following the .TS token may specify region options: keywords that influence the in-
terpretation or rendering of the region as a whole or all table entries within it indiscriminately. They can be
specified in any lettercase and must be separated by commas, spaces, or tabs. (AT&T bl accepted only op-
tions with all characters in the same lettercase.) Some of these options require a parenthesized argument;
those that do permit spaces and tabs between the option’s name and the opening parenthesis. Options accu-
mulate and cannot be unset within a region once declared; if an option that takes a parameter is repeated,
the last occurrence controls. If present, the set of region options must be terminated with a semicolon ().

Any of the allbox, box, doublebox, frame, and doubleframe region options makes a table “boxed” for the
purpose of later discussion.

allbox Enclose each table entry in a box; implies box.

box Enclose the entire table region in a box. As a GNU extension, the alternative option name frame
is also recognized.

center Center the table region with respect to the current indentation and line length; the default is to left-
align it. As a GNU extension, the alternative option name centre is also recognized.

decimalpoint(c)
Recognize character ¢ as the decimal separator in columns using the N (numeric) classifier (see
subsection “Column classifiers” below). This is a GNU extension.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 117

(1)

General Commands Manual tbl(1)

delim(xy)
Recognize characters x and y as start and end delimiters, respectively, for egn(1) input, and ignore
input between them. x and y need not be distinct.

doublebox
Enclose the entire table region in a double box; implies box. As a GNU extension, the alternative
option name doubleframe is also recognized.

expand
Spread the table horizontally to fill the space between the current indentation and the current line
length by increasing column separation. Ordinarily, a table is made only as wide as necessary to
accommodate the widths of its entries and its column separations (whether specified or default).
When expand applies to a table that exceeds the available horizontal space, column separation is
reduced as far as necessary—even to zero. tbl produces groff input that issues a diagnostic if this
occurs. The column modifier x (see below) overrides this option.

linesize(n)
Draw lines or rules (e.g., from box) with a thickness of n points. The default is the current type
size when the region begins. This option is ignored on terminal devices.

nokeep Don’t use diversions to prevent page breaks. Normally, tb/ attempts to prevent undesirable breaks
in tables by using diversions. This can sometimes interact badly with macro packages’ own use of
diversions—when footnotes, for example, are employed. This is a GNU extension.

nospaces
Ignore leading and trailing spaces in table entries. This is a GNU extension.

nowarn
Suppress diagnostic messages produced at document formatting time when the line or page
lengths are inadequate to contain a table row. This is a GNU extension.

tab(c) Use the character c instead of a tab to separate entries in a row of table data.

Table format specification

The table format specification is mandatory: it determines the number of columns in the table and directs
how the entries within it are to be typeset. The format specification is a series of column descriptors.
Spaces, tabs, newlines, and commas are valid descriptor separators. Newlines and commas are special;
they apply the descriptors following them to a subsequent row of the table. (This enables column headings
to be centered or emboldened while the table entries for the data are not, for instance.) We term the result-
ing group of column descriptors a row definition. Within a row definition, separation between column de-
scriptors (by spaces or tabs) is often optional; only some modifiers, described below, make separation nec-
essary. Column classifiers are letters or punctuation symbols, whereas modifiers consist of or begin with
letters or numerals. Letters are recognized case-insensitively.

Each column descriptor begins with a mandatory classifier, a character that selects from one of several
arrangements. Some determine the positioning of table entries within a rectangular cell: centered, left-
aligned, numeric (aligned to a configurable decimal separator), and so on. Others perform special opera-
tions like drawing lines or spanning entries from adjacent cells in the table. Except for “|”, any classifier
can be followed by one or more modifiers; some of these accept an argument, which in GNU #bl can be
parenthesized. Modifiers select fonts, set the type size, and perform other tasks described below.

The format specification can occupy multiple input lines, but must conclude with a dot “.” at the end of its
final column descriptor. Each row definition is applied in turn to one row of the table. The last row defini-
tion is applied to rows of table data in excess of the row definitions.

For clarity in this document’s examples, we shall write classifiers in uppercase and modifiers in lowercase.
Thus, “CbCb,LR.” defines two rows of two columns. The first row’s entries are centered and boldfaced;
the second and any further rows’ first and second columns are left- and right-aligned, respectively.

The row definition with the most column descriptors determines the number of columns in the table; any
row definition with fewer is implicitly extended on the right-hand side with L classifiers as many times as
necessary to make the table rectangular.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 118

thl(1) General Commands Manual thi(1)

Column classifiers
The L, R, and C classifiers are the easiest to understand and use.

A a Center longest entry in this column, left-align remaining entries in the column with respect to the
centered entry, then indent all entries by one en. Such “alphabetic” entries (hence the name of the
classifier) can be used in the same column as L-classified entries, as in “LL,AR.”. The A entries
are often termed “sub-columns” due to their indentation.

C,c Center entry within the column.
L,1 Left-align entry within the column.

N,n Numerically align entry in the column; that is, align columns of numbers vertically at the units
place. If multiple decimal separators are adjacent to a digit, use the rightmost one for vertical
alignment. If there is no decimal separator, use the rightmost digit for vertical alignment; other-
wise, center the entry within the column. The non-printing input token \& in an entry treats the
glyph preceding it (if any) as the units place; if multiple instances occur in the data, use the left-
most one for alignment.

If N-classified entries share a column with L or R entries, center the widest N entry with respect to
the widest L or R entry, preserving the alignment of all N entries with respect to each other.

The appearance of eqn equations within N-classified columns can be troublesome due to the fore-
going textual scan for a decimal separator. Use the delim region option to make bl ignore the
data within egn delimiters for that purpose.

R r Right-align entry within the column.
S,s Span previous entry on the left into this column.
Span entry in the same column from the previous row into this row.

- Replace table entry with a horizontal rule. An empty table entry is expected to correspond to this
classifier; if data are found there, tb/ issues a diagnostic message.

= Replace table entry with a double horizontal rule. An empty table entry is expected to correspond
to this classifier; if data are found there, bl issues a diagnostic message.

Place a vertical rule on the corresponding row of the table (if two of these are adjacent, a double
vertical rule). This classifier does not contribute to the column count and no table entries corre-
spond to it. A | to the left of the first column descriptor or to the right of the last one produces a
line at the edge of the table.

To change the table format within a b/ region, use the .T& token at the start of a line. It is followed by a
format specification and table data, but not region options. The quantity of columns in a new table format
thus introduced cannot increase relative to the previous table format; in that case, you must end the table re-
gion and start another. If that will not serve because the region uses box options or the columns align in an
undesirable manner, you must design the initial table format specification to include the maximum quantity
of columns required, and use the S horizontal spanning classifier where necessary to achieve the desired
columnar alignment.

Attempting to horizontally span in the first column or vertically span on the first row is an error. Non-rec-
tangular span areas are also not supported.

Column modifiers
Any number of modifiers can follow a column classifier. Arguments to modifiers, where accepted, are
case-sensitive. If the same modifier is applied to a column specifier more than once, or if conflicting modi-
fiers are applied, only the last occurrence has effect. The modifier x is mutually exclusive with e and w, but
e is not mutually exclusive with w; if these are used in combination, x unsets both e and w, while either e or
w overrides X.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 119

(1)

b,B
d,D

e, E

f,F

i1
m, M

p. P

t, T
u, U
v,V

x, X

z,7

General Commands Manual tbl(1)

Typeset entry in bold; abbreviates f(B).

Align a vertically spanned table entry to the bottom (“down”), instead of the center, of its range.
This is a GNU extension.

Equalize the widths of columns with this modifier. The column with the largest width controls.
This modifier sets the default line length used in a text block.

Select the typeface for the table entry. This modifier must be followed by a font or style name
(one or two characters not starting with a digit), font mounting position (a single digit), or a name
or mounting position of any length in parentheses. The last form is a GNU extension. (The para-
meter corresponds to that accepted by the troff ft request.) A one-character argument not in
parentheses must be separated by one or more spaces or tabs from what follows.

Typeset entry in italics; abbreviates f(I).

Call a groff macro before typesetting a text block (see subsection “Text blocks” below). This is a
GNU extension. This modifier must be followed by a macro name of one or two characters or a
name of any length in parentheses. A one-character macro name not in parentheses must be sepa-
rated by one or more spaces or tabs from what follows. The named macro must be defined before
the table region containing this column modifier is encountered. The macro should contain only
simple groff requests to change text formatting, like adjustment or hyphenation. The macro is
called after the column modifiers b, f, i, p, and v take effect; it can thus override other column
modifiers.

Set the type size for the table entry. This modifier must be followed by an integer n with an op-
tional leading sign. (The parameter corresponds to that accepted by the troff ps request.) If un-
signed, the type size is set to n scaled points. Otherwise, the type size is incremented or decre-
mented per the sign by n scaled points. The use of a signed multi-digit number is a GNU exten-
sion. If a type size modifier is followed by a column separation modifier (see below), they must be
separated by at least one space or tab.

Align a vertically spanned table entry to the top, instead of the center, of its range.
Move the column up one half-line, “staggering” the rows. This is a GNU extension.

Set the vertical spacing to be used in a text block. (This parameter corresponds to that accepted by
the troff vs request.) This modifier must be followed by an integer n with an optional leading
sign. If unsigned, the vertical spacing is set to n scaled points. Otherwise, the vertical spacing is
incremented or decremented per the sign by #n scaled points. The use of a signed multi-digit num-
ber is a GNU extension. If a vertical spacing modifier is followed by a column separation modifier
(see below), they must be separated by at least one space or tab.

Set the column’s minimum width. This modifier must be followed by a number, which is either a
unitless integer, or a roff horizontal measurement in parentheses. Parentheses are required if the
width is to be followed immediately by an explicit column separation (alternatively, follow the
width with one or more spaces or tabs). If no unit is specified, ens are assumed. This modifier
sets the default line length used in a text block.

Expand the column. After computing the column widths, distribute any remaining line length
evenly over all columns bearing this modifier. Applying the x modifier to more than one column is
a GNU extension. This modifier sets the default line length used in a text block.

Ignore the table entries corresponding to this column for width calculation purposes; that is, com-
pute the column’s width using only the information in its descriptor.

A numeric suffix on a column descriptor sets the separation distance (in ens) from the succeeding
column; the default separation is 3n. This separation is proportionally multiplied if the expand re-
gion option is in effect; in the case of tables wider than the output line length, this separation
might be zero. A negative separation cannot be specified. A separation amount after the last col-
umn in a row is nonsensical and provokes a diagnostic from #bl.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 120

thl(1) General Commands Manual thi(1)

Table data

The table data come after the format specification. Each input line corresponds to a table row, except that a
backslash at the end of a line of table data continues an entry on the next input line. (Text blocks, discussed
below, also spread table entries across multiple input lines.) Table entries within a row are separated in the
input by a tab character by default; see the tab region option above. Excess entries in a row of table data
(those that have no corresponding column descriptor, not even an implicit one arising from rectangulariza-
tion of the table) are discarded with a diagnostic message. Do not use a roff comment escape sequence in a
table entry. If you wish to visibly mark an empty table entry in the document source, populate it with the
\& non-printing input token. The table data are interrupted by a line consisting of the .T& input token, and
conclude with the line .TE.

Ordinarily, a table entry is typeset rigidly. It is not filled, broken, hyphenated, adjusted, or populated with
additional inter-sentence space. tbl measures each table entry as it occurs in the input, updating the width
required by its corresponding column. The x modifier makes this width a minimum, and the modifiers w or
z override it entirely. In contrast to conventional roff input (within a paragraph, say), changes to text for-
matting, such as font selection or vertical spacing, do not persist between entries.

Several forms of table entry are interpreted specially.

» If a table row contains only an underscore or equals sign (_ or =), a single or double horizontal rule
(line), respectively, is drawn across the table at that point.

* A table entry containing only _ or = on an otherwise populated row is replaced by a single or double hor-
izontal rule, respectively, joining its neighbors.

» Prefixing a lone underscore or equals sign with a backslash also has meaning. If a table entry consists
only of _ or \= on an otherwise populated row, it is replaced by a single or double horizontal rule, re-
spectively, that does not (quite) join its neighbors.

* A table entry consisting of \Rx, where x is any roff ordinary or special character, is replaced by enough
repetitions of the glyph corresponding to x to fill the column, albeit without joining its neighbors.

* On any row but the first, a table entry of * causes the entry above it to span down into the current one.

On occasion, these special tokens may be required as literal table data. To use either _ or = literally and
alone in an entry, prefix or suffix it with the token \&. To express _, \=, or \R, use a roff escape sequence
to interpolate the backslash (\e or \[rs]). A reliable way to emplace the * glyph sequence within a table en-
try is to use a pair of groff special character escape sequences (\[rs]\[ha]).

Rows of table entries can be interleaved with groff control lines; these do not count as table data. On such
lines the default control character (.) must be used (and not changed); the no-break control character is not
recognized. To start the first table entry in a row with a dot, precede it with the token \&.

Text blocks
An ordinary table entry’s contents can make a column, and therefore the table, excessively wide; the table
then exceeds the line length of the page, and becomes ugly or is exposed to truncation by the output device.
When a table entry requires more conventional typesetting, breaking across more than one output line (and
thereby increasing the height of its row), it can be placed within a text block.

tbl interprets a table entry beginning with “T{” at the end of an input line not as table data, but as a token
starting a text block. Similarly, “T}” at the start of an input line ends a text block; it must also end the table
entry. Text block tokens can share an input line with other table data (preceding T{ and following T}). In-
put lines between these tokens are formatted in a diversion by troff’. Text blocks cannot be nested. Multi-
ple text blocks can occur in a table row.

Like other table entries, text blocks are formatted as was the text prior to the table, modified by applicable
column descriptors. Specifically, the classifiers A, C, L, N, R, and S determine a text block’s alignment
within its cell, but not its adjustment. You can add na or ad requests to the beginning of a text block to al-
ter its adjustment distinctly from other text in the document. As with other table entries, when a text block
ends, any alterations to its formatting are discarded. They do not affect subsequent table entries, not even
other text blocks.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 121

(1)

General Commands Manual tbl(1)

If w or x modifiers are not specified for all columns of a text block’s span, the default length of the text
block (more precisely, the line length used to process the text block diversion) is computed as LxC/(N+1),
where L is the current line length, C the number of columns spanned by the text block, and N the number
of columns in the table. If necessary, you can also control a text block’s width by including an I (line
length) request in it prior to any text to be formatted. Because a diversion is used to format the text block,
its width is subsequently available in the register dl.

Miscellaneous

The register TW stores the width of the table region in basic units; it can’t be used within the region itself,
but is defined before the .TE token is output so that a groff macro named TE can make use of it. T. is a
Boolean-valued register indicating whether the bottom of the table is being processed. The #T register
marks the top of the table. Avoid using these names for any other purpose.

tbl also defines a macro T# to produce the bottom and side lines of a boxed table. While #b! itself arranges
for the output to include a call of this macro at the end of such a table, it can also be used by macro pack-
ages to create boxes for multi-page tables by calling it from a page footer macro that is itself called by a
trap planted near the bottom of the page. See section ‘“Limitations” below for more on multi-page tables.

Using bl macros within conditional input (that is, contingent upon an if, ie, el, or while request) can result
in misleading line numbers in subsequent diagnostics. tb/ unconditionally injects its output into the source
document, but the conditional branch containing it may not be taken, and if it is not, the If requests that rbl
injects to restore the source line number cannot take effect. Consider copying the input line counter register
.c and restoring its value at a convenient location after applicable arithmetic.

Interaction with eqn

tbl should always be called before egn(1). (groff(1) automatically arranges preprocessors in the correct or-
der.) Don’t call the EQ and EN macros within tables; instead, set up delimiters in your egn input and use
the delim region option so that tb/ will recognize them.

GNU ¢bl enhancements

In addition to extensions noted above, GNU tbl removes constraints endured by users of AT&T tbl.

* There is no limit on the number of columns in a table, regardless of their classification, nor any limit on
the number of text blocks.

» All table rows are considered when deciding column widths, not just those occurring in the first 200 in-
put lines of a region. Similarly, table continuation (.T&) tokens are recognized outside a region’s first
200 input lines.

* Numeric and alphabetic entries may appear in the same column.
* Numeric and alphabetic entries may span horizontally.

* GNU 1#bl internally employs register, string, macro, and diversions having names beginning with the
digit 3. A document to be preproccessed with GNU b/ should not use any such identifiers.

Using GNU bl within macros

You can embed a table region inside a macro definition. However, since bl writes its own macro defini-
tions at the beginning of each table region, it is necessary to call end macros instead of ending macro defini-
tions with “..”. Additionally, the escape character must be disabled.

Not all 7bl features can be exercised from such macros because bl is a roff preprocessor: it sees the input
earlier than troff does. For example, vertically aligning decimal separators fails if the numbers containing
them occur as macro or string parameters; the alignment is performed by bl itself, which sees only \$1, \$2,
and so on, and therefore can’t recognize a decimal separator that only appears later when troff interpolates
a macro or string definition.

Options

—-help displays a usage message, while —v and ——version show version information; all exit afterward.

-C Enable AT&T compatibility mode: recognize .TS and .TE even when followed by a character
other than space or newline. Furthermore, interpret the uninterpreted leader escape sequence \a.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 122

thl(1) General Commands Manual thi(1)

Limitations

Multi-page tables, if boxed and/or if you want their column headings repeated after page breaks, require
support at the time the document is formatted. A convention for such support has arisen in macro packages
such as ms, mm, and me. To use it, follow the .TS token with a space and then “H”; this will be interpreted
by the formatter as a TS macro call with an H argument. Then, within the table data, call the TH macro;
this informs the macro package where the headings end. If your table has no such heading rows, or you do
not desire their repetition, call TH immediately after the table format specification. If a multi-page table is
boxed or has repeating column headings, do not enclose it with keep/release macros, or divert it in any
other way. Further, the bp request cannot be used to force a page break in a multi-page table. Define a
macro to wrap bp: invoke it normally if there is no current diversion. Otherwise, pass the macro call to the
enclosing diversion using the transparent line escape sequence \!; this will “bubble up” the page break to
the output device. See section “Examples” below for a demonstration.

Double horizontal rules are not currently supported by grotry(1); single rules are used instead. grotty also
ignores half-line motions, so the u column modifier has no effect.

A text block within a table must be able to fit on one page.

Using \a to put leaders in table entries does not work in GNU b/, except in compatibility mode. This is
correct behavior: \a is an uninterpreted leader. You can still use the roff leader character (Control+A) or
define a string to use \a as it was designed: to be interpreted only in copy mode.

.ds a \a

.TS

box center tab(;);
w(2i)0 L.
Population*a; 6,327,119
.TE

[T — 6,327,119 |

A leading and/or trailing | in a format specification, such as “|LCR|.”, produces an en space between the
vertical rules and the content of the adjacent columns. If no such space is desired (so that the rule abuts the
content), you can introduce “dummy” columns with zero separation and empty corresponding table entries
before and/or after.

.TS
center tab (#);
RO|L C RO|L.

#levulose#glucose#dextrose#

.TE

These dummy columns have zero width and are therefore invisible; unfortunately they usually don’t work
as intended on terminal devices.

pevulose glucose dextrose%

Examples
It can be easier to acquire the language of th/ through examples than formal description, especially at first.
.TS
box center tab (#);
Cb Cb
L L.
Ability#Application

Strength#fcrushes a tomato

Dexterity#dodges a thrown tomato

Constitution#eats a month-old tomato without becoming ill
Intelligence#knows that a tomato is a fruit

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 123

thl(1)

Wisdom#chooses \f[I]not\f[] to put tomato in a fruit salad
Charisma#sells obligate carnivores tomato-based fruit salads

.TE

General Commands Manual

Ability
Strength
Dexterity
Constitution
Intelligence
Wisdom
Charisma

crushes a tomato

Application

dodges a thrown tomato

eats a month-old tomato without becoming ill
knows that a tomato is a fruit

chooses not to put tomato in a fruit salad

sells obligate carnivores tomato-based fruit salads

The A and N column classifiers can be easier to grasp in visual rendering than in description.

.TS
center tab(;);
CbS, LN, AN.

Daily energy intake (in MJ)

Macronutrients
Carbohydrates; 4.5
Fats;2.25
Protein; 3

.T&

LN, AN.

Mineral
Pu-239;14.6

.T&

LN.
Total;\[ti]24.4
.TE

Daily energy intake (in MJ)

Macronutrients
Carbohydrates 4.5
Fats 2.25
Protein 3

Mineral
Pu-239 14.6

Total ~24.4

thl(1)

Next, we’ll lightly adapt a compact presentation of spanning, vertical alignment, and zero-width column
modifiers from the mandoc reference for its tbl interpreter. It rewards close study.

.TS

box center tab(:);
Lz S | Rt

Ld| cb| »

~ | Rz s.

left:r

l:center:

:right

.TE

groff 1.23.0.rc1.2692-2d9%e

left r
center
1 right
10 June 2022

124

thl(1) General Commands Manual thi(1)

Row staggering is not visually achievable on terminal devices, but a table using it can remain comprehensi-
ble nonetheless.

.TS

center tab(|);

Cf(BI) Cf(BI) Cf(B), C C Cu.
n|n\f[BI\[tmu]\f[]n|difference

1)1

2|43

3|95

4]16|7

5/25|9

636]11

.TE
n nxn difference
1 1 3
2 5
3 9 7
4 16 9
5 25 11
6 36

Some tbl features cannot be illustrated in the limited environment of a portable man page.

We can define a macro outside of a th/ region that we can call from within it to cause a page break inside a
multi-page boxed table. You can choose a different name; be sure to change both occurrences of “BP”.

.de BP
ie "\\n(.z'' .bp \\$1
el \!.BP \\$1

See also
“Tbl—A Program to Format Tables”, by M. E. Lesk, 1976 (revised 16 January 1979), AT&T Bell Labora-
tories Computing Science Technical Report No. 49.

The spanning example above was taken from mandoc’s man page for its thl implementation
(https://man.openbsd.org/tbl.7).

groff(l), troff(1)

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 125

tfmtodit(1) General Commands Manual tfmtodit(1)

Name
tfmtodit — adapt TeX Font Metrics files for groff —Tdvi
Synopsis
tfmtodit [—s] [-g gf-file] [-k skew-char] tfin-file map-file font-description
tfmtodit —help
tfmtodit —v
tfmtodit ——version
Description
tfimtodit creates a font description file for use with the dvi output driver of groff(1). tfin-file is the name of
the TgX font metric file for the font. map-file is a file giving the groff special character identifiers for
glyphs in the font; this file should consist of a sequence of lines of the form
icl...cn
where i is a decimal integer giving the position of the glyph in the font, and c/ through cn are groff special
character identifiers for the glyph. If a glyph has no groff names but exists in #fin-file, it is put in the groff
font description file as an unnamed character. Output is written in groff font(5) format to font-description,
a file named for the intended groff font name.
The —s option should be given if the font is “special”’, meaning that groff should search it whenever a glyph
is not found in the current font. In that case, font-description should be listed as an argument to the fonts
directive in the output device’s DESC file; if it is not special, there is no need to do so, since troff(1) will
automatically mount it when it is first used.
To do a good job of math typesetting, groff requires font metric information not present in tfin-file. This is
because TgX has separate math italic fonts, whereas groff uses normal italic fonts for math. The additional
information required by groff is given by the two arguments to the math_fit macro in the Metafont pro-
grams for the Computer Modern fonts. In a text font (a font for which math_fit is false), Metafont nor-
mally ignores these two arguments. Metafont can be made to put this information into the GF (“generic
font”) files it produces by loading the following definition after cmbase when creating cm.base.
def ignore_math_ fit (expr left_adjustment, right_adjustment) =
special "adjustment";
numspecial left_adjustment*16/designsize;
numspecial right_adjustment*16/designsize;
enddef;
For the EC font family, load the following definition after exbase—it is probably easiest to patch exbase.mf
locally.
def ignore_math_ fit (expr left_adjustment, right_adjustment) =
ori_special "adjustment";
ori_numspecial left_adjustment*16/designsize;
ori_numspecial right_adjustment*16/designsize;
enddef;
The only difference from the previous example is the “ori_" prefix to “special” and “numspecial”.
The GF file created using this modified cm.base or exbase.mf should be specified with the —g option, which
should not be given for a font for which math_fit is true.
Options

—-help displays a usage message, while —v and ——version show version information; all exit afterward.

—g gffile
Use the gf-file produced by Metafont containing “special” and “numspecial” commands to obtain
additional font metric information.

-k skew-char
The skew charcter of this font is at position skew-char. skew-char should be an integer; it may be
given in decimal, with a leading O in octal, or with a leading Ox in hexadecimal. Any kerns whose
second component is skew-char are ignored.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 126

tfmtodit(1) General Commands Manual

-s Add the special directive to the font description file.
Files
/usr/local/share/groff/1.23.0/font/devdvi/DESC
describes the dvi output device.
/usr/local/share/groff/1.23.0/font/devdvi/F
describes the font known as ¥ on device dvi.
See also

groff(1), grodvi(1), groff_font(5)

groff 1.23.0.rc1.2692-2d9%e 10 June 2022

tfmtodit(1)

127

troff (1)

Name

General Commands Manual troff (1)

troff — GNU roff typesetter and document formatter

Synopsis

troff [-abcCEiRUz] [-d cs] [-d name=string] [f fam] [-F dir] [-1 dir] [-m name] [-M dir] [-n num]
[-o list] [-r cn] [-r reg=expr] [-T dev] [-w name] [-W namel] [file .. .]

troff ——help

troff —v

troff —version

Description

GNU troff transforms groff(7) language input into the device-independent output format described in
groff_out(5); troff is thus the heart of the GNU roff document formatting system. It is functionally compat-
ible with the AT&T troff typesetter and features numerous extensions. Many people prefer to use the
groff(1) command, a front end which also runs preprocessors and output drivers in the appropriate order and
with appropriate options.

Options

—h and —help display a usage message, while —v and ——version show version information; all exit after-

ward.

—a

—d cs

Generate a plain text approximation of the typeset output. The read-only register .A is set to 1.
This option produces a sort of abstract preview of the formatted output.

» Page breaks are marked by a phrase in angle brackets; for example, “<beginning of page>”.
* Lines are broken where they would be in the formatted output.

* A horizontal motion of any size is represented as one space. Adjacent horizontal motions are
not combined. Inter-sentence space nodes (those arising from the second argument to the .ss re-
quest) are not represented.

* Vertical motions are not represented.

* Special characters are rendered in angle brackets; for example, the default soft hyphen character
appears as “<hy>”.

The above description should not be considered a specification; the details of —a output are subject
to change.

Write a backtrace reporting the state of troff ’s input parser to the standard error stream with each
diagnostic message. The line numbers given in the backtrace might not always be correct, because
troff’s idea of line numbers can be confused by requests that append to strings or macros.

Start with color output disabled.
Enable AT&T troff compatibility mode; implies —c.

—d name=string

—f fam
-F dir

Define roff string ¢ or name as s or string; ¢ must be a one-character name. Due to
getopt_long(3) limitations, ¢ cannot be, and name cannot contain, an equals sign, even though that
is a valid character in a roff identifier.

Inhibit troff error messages; implies —Ww. This option does not suppress messages sent to the
standard error stream by documents or macro packages using tm or related requests.

Use fam as the default font family.

Search in directory dir for the selected output device’s directory of device and font description
files. See the description of GROFF_FONT_PATH in section “Environment” below for the de-
fault search locations and ordering.

groff 1.23.0.rc1.2692-2d9%e 8 July 2022 128

troff (1) General Commands Manual troff (1)

—i Read the standard input stream after all named input files have been processed.

—I dir Search the directory dir for files (those named on the command line; in psbb, so, and soquiet re-
quests; and in “\X'ps: import"’, ‘“\X'ps: file'’, and ‘“\X'pdf: pdfpic'’ device control escape se-
quences). —I may be specified more than once; each dir is searched in the given order. To search
the current working directory before others, add “~I .” at the desired place; it is otherwise
searched last. —I works similarly to, and is named for, the “include” option of Unix C compilers.

—m name
Process name.fmac before input files. If not found, fmac.name is attempted. name (in both
arrangements) is presumed to be a macro file; see the description of GROFF_TMAC_PATH in sec-
tion “Environment” below for the default search locations and ordering.

—M dir Search directory dir for macro files. See the description of GROFF_TMAC_PATH in section “En-
vironment” below for the default search locations and ordering.

—n num
Number the first page num.

—o list Output only pages in list, which is a comma-separated list of inclusive page ranges; n means page
n, m—n means every page between m and n, —n means every page up to n, and n— means every
page from n on. troff stops processing and exits after formatting the last page enumerated in /ist.

-rcn

—I reg=expr
Define roff register ¢ or reg as groff numeric expression n or expr; ¢ must be a one-character
name. Due to getopt_long(3) limitations, ¢ cannot be, and reg cannot contain, an equals sign, even
though that is a valid character in a roff identifier.

-R Don’t load troffrc and troffrc—end.
=T dev Prepare output for device dev, rather than the default, ps; see groff(1).

-U Operate in unsafe mode, enabling the open, opena, pi, pso, and sy requests, which are disabled by
default because they allow an untrusted input document to write to arbitrary file names and run ar-
bitrary commands. This option also adds the current directory to the macro package search path;
see the —m option above.

—W name
-W name
Enable (—w) or inhibit (—W) warnings in category name. See section ‘“Warnings” below.

'/ Suppress formatted output.

Warnings
Warning diagnostics emitted by troff are divided into named, numbered categories. The name associated
with each warning category is used by the —w and —W options. Each category is also assigned a power of
two; the sum of enabled category codes is used by the warn request and the .warn register. Warnings of
each category are produced under the following circumstances.

groff 1.23.0.rc1.2692-2d9%e 8 July 2022 129

troff (1)

break

char

color

delim

di

el
escape
file

font

ig

input

mac

missing

number

range

reg

524288

256

16
32768
1048576

131072

262144

16384
512

8192

64
1024

groff 1.23.0.rc1.2692-2d9%e

General Commands Manual troff (1)

Bit Code Category | Bit Code Category

0 1 char 10 1024 reg

1 2 number 11 2048 tab

2 4 break 12 4096 right-brace

3 8 delim 13 8192 missing

4 16 el 14 16384 input

5 32 scale 15 32768 escape

6 64 range 16 65536 space

7 128 syntax 17 131072 font

8 256 di 18 262144 g

9 512 mac 19 524288 color

20 1048576 file

A filled output line could not be broken such that its length was less than the output
line length \n[.1]. This category is enabled by default.

No mounted font defines the glyph requested for formatting. (“char” is a mis-
nomer since it reports missing glyphs—there are no “missing” input characters,
only invalid ones.) This category is enabled by default.

An undefined color name was selected, an attempt was made to define a color using
an unrecognized color space, an invalid component in a color definition was en-
countered, or an attempt was made to redefine a default color.

The closing delimiter in an escape sequence was missing or mismatched.

A di, da, box, or boxa request was invoked without an argument when there was no
current diversion.

The el request was encountered with no prior corresponding ie request.
An unsupported escape sequence was encountered.

An attempt was made to load a file that does not exist. This category is enabled by
default.

A non-existent font was selected, or the selection was ignored because a font selec-
tion escape sequence was used after the output line continuation escape sequence
on an input line. This category is enabled by default.

An invalid escape sequence occurred in input ignored using the ig request. This
warning category diagnoses a condition that is an error when it occurs in non-ig-
nored input.

An invalid character occurred on the input stream.

An undefined string, macro, or diversion was used. When such an object is derefer-
enced, an empty one of that name is automatically created. So, in most cases, at
most one warning is given for each name.

This warning is also emitted upon an attempt to move an unplanted trap macro. In
such cases, the unplanted macro is not dereferenced, so it is not created if it does
not exist.

A request was invoked with a mandatory argument absent.

An invalid numeric expression was encountered. This category is enabled by de-
fault.

A numeric expression was out of range for its context.

An undefined register was used. When an undefined register is dereferenced, it is
automatically defined with a value of 0. So, in most cases, at most one warning is
given for each name.

8 July 2022 130

troff (1)

General Commands Manual troff (1)

right-brace 4096 A right brace escape sequence \} was encountered where a number was expected.
scale 32 Aninappropriate scaling unit was used in a numeric expression.

space 65536 A space was missing between a request or macro and its argument. This warning is
produced when an undefined name longer than two characters is encountered and
the first two characters of the name constitute a defined name. No request is in-
voked, no macro called, and an empty macro is not defined. This category is en-
abled by default. It never occurs in compatibility mode.

syntax 128 A self-contradictory hyphenation mode was requested; an empty or incomplete nu-
meric expression was encountered; an operand to a numeric operator was missing;
an attempt was made to define a recursive, empty, or nonsensical character class; or
a groff extension conditional expression operator was used while in compatibility
mode.

tab 2048 A tab character was encountered where a number was expected, or appeared in an
unquoted macro argument.

Two warning names group other warning categories for convenience.

all All warning categories except di, mac, and reg. This shorthand is intended to produce all warn-
ings that are useful with macro packages and documents written for AT&T troff and its descen-
dants, which have less fastidious diagnostics than GNU troff .

w All warning categories. Authors of documents and macro packages targeting groff are encouraged
to use this setting.

Environment

Files

GROFF_FONT_PATH and GROFF_TMAC_PATH each accept a search path of directories; that is, a list of
directory names separated by the system’s path component separator character. On Unix systems, this char-
acter is a colon (:); on Windows systems, it is a semicolon (;).

GROFF_FONT_PATH
A list of directories in which to seek the selected output device’s directory of device and font de-
scription files. troff will scan directories given as arguments to any specified —F options before
these, then in a site-specific directory (/usr/local/share/groff/site—font), a standard location (/us+/
local/share/groff/1.23.0/font), and a compatibility directory (/usr/lib/font) after them.

GROFF_TMAC_PATH
A list of directories in which to search for macro files. troff will scan directories given as argu-
ments to any specified —M options before these, then the current directory (only if in unsafe
mode), the user’s home directory, a platform-specific directory (/usr/local/lib/groff/site—tmac), a
site-specific directory (/usr/local/share/groff/site—tmac), and a standard location (/usr/local/share/
groff/1.23.0/tmac) after them.

GROFF _TYPESETTER
Set the default output device. If empty or not set, ps is used. The —T option overrides
GROFF_TYPESETTER.

SOURCE_DATE_EPOCH
A timestamp (expressed as seconds since the Unix epoch) to use as the output creation timestamp
in place of the current time. The time is converted to human-readable form using ctime(3) when
the formatter starts up and stored in registers usable by documents and macro packages.

7 The timezone to use when converting the current time (or value of SOURCE_DATE_EPOCH) to
human-readable form; see rzset(3).

/usr/local/share/groff/1.23.0/tmac/troffrc
is an initialization macro file loaded before any macro packages specified with —m options.

groff 1.23.0.rc1.2692-2d9%e 8 July 2022 131

troff (1)

General Commands Manual troff (1)

/usr/local/share/groff/1.23.0/tmac/troffrc—end
is an initialization macro file loaded after all macro packages specified with —m options.

/usr/local/share/groff/1.23.0/tmac/name.tmac
are macro files distributed with groff.

/usr/local/share/groff/1.23.0/font/devname/DESC
describes the output device name.

/usr/local/share/groff/1.23.0/font/devname/F
describes the font F of device name.

troffrc and troffrc—end are sought neither in the current nor the home directory by default for security rea-
sons, even if the —U option is specified. Use the —M command-line option or the GROFF_TMAC_PATH
environment variable to add these directories to the search path if necessary.

Authors

The GNU version of troff was originally written by James Clark; he also wrote the original version of this
document, which was updated by Werner Lemberg (wl@gnu.org), Bernd Warken (groff-bernd
.warken—72@web.de), and G. Branden Robinson {g.branden.robinson @ gmail.com).

See also

Groff: The GNU Implementation of troff, by Trent A. Fisher and Werner Lemberg, is the primary groff
manual. You can browse it interactively with “info groff”.

groff(1) offers an overview of the GNU roff system and describes its front end executable.

groff(7) details the groff language, including a short but complete reference of all predefined requests, reg-
isters, and escape sequences.

groff_char(7)
explains the syntax of groff special character escape sequences, and lists all special characters pre-
defined by the language.

groff_diff(7)

enumerates the differences between AT&T device-independent troff and groff .

groff_font(5)
covers the format of groff device and font description files.

groff_out(5)
describes the format of troff’s output.

groff_tmac(5)
includes information about macro files that ship with groff.

roff(7) supplies background on roff systems in general, including pointers to further related documenta-
tion.

groff 1.23.0.rc1.2692-2d9%e 8 July 2022 132

groff_filenames(5) File Formats Manual groff_filenames(S)

Name
groff_filenames — filename conventions used in roff systems

Description
Since the evolution of roff in the 1970s, a whole bunch of filename extensions for roff files were used.

The roff extensions refer to preprocessors or macro packages. These extensions are fixed in all Unix—like
operating systems.

Later on, groff added some more extensions. This man page is about these filename extensions.

Compression of roff files
Each roff file can be optionally compressed. That means that the fotal filename ends with a compressor
name. So the whole filename has the structure <name>.<extension>[.<compression>].

Best-known are the compressor extensions .Z, .gz, and .bzip2. Relatively new is .xz.
From now on, we will ignore the compressions and only comment the structure <name>.<extension>.

Man pages
The Unix manual pages are widely called man pages. The man page style is the best-known part of the
roff language.

The extensions for man should be better documented. So this is documented here.
Files written in the man language use the following extension: *.<section>[<group>].

Man page sections
The traditional man page <section> is a digit from 1 to 8.

<name>.1
<name>.2
<name>.3
<name>.4
<name>.5
<name>.6
<name>.7
<name>.8
Classic man page sections.

In older commercial Unix systems, the 3 characters 1, n, and o were also used as section names. This is to-
day deprecated, but there are still documents in this format.

<name>.1
<name>.n
<name>.0
Deprecated man page sections, which stood for “local”, “new”, and “old”, respectively.

Man page group extensions
The <group> extension in .<section>[<group>] is optional, but it can be any string of word characters.
Usually programmers use a group name that is already used, e.g., x for X Window System documents or tcl
to refer to the Tcl programming language.

Examples:
groff.1 is the man page for groff in section 1 without a group

xargs.1posix.gz
is the man page for the program xargs in section 1 and group posix; moreover it is compressed
with gz (gzip).

config.5ssl
OpenSSL CONF library configuration files from section S with group ssl.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 133

groff_filenames(5) File Formats Manual groff_filenames(S)

dpkg-reconfigure.8cdebconf
man page for the program dpkg-reconfigure in section 8 and group cdebconf.

Source of man pages
There are 2 roff languages for writing man pages: man and mdoc.

The names of these 2 styles are taken as extensions for the source code files of man pages in the groff pack-
age.
<name>.man
traditional Unix-like man page format within groff source files.
<name>.n

A temporary man page file produced from a name.man man page by a run of make within the
groff source package.

<name>.mdoc
Man page format in BSD.

Traditional troff extensions
Files using macro packages
The classical roff languages were interpreted by the traditional troff and nroff programs.

The roff language has been extended by a variety of macro packages, each producing a sort of dialect of the
common language. Documents written using such packages tend to bear a characteristic file name exten-
sion.

<name>.me
roff file using the me macro package.

<name>.mm
roff file using the mm macro package

<name>.ms
roff file using the ms macro package

All of these classical roff languages and their extensions are still very active in groff.

Source code for macro packages (tmac files)

In traditional roff the source code for the macro packages was stored in TMAC files. Their file names have
the form:

tmac.<package>,

<package> is the name of the macro package without the leading m character, which is reinte-
grated by the option —m.

For example, tmac.an is the source for the man macro package.
In the groff source, more suitable file names were integrated; see later on.

Preprocessors
Moreover, the following preprocessors were used as filename extension:

<name>.chem
for the integration of chemical formulas

<name>.eqn
for the mathematical use of equations

<name>.pic
graphical tool

<name>.tbl
for tables with tbl

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 134

groff_filenames(5) File Formats Manual groff_filenames(S)

<name>.ref
for files using the prefer preprocessor

roff files
<name>.t
<name>.Ar
for files using the roff language of any kind

New groff extensions
GNU roff groff is the actual roff standard, both for classical roff and new extensions. So even the used
new extensions in the source code should be regarded as actual standard. The following extensions are
used instead of classical .t or .tr:
<name>.groff
<name> .roff

general ending for files using the groff language
Source code for macro packages (tmac files)

As the classical form tmac.<package_without_m>, of the TMAC file names is quite strange, groff added
the following structures:

<package_without_m>.tmac
m<package>.tmac
groff_m<package>.tmac

Files using new macro packages
Groff uses the following new macro packages:
<name>.mmse
file with swedish mm macros for groff
<name>.mom
files written in the groff macro package mom

<name>.WWW
files written in HTML-like groff macros.

Preprocessors and postprocessors
<name>.hdtbl
Heidelberger tables, an alternative to the preprocessor thl. See groff _hdtbl(7).
<name>.grap
files written for the graphical grap processor.
<name>.grn
for including gremlin(1), pictures, see grn(1).
<name>.pdfroff
transform this file with pdfroff of the groff system
Authors
This document was written by Bernd Warken (groff—-bernd.warken—72 @web.de).

See also
History and future

roff(7), man—pages(7), groff_diff(7), groff(7)
Compression
uncompress(1posix), gzip2(1), bzip2(1), xz(1)

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 135

groff_font(5) File Formats Manual groff_font(5)

Name
groff_font — GNU roff device and font description files

Description

The groff font and output device description formats are slight extensions of those used by AT&T device-
independent troff. In distinction to the AT&T implementation, groff lacks a binary format; all files are text
files. (Plan 9 troff has also abandoned the binary format.) The device and font description files for a device
name are stored in a devname directory. The device description file is called DESC, and, for each font sup-
ported by the device, a font description file is called f, where f is usually an abbreviation of a font’s name
and/or style. For example, the ps (PostScript) device has groff font description files for Times roman (TR)
and Zapf Chancery Medium italic (ZCMI), among many others, while the utf8 device (for terminal emula-
tors) has only font descriptions for the roman, italic, bold, and bold-italic styles (R, I, B, and BI, respec-
tively).

Device and font description files are read by the formatter, troff, and by output drivers. The programs typi-
cally delegate these files’ processing to an internal library, libgroff , ensuring their consistent interpretation.

DESC file format
The DESC file contains a series of directives; each begins a line. Their order is not important, with two ex-
ceptions: (1) the res directive must precede any papersize directive; and (2) the charset directive must
come last (if at all). If a directive name is repeated, later entries in the file override previous ones (except
that the paper dimensions are computed based on the res directive last seen when papersize is encoun-
tered). Spaces and/or tabs separate words and are ignored at line boundaries. Comments start with the “#”
character and extend to the end of a line. Empty lines are ignored.

family fam
The default font family is fam.

fontsn F1... Fn
Fonts FI, ..., Fn are mounted at font positions m+1, ..., m+n where m is the number of styles
(see below). This directive may extend over more than one line. A font name of 0 causes no font
to be mounted at the corresponding position.

hor n The horizontal motion quantum is n basic units. Horizontal quantities are rounded to multiples
of n.

image_generator program
Use program to generate PNG images from PostScript input. Under GNU/Linux, this is usually
gs(1), but under other systems (notably Cygwin) it might be set to another name. The grohtmi(1)
driver uses this directive.

paperlength n
The vertical dimension of the output medium is n basic units (deprecated: use papersize instead).

papersize format-or-dimension-pair-or-file-name . . .

The dimensions of the output medium are as according to the argument, which is either a standard
paper format, a pair of dimensions, or the name of a plain text file containing either of the forego-
ing. Recognized paper formats are the ISO and DIN formats A0-A7, B0-B7, C0-C7, and
D0-D7; the U.S. formats letter, legal, tabloid, ledger, statement, and executive; and the enve-
lope formats com10, monarch, and DL. Matching is performed without regard for lettercase.
Alternatively, the argument can be a custom paper size in the format length,width (with no spaces
before or after the comma). Both length and width must have a unit appended; valid units are “i”
for inches, “c¢” for centimeters, “p” for points, and “P” for picas. Example: “12¢,235p”. An argu-
ment that starts with a digit is always treated as a custom paper format.

Finally, the argument can be a file name (e.g., /etc/papersize); if the file can be opened, the first
line is read and a match attempted against each other form. No comment syntax is supported.

More than one argument can be specified; each is scanned in turn and the first valid paper specifi-
cation used.

groff 1.23.0.rc1.2692-2d9%e 21 June 2022 136

groff_font(5) File Formats Manual groff_font(5)

paperwidth n
The horizontal dimension of the output medium is n basic units (deprecated: use papersize in-
stead).

pass_filenames
Direct troff to emit the name of the source file being processed. This is achieved with the interme-
diate output command “x F”, which grohtml interprets.

postpro program
Use program as the postprocessor.

prepro program
Use program as a preprocessor. The html and xhtml output devices use this directive.

print program
Use program as the print spooler. If omitted, groff’s =1 and —L options are ignored.

resn The device resolution is n basic units per inch.

sizes sI ...sn 0
The device has fonts at s/, ..., sn scaled points (see below). The list of sizes must be terminated
by a 0. Each si can also be a range of sizes m—n. The list can extend over more than one line.

sizescale n
Set the scale factor for type sizes to one divided by n. The default is 1.

styles S1 ... Sm
The first m font mounting positions are associated with styles S7, ..., Sm.

tcommand
The postprocessor can handle the t and u intermediate output commands.

unicode
The output device supports the complete Unicode repertoire. This directive is useful only for de-
vices which produce character entities instead of glyphs.

If unicode is present, no charset section is required in the font description files since the Unicode
handling built into groff is used. However, if there are entries in a font description file’s charset
section, they either override the default mappings for those particular characters or add new map-
pings (normally for composite characters).

The utf8, html, and xhtml output devices use this directive.

unitwidth n
Quantities in the font description files are in basic units for fonts whose type size is n scaled
points.

unscaled_charwidths
Make the font handling module always return unscaled glyph widths. The grohtml driver uses this
directive.

use_charnames_in_special
troff should encode named glyphs inside device control commands. The grohtml driver uses this
directive.

vert n The vertical motion quantum is n basic units. Vertical quantities are rounded to multiples of n.

charset
This directive and the rest of the file are ignored. It is recognized for compatibility with other troff
implementations. In GNU troff, character set repertoire is described on a per-font basis.

troff recognizes but ignores the directives sparel, spare2, and biggestfont.

The res, unitwidth, fonts, and sizes lines are mandatory. Directives not listed above are ignored by troff
but may be used by postprocessors to obtain further information about the device.

groff 1.23.0.rc1.2692-2d9%e 21 June 2022 137

groff_font(5) File Formats Manual groff_font(5)

Font description file format
On typesetting output devices, each font is typically available at multiple sizes. While paper size measure-
ments in the device description file are in absolute units, measurements applicable to fonts must be propor-
tional to the type size. groff achieves this using the precedent set by AT&T device-independent troff: one
font size is chosen as a norm, and all others are scaled linearly relative to that basis. The “unit width” is the
number of basic units per point when the font is rendered at this nominal size.

For instance, groff’s Ibp device uses a unitwidth of 800. Its Times roman font (“TR”) has a spacewidth
of 833; this is also the width of its comma, period, centered period, and mathematical asterisk, while its
“M” is 2,963 basic units. Thus, an “M” on the lbp device is 2,963 basic units wide at a notional type size
of 800 points. (800-point type is not practical for most purposes, but using it enables the quantities in the
font description files to be expressed as integers.)

A font description file has two sections. The first is a sequence of directives, and is parsed similarly to the
DESC file described above. Except for the directive names that begin the second section, their ordering is
immaterial. Later directives of the same name override earlier ones, spaces and tabs are handled in the
same way, and the same comment syntax is supported. Empty lines are ignored throughout.

name F
The name of the font is F. “DESC” is an invalid font name. Simple integers are valid, but their
use is discouraged. (groff requests and escape sequences interpret non-negative font names as
mounting positions instead. Further, a font named “0” cannot be automatically mounted by the
fonts directive of a DESC file.)

spacewidth n
The width of an unadjusted inter-word space is # basic units.

The directives above must appear in the first section; those below are optional.
slant n The font’s glyphs have a slant of n degrees; a positive n slants in the direction of text flow.

ligatures lig/ ... lign [0]
Glyphs ligl, ..., lign are ligatures; possible ligatures are ff, fi, fl, ffi, and ffl. For compatibility
with other froff implementations, the list of ligatures may be terminated with a 0. The list of liga-
tures must not extend over more than one line.

special The font is special: when a glyph is requested that is not present in the current font, it is sought in
any mounted fonts that bear this property.

Other directives in this section are ignored by froff , but may be used by postprocessors to obtain further in-
formation about the font.

The second section contains one or two subsections. These can appear in either order; the first one encoun-
tered commences the second section. Each starts with a directive on a line by itself. A charset subsection
is mandatory unless the associated DESC file contains the unicode directive. Another subsection,
kernpairs, is optional.

The directive charset starts the character set subsection. (For typesetter devices, this directive is misnamed
since it starts a list of glyphs, not characters.) It precedes a series of glyph descriptions, one per line. Each
such glyph description comprises a set of fields separated by spaces or tabs and organized as follows.

name metrics type code [entity-name] [-— comment |

name identifies the glyph: if name is a printable character c, it corresponds to the troff ordinary character c.
If name is a multi-character sequence not beginning with \, it corresponds to the GNU troff special charac-
ter escape sequence “\[name]”. A name consisting of three minus signs, “——=", indicates that the glyph is
unnamed: such glyphs can be accessed only by the \N escape sequence in troff . A special character named
“——="" can still be defined using .char and similar requests. The name ‘“\-" defines the minus sign glyph.
Finally, name can be the horizontal motion escape sequences, \| and * (“thin” and “hair” spaces, respec-
tively), in which case only the width metric described below is applied; a font can thus customize the
widths of these spaces.

groff 1.23.0.rc1.2692-2d9%e 21 June 2022 138

groff_font(5) File Formats Manual groff_font(5)

Files

The form of the metrics field is as follows (on one line; it may be broken here for readability).
width[,[height[,[depth[,[italic-correction|,[left-italic-correction|,[subscript-correction]]]111111]

There must not be any spaces, tabs, or newlines between these subfields, which are in basic units expressed
as decimal integers. Unspecified subfields default to be 0. Since there is no associated binary format, these
values are not required to fit into the C language data type char as they are in AT&T device-independent

troff .

The width subfield gives the width of the glyph. The height subfield gives the height of the glyph (upwards
is positive); if a glyph does not extend above the baseline, it should be given a zero height, rather than a
negative height. The depth subfield gives the depth of the glyph, that is, the distance below the baseline to
which the glyph extends (downwards is positive); if a glyph does not extend below the baseline, it should
be given a zero depth, rather than a negative depth. Italic corrections are relevant to glyphs in italic or
oblique styles. The italic-correction is the amount of space that should be added after an oblique glyph to
be followed immediately by an upright glyph. The left-italic-correction is the amount of space that should
be added before an oblique glyph to be preceded immediately by an upright glyph. The subscript-correc-
tion is the amount of space that should be added after an oblique glyph to be followed by a subscript; it
should be less than the italic correction.

For fonts used with typesetting devices, the type field gives a featural description of the glyph: it is a bit
mask recording whether the glyph is an ascender, descender, both, or neither. When a \w escape sequence
is interpolated, these values are bitwise or-ed together for each glyph and stored in the ct register. In font
descriptions for nroff -mode output devices (terminals), all glyphs might have a type of zero.

0 means the glyph lies entirely between the baseline and a horizontal line at the “x-height” of the
font, as with “a”, “c”, and “x”’;

1 means the glyph descends below the baseline, like “p”’;
2 means the glyph ascends above the font’s x-height, like “A” or “b”); and
3 means the glyph is both an ascender and a descender—this is true of parentheses in some fonts.

The code field gives a numeric identifier that the postprocessor uses to render the glyph. The glyph can be
specified to troff using this code by means of the \N escape sequence. The code can be any integer (that is,
any integer parsable by the C standard library’s strtol(3) function).

The entity-name field defines an identifier for the glyph that the postprocessor uses to print the troff glyph
name. This field is optional; it was introduced so that the grohfml output driver could encode its character
set. For example, the glyph \[Po] is represented by “£” in HTML 4.0. For efficiency, these data
are now compiled directly into grohtml. grops uses the field to build sub-encoding arrays for PostScript
fonts containing more than 256 glyphs. Anything on the line after the entity-name field or “—="is ignored.

A line in the charset section can also have the following format.
name "'

This notation indicates that name is another name for the glyph mentioned in the preceding line. Such
aliases can be chained.

The word kernpairs starts a list of kerning adjustments to be made to adjacent glyph pairs from this font.
It contains a sequence of lines formatted as follows.

glg2n

The foregoing means that when glyph g/ is typeset immediately before g2, the space between them should
be increased by n. Most kerning pairs should have a negative value for n.

/usr/local/share/groff/1.23.0/font/devname/DESC
describes the output device name.

groff 1.23.0.rc1.2692-2d9%e 21 June 2022 139

groff_font(5) File Formats Manual groff_font(5)

/usr/local/share/groff/1.23.0/font/devname/F
describes the font known as F on device name.

See also
Groff: The GNU Implementation of troff, by Trent A. Fisher and Werner Lemberg, is the primary groff
manual. You can browse it interactively with “info groff”.

“Troff User’s Manual” by Joseph F. Ossanna, 1976 (revised by Brian W. Kernighan, 1992), AT&T Bell
Laboratories Computing Science Technical Report No. 54, widely called simply “CSTR #54”, documents
the language, device and font description file formats, and device-independent output format referred to
collectively in groff documentation as “AT&T troff™.

“A Typesetter-independent TROFF” by Brian W. Kernighan, 1982, AT&T Bell Laboratories Computing
Science Technical Report No. 97, provides additional insights into the device and font description file for-
mats and device-independent output format.

groff(1), subsection “Utilities”, lists programs available for describing fonts in a variety of formats such that
groff output drivers can use them.

groff_out(5), troff(1), addftinfo(1)

groff 1.23.0.rc1.2692-2d9%e 21 June 2022 140

groff_out(5) File Formats Manual groff_out(5)

Name
groff_out — GNU roff intermediate output format

Description

The fundamental operation of the #roff(1) formatter is the translation of the groff(7) input language into a
device-independent form, described here, primarily concerned with what has to be written or drawn at spe-
cific positions on the output device. This language is simple and imperative. In the following discussion,
the term command always refers to this intermediate output language, and never to the groff(7) language in-
tended for direct use by document authors. Intermediate output commands comprise several categories:
glyph output; font, color, and text size selection; motion of the printing position; page advancement; draw-
ing of geometric primitives; and device control commands, a catch-all for operations not easily classified as
any of the foregoing, such as directives to start and stop output, identify the intended output device, or place
URL hyperlinks in supported output formats.

As the GNU roff processor groff(1) is a wrapper program around froff that automatically calls a postproces-
sor, this output does not show up normally. This is why it is called intermediate within the groff system.
The groff program provides the option —Z to inhibit postprocessing, such that the produced intermediate
output is sent to standard output just like calling troff manually.

In this document, the term troff output describes what is output by the GNU troff program, while interme-
diate output refers to the language that is accepted by the parser that prepares this output for the post-
processors. This parser is smarter on whitespace and implements obsolete elements for compatibility, oth-
erwise both formats are the same. Both formats can be viewed directly with gxditview(1).

The main purpose of the intermediate output concept is to facilitate the development of postprocessors by
providing a common programming interface for all devices. It has a language of its own that is completely
different from the groff(7) language. While the groff language is a high-level programming language for
text processing, the intermediate output language is a kind of low-level assembler language by specifying
all positions on the page for writing and drawing.

The pre-groff roff versions are denoted as classical troff. The intermediate output produced by groff is
fairly readable, while classical troff output was hard to understand because of strange habits that are still
supported, but not used any longer by GNU troff .

Language concepts
During the run of troff, the roff input is cracked down to the information on what has to be printed at what
position on the intended device. So the language of the intermediate output format can be quite small. Its
only elements are commands with or without arguments. In this document, the term “command” always
refers to the intermediate output language, never to the roff language used for document formatting. There
are commands for positioning and text writing, for drawing, and for device controlling.

Separation
Classical troff output had strange requirements on whitespace. The groff output parser, however, is smart
about whitespace by making it maximally optional. The whitespace characters, i.e., the tab, space, and
newline characters, always have a syntactical meaning. They are never printable because spacing within
the output is always done by positioning commands.

Any sequence of space or tab characters is treated as a single syntactical space. It separates commands
and arguments, but is only required when there would occur a clashing between the command code and the
arguments without the space. Most often, this happens when variable length command names, arguments,
argument lists, or command clusters meet. Commands and arguments with a known, fixed length need not
be separated by syntactical space.

A line break is a syntactical element, too. Every command argument can be followed by whitespace, a
comment, or a newline character. Thus a syntactical line break is defined to consist of optional syntactical
space that is optionally followed by a comment, and a newline character.

The normal commands, those for positioning and text, consist of a single letter taking a fixed number of ar-
guments. For historical reasons, the parser allows stacking of such commands on the same line, but fortu-
nately, in groff intermediate output, every command with at least one argument is followed by a line break,

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 141

groff_out(5) File Formats Manual groff_out(5)

thus providing excellent readability.

The other commands — those for drawing and device controlling — have a more complicated structure;
some recognize long command names, and some take a variable number of arguments. So all D and x com-
mands were designed to request a syntactical line break after their last argument. Only one command,
‘x X’ has an argument that can stretch over several lines, all other commands must have all of their argu-
ments on the same line as the command, i.e., the arguments may not be split by a line break.

Empty lines, i.e., lines containing only space and/or a comment, can occur everywhere. They are just ig-
nored.

Argument units

Some commands take integer arguments that are assumed to represent values in a measurement unit, but the
letter for the corresponding scaling indicator is not written with the output command arguments; see
groff(7) and Groff: The GNU Implementation of troff, the groff Texinfo manual, for more on this topic.
Most commands assume the scaling indicator “u”, the basic unit of the device, some use “z”, the scaled
point unit of the device, while others, such as the color commands, expect plain integers. Note that these
scaling indicators are relative to the chosen device. They are defined by the parameters specified in the de-
vice’s DESC file; see groff_font(5).

Note that single characters can have the eighth bit set, as can the names of fonts and special characters (this
is, glyphs). The names of glyphs and fonts can be of arbitrary length. A glyph that is to be printed will al-
ways be in the current font.

A string argument is always terminated by the next whitespace character (space, tab, or newline); an em-
bedded # character is regarded as part of the argument, not as the beginning of a comment command. An
integer argument is already terminated by the next non-digit character, which then is regarded as the first
character of the next argument or command.

Document parts
A correct intermediate output document consists of two parts, the prologue and the body.

The task of the prologue is to set the general device parameters using three exactly specified commands.
The groff prologue is guaranteed to consist of the following three lines (in that order):

x T device

xresnhv

X init
with the arguments set as outlined in subsection “Device Control Commands” below. However, the parser
for the intermediate output format is able to swallow additional whitespace and comments as well.

The body is the main section for processing the document data. Syntactically, it is a sequence of any com-
mands different from the ones used in the prologue. Processing is terminated as soon as the first x stop
command is encountered; the last line of any groff intermediate output always contains such a command.

Semantically, the body is page oriented. A new page is started by a p command. Positioning, writing, and
drawing commands are always done within the current page, so they cannot occur before the first p com-
mand. Absolute positioning (by the H and V commands) is done relative to the current page, all other posi-
tioning is done relative to the current location within this page.

Command reference
This section describes all intermediate output commands, the classical commands as well as the groff ex-
tensions.

Comment command
#anything(line-break)
A comment. Ignore any characters from the # character up to the next newline. Each comment
can be preceded by arbitrary syntactical space; every command can be terminated by a comment.

Simple commands
The commands in this subsection have a command code consisting of a single character, taking a fixed
number of arguments. Most of them are commands for positioning and text writing. These commands are

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 142

groff_out(5) File Formats Manual groff_out(5)

smart about whitespace. Optionally, syntactical space can be inserted before, after, and between the com-
mand letter and its arguments. All of these commands are stackable, i.e., they can be preceded by other
simple commands or followed by arbitrary other commands on the same line. A separating syntactical
space is only necessary when two integer arguments would clash or if the preceding argument ends with a
string argument.

C xxx{white-space)
Print a glyph (special character) named xxx. The trailing syntactical space or line break is neces-
sary to allow glyph names of arbitrary length. The glyph is printed at the current print position; its
size is read from the font description file. The print position is not changed.

cc Print glyph with single-letter name c at the current print position; its size is read from the font de-
scription file. The print position is not changed.

fn Set font to font number n (a non-negative integer).

Hn Move right to the absolute vertical position n (a non-negative integer in basic units u) relative to
left edge of current page.

hn Move n (a non-negative integer) basic units u horizontally to the right. AT&T troff allowed nega-
tive n; GNU troff does not produce such values, but groff’s output driver library handles them.

m color-scheme [component] . ..
Set the color for text (glyphs), line drawing, and the outline of graphic objects using different color
schemes; the analogous command for the filling color of graphic objects is DF. The color compo-
nents are specified as integer arguments between 0 and 65536. The number of color components
and their meaning vary for the different color schemes. These commands are generated by the
groff escape sequence \m. They are groff extensions.

mc cyan magenta yellow
Set color using the CMY color scheme, having the 3 color components cyan, magenta,

and yellow.

md Set color to the default color value (black in most cases). No component arguments.

mg gray
Set color to the shade of gray given by the argument, an integer between O (black) and
65536 (white).

mk cyan magenta yellow black
Set color using the CMYK color scheme, having the 4 color components cyan, magenta,
yellow, and black.

mr red green blue
Set color using the RGB color scheme, having the 3 color components red, green, and
blue.

Nn Print glyph with index n (an integer, normally non-negative) of the current font. The print position
is not changed. If —T html or —T xhtml is used, negative values are emitted also to indicate an
unbreakable space with given width. For example, N —193 represents an unbreakable space which
has a width of 193 u.

nba Inform the device about a line break, but no positioning is done by this command. In classical
troff , the integer arguments b and a informed about the space before and after the current line to
make the intermediate output more human readable without performing any action. In groff, they
are just ignored, but they must be provided for compatibility reasons.

pn Begin a new page in the outprint. The page number is set to n. This page is completely indepen-
dent of pages formerly processed even if those have the same page number. The vertical position
on the outprint is automatically set to 0. All positioning, writing, and drawing is always done rela-
tive to a page, so a p command must be issued before any of these commands.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 143

groff_out(5) File Formats Manual groff_out(5)

sn Set type size to n scaled points (unit z in GNU troff). AT&T troff used unscaled points (p) in-
stead; see section “Compatibility” below.

t xyz.. {white-space)

t xyz ... dummy-arg{white-space)
Typeset a word xyz; that is, set a sequence of ordinary glyphs named x, y, z, ..., terminated by a
space character or a line break; an optional second integer argument is ignored (this allows the for-
matter to generate an even number of arguments). Each glyph is set at the current drawing posi-
tion, and the position is then advanced horizontally by the glyph’s width. A glyph’s width is read
from its metrics in the font description file, scaled to the current type size, and rounded to a multi-
ple of the horizontal motion quantum. Only ordinary characters can be set using this command;
use the C command to emplace special characters. The t command is a groff extension and is out-
put only for devices whose DESC file contains the tcommand directive; see groff _font(5).

u n xyz .. {white-space)
Typeset word xyz with track kerning. As t, but after placing each glyph, the drawing position is
further advanced horizontally by n basic units (u). The u command is a groff extension and is
output only for devices whose DESC file contains the tcommand directive; see groff_font(5).

Vn Move down to the absolute vertical position n (a non-negative integer in basic units u) relative to
upper edge of current page.

vn Move n basic units u down (n is a non-negative integer). AT&T troff allowed negative n; GNU
troff does not produce such values, but groff’s output driver library handles them.

w Describe an adjustable space. This performs no action; it is present for documentary purposes.
The spacing itself must be performed explicitly by a move command.

Graphics commands
Each graphics or drawing command in the intermediate output starts with the letter D followed by one or
two characters that specify a subcommand; this is followed by a fixed or variable number of integer argu-
ments that are separated by a single space character. A D command may not be followed by another com-
mand on the same line (apart from a comment), so each D command is terminated by a syntactical line
break.

troff output follows the classical spacing rules (no space between command and subcommand, all argu-
ments are preceded by a single space character), but the parser allows optional space between the command
letters and makes the space before the first argument optional. As usual, each space can be any sequence of
tab and space characters.

Some graphics commands can take a variable number of arguments. In this case, they are integers repre-
senting a size measured in basic units u. The & arguments stand for horizontal distances where positive
means right, negative left. The v arguments stand for vertical distances where positive means down, nega-
tive up. All these distances are offsets relative to the current location.

Unless indicated otherwise, each graphics command directly corresponds to a similar groff \D escape se-
quence; see groff(7).

Unknown D commands are assumed to be device-specific. Its arguments are parsed as strings; the whole
information is then sent to the postprocessor.

In the following command reference, the syntax element {line-break) means a syntactical line break as de-
fined in subsection “Separation” above.

D~h v h_v_...h v (line-break)
11 2 2 non
Draw B-spline from current position to offset (h], vl), then to offset (hz, vz) if given, etc., up to
(h ,v). This command takes a variable number of argument pairs; the current position is moved
n n
to the terminal point of the drawn curve.
Dah v h_v_(line-break)
1717272

Draw arc from current position to (hz’ v]) + (h2, v2) with center at (hl, vj); then move the current

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 144

groff_out(5) File Formats Manual groff_out(5)

position to the final point of the arc.

DC d (line-break)

DC d dummy-arg (line-break)
Draw a solid circle using the current fill color with diameter d (integer in basic units u) with left-
most point at the current position; then move the current position to the rightmost point of the cir-
cle. An optional second integer argument is ignored (this allows the formatter to generate an even
number of arguments). This command is a groff extension.

Dc d (line-break)
Draw circle line with diameter d (integer in basic units u) with leftmost point at the current posi-
tion; then move the current position to the rightmost point of the circle.

DE £ v (line-break)
Draw a solid ellipse in the current fill color with a horizontal diameter of /4 and a vertical diameter
of v (both integers in basic units u) with the leftmost point at the current position; then move to the
rightmost point of the ellipse. This command is a groff extension.

De £ v (line-break)
Draw an outlined ellipse with a horizontal diameter of / and a vertical diameter of v (both integers
in basic units u) with the leftmost point at current position; then move to the rightmost point of the
ellipse.

DF color-scheme [component . . .] {line-break)
Set fill color for solid drawing objects using different color schemes; the analogous command for
setting the color of text, line graphics, and the outline of graphic objects is m. The color compo-
nents are specified as integer arguments between 0 and 65536. The number of color components
and their meaning vary for the different color schemes. These commands are generated by the
groff escape sequences \D'F ...” and \M (with no other corresponding graphics commands). This
command is a groff extension.

DFc cyan magenta yellow (line-break)
Set fill color for solid drawing objects using the CMY color scheme, having the 3 color
components cyan, magenta, and yellow.

DFd (line-break)
Set fill color for solid drawing objects to the default fill color value (black in most cases).
No component arguments.

DFg gray (line-break)
Set fill color for solid drawing objects to the shade of gray given by the argument, an inte-
ger between 0 (black) and 65536 (white).

DFk cyan magenta yellow black (line-break)
Set fill color for solid drawing objects using the CMYK color scheme, having the 4 color
components cyan, magenta, yellow, and black.

DFr red green blue (line-break)
Set fill color for solid drawing objects using the RGB color scheme, having the 3 color
components red, green, and blue.

Df 7 (line-break)
The argument » must be an integer in the range —32767 to 32767.

0<n<1000
Set the color for filling solid drawing objects to a shade of gray, where 0 corresponds to
solid white, 1000 (the default) to solid black, and values in between to intermediate
shades of gray; this is obsoleted by command DFg.

n<0orn>1000
Set the filling color to the color that is currently being used for the text and the outline,
see command m. For example, the command sequence

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 145

groff_out(5) File Formats Manual groff_out(5)

mg 0 0 65536
Df -1

sets all colors to blue.

This command is a groff extension.

DI 4 v (line-break)
Draw line from current position to offset (4, v) (integers in basic units u); then set current position
to the end of the drawn line.

Dp hz v, h2 V. hn v (line-break)

Draw a polygon line from current position to offset (hl, v]), from there to offset (hz, v2), etc., up to
offset (h , v), and from there back to the starting position. For historical reasons, the position is
n n

changed by adding the sum of all arguments with odd index to the current horizontal position and
the even ones to the vertical position. Although this doesn’t make sense it is kept for compatibil-
ity. This command is a groff extension.

DP h/ v, h2 V.. h’1 v (line-break)
The same macro as the corresponding Dp command with the same arguments, but draws a solid

polygon in the current fill color rather than an outlined polygon. The position is changed in the
same way as with Dp. This command is a groff extension.

Dt n (line-break)
Set the current line thickness to n (an integer in basic units u) if n > 0; if n=0 select the smallest
available line thickness; otherwise, the line thickness is made proportional to the type size, which
is the default. For historical reasons, the horizontal position is changed by adding the argument to
the current horizontal position, while the vertical position is not changed. Although this doesn’t
make sense, it is kept for compatibility. This command is a groff extension.

Device control commands
Each device control command starts with the letter x followed by a space character (optional or arbitrary
space/tab in groff’) and a subcommand letter or word; each argument (if any) must be preceded by a syntac-
tical space. All x commands are terminated by a syntactical line break; no device control command can be
followed by another command on the same line (except a comment).

The subcommand is basically a single letter, but to increase readability, it can be written as a word, i.e., an
arbitrary sequence of characters terminated by the next tab, space, or newline character. All characters of
the subcommand word but the first are simply ignored. For example, troff outputs the initialization com-
mand xi as xinit and the resolution command xr as xres. But writings like xi_like_groff and
x roff_is_groff are accepted as well to mean the same commands.

In the following, the syntax element {line-break) means a syntactical line break as defined in subsection
“Separation” above.

xF name (line-break)
(Filename control command)
Use name as the intended name for the current file in error reports. This is useful for remembering
the original file name when groff uses an internal piping mechanism. The input file is not changed
by this command. This command is a groff extension.

xf n s (line-break)
(font control command)
Mount font position 7 (a non-negative integer) with font named s (a text word); see groff_font(5).

xH 7 (line-break)
(Height control command)
Set character height to n (a positive integer in scaled points z). Classical troff used the unit points
(p) instead; see section “Compatibility” below.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 146

groff_out(5) File Formats Manual groff_out(5)

xi (line-break)
(init control command)
Initialize device. This is the third command of the prologue.

xp (line-break)
(pause control command)
Parsed but ignored. The classical documentation reads pause device, can be restarted.

xr n h v{line-break)
(resolution control command)
Resolution is n, while 4 is the minimal horizontal motion, and v the minimal vertical motion pos-
sible with this device; all arguments are positive integers in basic units u per inch. This is the sec-
ond command of the prologue.

xS 7 (line-break)
(Slant control command)
Set slant to n degrees (an integer in basic units u).

xs (line-break)
(stop control command)
Terminates the processing of the current file; issued as the last command of any intermediate troff
output.

xt (line-break)
(trailer control command)
Generate trailer information, if any. In groff, this is currently ignored.

XT xxx (line-break)
(Typesetter control command)
Set the name of the output driver to xxx, a sequence of non-whitespace characters terminated by
whitespace. The possible names correspond to those of groff’s =T option. This is the first com-
mand of the prologue.

xu 7 {line-break)
(underline control command)
Configure underlining of spaces. If n is 1, start underlining of spaces; if n is 0, stop underlining of
spaces. This is needed for the cu request in nroff mode and is ignored otherwise. This command
is a groff extension.

xX anything (line-break)

(X-escape control command)

Send string anything uninterpreted to the device. If the line following this command starts with a
+ character this line is interpreted as a continuation line in the following sense. The + is ignored,
but a newline character is sent instead to the device, the rest of the line is sent uninterpreted. The
same applies to all following lines until the first character of a line is not a + character. This com-
mand is generated by the groff escape sequence \X. The line-continuing feature is a groff exten-
sion.

Obsolete command
In classical troff output, emitting a single glyph was mostly done by a very strange command that com-
bined a horizontal move and the printing of a glyph. It didn’t have a command code, but is represented by a
3-character argument consisting of exactly 2 digits and a character.

ddc Move right dd (exactly two decimal digits) basic units u, then print glyph with single-letter
name c.

In groff, arbitrary syntactical space around and within this command is allowed to be added.
Only when a preceding command on the same line ends with an argument of variable length a sep-
arating space is obligatory. In classical troff, large clusters of these and other commands were
used, mostly without spaces; this made such output almost unreadable.

For modern high-resolution devices, this command does not make sense because the width of the glyphs

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 147

groff_out(5) File Formats Manual groff_out(5)

can become much larger than two decimal digits. In groff, it is used only for output to the X75, X75-12,
X100, and X100-12 devices. For others, the commands t and u provide greater functionality and superior
troubleshooting capacity.

Postprocessing
The roff postprocessors are programs that have the task to translate the intermediate output into actions that
are sent to a device. A device can be some piece of hardware such as a printer, or a software file format
suitable for graphical or text processing. The groff system provides powerful means that make the pro-
gramming of such postprocessors an easy task.

There is a library function that parses the intermediate output and sends the information obtained to the de-
vice via methods of a class with a common interface for each device. So a groff postprocessor must only
redefine the methods of this class. For details, see the reference in section “Files” below.

Example
This section presents the intermediate output generated from the same input for three different devices.
The input is the sentence hell world fed into groff on the command line.

* High-resolution device ps
shell> echo "hell world" | groff -Z -T ps

x T ps

x res 72000 1 1
x init

pl

x font 5 TR
£5

s10000
v12000
H72000
thell
wh2500

tw

H96620
torld
nl2000 O

x trailer
V792000

X stop

This output can be fed into the postprocessor grops(l) to get its representation as a PostScript file, or
gropdf(1) to output directly to PDF.

. Low-resolution device latinl

This is similar to the high-resolution device except that the positioning is done at a minor scale. Some
comments (lines starting with #) were added for clarification; they were not generated by the format-

ter.

shell> "hell world" | groff -Z -T latinl
prologue

x T latinl

x res 240 24 40

x init

begin a new page

pl

font setup
x font 1 R
f1

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 148

groff_out(5)

File Formats Manual groff_out(5)

s10

initial positioning on the page

V40

HO

write text 'hell'

thell

inform about a space, and do it by a horizontal jump
wh24

write text 'world'

tworld

announce line break, but do nothing because
n40 O

... the end of the document has been reached
x trailer

V2640

x stop

This output can be fed into the postprocessor grotty(1) to get a formatted text document.

Classical style output

As a computer monitor has a very low resolution compared to modern printers the intermediate output
for the X devices can use the jump-and-write command with its 2-digit displacements.

shell> "hell world" | groff -Z -T X100

x T X100

x res 100 1 1

x init

pl

x font 5 TR

£5

s10

v1ie

H100

write text with old-style jump-and-write command
ch07e071031w06wl11007r05103dh7
nlé O

x trailer

v1100

x stop

This output can be fed into the postprocessor xditview(1x) or gxditview(1) for displaying in X.

Due to the obsolete jump-and-write command, the text clusters in the classical output are almost unread-

able.

Compatibility
The intermediate output language of the classical troff was first documented in [CSTR #97]. The groff in-
termediate output format is compatible with this specification except for the following features.

The classical quasi device independence is not yet implemented.

The old hardware was very different from what we use today. So the groff devices are also fundamen-
tally different from the ones in classical troff . For example, the classical PostScript device was called
post and had a resolution of 720 units per inch, while groff’s ps device has a resolution of 72000 units
per inch. Maybe, by implementing some rescaling mechanism similar to the classical quasi device in-
dependence, these could be integrated into modern groff .

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 149

groff_out(5) File Formats Manual groff_out(5)

* The B-spline command D~ is correctly handled by the intermediate output parser, but the drawing
routines aren’t implemented in some of the postprocessor programs.

* The argument of the commands s and x H has the implicit unit scaled point z in groff, while classical
troff had point (p). This isn’t an incompatibility, but a compatible extension, for both units coincide
for all devices without a sizescale parameter, including all classical and the groff text devices. The
few groff devices with a sizescale parameter either did not exist, had a different name, or seem to have
had a different resolution. So conflicts with classical devices are very unlikely.

* The position changing after the commands Dp, DP, and Dt is illogical, but as old versions of groff
used this feature it is kept for compatibility reasons.

The differences between groff and classical troff are documented in groff_diff(7).

Files
/usr/local/share/groff/1.23.0/font/devname/DESC
describes the output device name.

Authors
James Clark wrote an early version of this document, which described only the differences between AT&T
device-independent troff ’s output format and that of GNU roff. The present version was completely rewrit-
ten in 2001 by Bernd Warken (groff—bernd.warken—72 @web.de).

See also
Groff: The GNU Implementation of troff, by Trent A. Fisher and Werner Lemberg, is the primary groff
manual. You can browse it interactively with “info groff”.

“Troff User’s Manual” by Joseph F. Ossanna, 1976 (revised by Brian W. Kernighan, 1992), AT&T Bell
Laboratories Computing Science Technical Report No. 54, widely called simply “CSTR #54”, documents
the language, device and font description file formats, and device-independent output format referred to
collectively in groff documentation as “AT&T troff™.

“A Typesetter-independent TROFF” by Brian W. Kernighan, 1982, AT&T Bell Laboratories Computing
Science Technical Report No. 97, provides additional insights into the device and font description file for-
mats and device-independent output format.

groff(1) documents the —Z option and contains pointers to further groff documentation.

groff(7) describes the groff language, including its escape sequences and system of units.

groff_font(5)
details the device scaling parameters of device DESC files.

troff(1) generates the device-independent intermediate output documented here.

roff(7) presents historical aspects and the general structure of roff’ systems.

groff_diff(7)

enumerates differences between the intermediate output produced by AT&T troff and that of
groff .

gxditview(1)
is a viewer for intermediate output.

Roff.js <{https://github.com/Alhadis/Roff.js/) is a viewer for intermediate output written in JavaScript.
grodvi(1), grohtml(1), grolbp(1), grolj4(1), gropdf(1), grops(1), and grotty(1) are groff postprocessors.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 150

groff_tmac(5) File Formats Manual groff_tmac(5)

Name
groff_tmac — macro files in the GNU roff typesetting system

Description
Definitions of macros, strings, and registers for use in a roff(7) document can be collected into macro files,
roff input files designed to produce no output themselves but instead ease the preparation of other roff doc-
uments. There is no syntactical difference between a macro file and any other roff document; only its pur-
pose distinguishes it. When a macro file is installed at a standard location, named according to a certain
convention, and suitable for use by a general audience, it is termed a macro package. Macro packages can
be loaded by supplying the —m option to #roff(1) or a groff front end.

Each macro package stores its macro, string, and register definitions in one or more fmac files. This name
originated in early Unix culture as an abbreviation of “troff macros”.

A macro package must be named name.fmac and be placed in a “tmac directory” to be loadable with the
—m option. Section “Environment” of troff(1) lists these directories. Alternatively, a groff document wish-
ing to use a macro file can load it with the mso (“macro source”) request.

Like any other roff document, a macro file can use the “so” request (“source”) to load further files relative
to its own location.

Macro files are named for their most noteworthy application, but a macro file need not define any macros.
It can restrict itself to defining registers and strings or invoking other groff requests. It can even be empty.

Macro packages

Macro packages come in two varieties; those which assume responsibility for page layout and other critical
functions (“major” or “full-service”) and those which do not (“supplemental” or “auxiliary”). GNU roff
provides most major macro packages found in AT&T and BSD Unix systems, an additional full-service
package, and many supplemental packages. Multiple full-service macro packages cannot be used by the
same document. Auxiliary packages can generally be freely combined, though attention to their use of the
groff language name spaces for identifiers (particularly registers, macros, strings, and diversions) should be
paid. Name space management was a significant challenge in AT&T troff'; groff’s support for arbitrarily
long identifiers affords few excuses for name collisions, apart from attempts at compatibility with the de-
mands of historical documents.

Man pages
an
man an is used to compose man pages in the format originating in Version 7 Unix (1979). It has a
small macro interface and is widely used; see groff_man(7).

doc

mdoc doc is used to compose man pages in the format originating in 4.3BSD-Reno (1990). It provides
many more features than an, but is also larger, more complex, and not as widely adopted; see
groff_mdoc(7).

Because readers of man pages often do not know in advance which macros are used to format a given docu-
ment, a wrapper is available.

andoc

mandoc
This macro file, specific to groff, recognizes whether a document uses man or mdoc format and
loads the corresponding macro package. Multiple man pages, in either format, can be handled;
andoc reloads each macro package as necessary.

Full-service packages
The packages in this section provide a complete set of macros for writing documents of any kind, up to
whole books. They are similar in functionality; it is a matter of taste which one to use.

me The classical me macro package; see groff_me(7).

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 151

groff_tmac(5) File Formats Manual groff_tmac(5)

mm The semi-classical mm macro package; see groff_mm(7).

mom The mom macro package, only available in groff. As this was not based on other packages, it was
freely designed as quite a nice, modern macro package. See groff_mom(7).

ms The classical ms macro package; see groff_ms(7).

Localization packages
For Western languages, the localization file sets the hyphenation mode and loads hyphenation patterns and
exceptions. Localization files can also adjust the date format and provide translations of strings used by
some of the full-service macro packages; alter the input encoding (see the next section); and change the
amount of additional inter-sentence space. For Eastern languages, the localization file defines character
classes and sets flags on them. By default, troffrc loads the localization file for English.

trans loads localized strings used by various macro packages after their localized forms have been pre-
pared by a localization macro file.

As of groff 1.23.0, the following localization files exist.

cs Czech; localizes man, me, mm, mom, and ms. Sets the input encoding to Latin-2 by loading
latin2.tmac.

de

den German; localizes man, me, mm, mom, and ms. Sets the input encoding to Latin-1 by loading
latinl.tmac.
de.tmac selects hyphenation patterns for traditional orthography, and den.tmac does the same for
the new orthography (“Rechtschreibreform”).

en English.

fr French; localizes man, me, mm, mom, and ms. Sets the input encoding to Latin-9 by loading
latin9.tmac.

it Italian; localizes man, me, mm, mom, and ms.

Jja Japanese.

sV Swedish; localizes man, me, mm, mom, and ms. Sets the input encoding to Latin-1 by loading
latinl.tmac. Some of the localization of the mm package is handled separately; see
groff_mmse(7).

zh Chinese.

Input encodings

latinl

latin2

latin5

latin9 Various input encodings supported directly by groff. Normally, this macro is loaded at the very
beginning of a document or specified as the first macro argument on the command line. groff
loads latinl by default at startup. These macro packages don’t work on EBCDIC hosts.

cpl047 Encoding support for EBCDIC. On those platforms it is loaded automatically at startup. Due to
different character ranges used in groff it doesn’t work on architectures which are based on
ASCIL

Some input encoding characters may not be available for a particular output device. For example, saying
groff -Tlatinl -mlatin9

fails if you use the Euro character in the input. Usually, this limitation is present only for drivers which
have a limited set of output glyphs (ascii, latinl); for other drivers it is usually sufficient to install proper
fonts which contain the necessary glyphs.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 152

groff_tmac(5) File Formats Manual groff_tmac(5)

Auxiliary packages
The macro packages in this section are not intended for stand-alone use, but can add functionality to any
other macro package or to plain (“raw”) groff documents.

62bit provides macros for addition, multiplication, and division of 62-bit integers (allowing safe mul-
tiplication of signed 31-bit integers, for example).

hdtbl allows the generation of tables using a syntax similar to the HTML table model. This Heidel-
berger table macro package is not a preprocessor, which can be useful if the contents of table en-
tries are determined by macro calls or string interpolations. Compare to bI(1). It works only
with the ps and pdf output devices. See groff hdtbl(7).

papersize enables the paper size to be set on the command line by giving a —d paper=size option to troff .
Possible values for size are the ISO and DIN formats “A0-A6”, “B0-B6”, “C0-C6”, and
“D0-D6”; the U.S. formats “letter”, “legal”, “tabloid”, “ledger”, “statement”, and “‘executive”;
and the envelope formats “com10”, “monarch”, and “DL”. All formats, even those for en-
velopes, are in portrait orientation: the length measurement is vertical. Appending “I” (ell) to
any of these denotes landscape orientation instead. An output device typically requires com-
mand-line options —p and -1 to override the paper dimensions and orientation, respectively, de-
fined in its DESC file; see subsection “Paper sizes” of groff(1). This macro file is normally
loaded at startup by the troffic file.

pdfpic provides a single macro, PDFPIC, to include a PDF graphic in a document using features of the
pdf output driver. For other output devices, PDFPIC calls PSPIC, with which it shares an in-
terface (see below). This macro file is normally loaded at startup by the troffrc file.

pic supplies definitions of the macros PS, PE, and PF, usable with the pic(1) preprocessor. They
center each picture. Use it if your document does not use a full-service macro package, or that
package does not supply working pic macro definitions. Except for man and mdoc, those pro-
vided with groff already do so (exception: mm employs the name PF for a different purpose).

pspic provides a macro, PSPIC, that includes a PostScript graphic in a document. The ps, dvi, html,
and xhtml output devices support such inclusions; for all other drivers, the image is replaced
with a rectangular border of the same size. This macro file is automatically loaded at startup by
the rroffrc file.

Its syntax is as follows.
PSPIC [-L|-R|-C|-In] file [width [height]]

file is the name of the PostScript file; width and height give the desired width and height of the
image. If neither a width nor a height argument is specified, the image’s natural width (as given
in the file’s bounding box) or the current line length is used as the width, whatever is smaller.
The width and height arguments may have scaling units attached; the default scaling unit is i.
PSPIC scales the graphic uniformly in the horizontal and vertical directions so that it is no more
than width wide and height high. Option —C centers the graphic horizontally; this is the default.
-L and —-R left- and right-align the graphic, respectively. —I indents the graphic by n (with a
default scaling unit of m).

To use PSPIC within a diversion, we recommend extending it with the following code, assuring
that the diversion’s width completely covers the image’s width.

.am PSPIC
vpt O

\h' (\\n[ps—-offset]u + \\n[ps—-deswid]u)'
sp -1
vpt 1

Failure to load PSPIC’s image argument is not an error. (The psbb request does issue an error
diagnostic.) To make such a failure fatal, append to the pspic*error—hook macro.

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 153

groff_tmac(5) File Formats Manual groff_tmac(5)

.am pspic*error-hook

ab
ptx provides a single macro, xx, to format permuted index entries as produced by the GNU pzx(1)
program. If you need different formatting, copy the macro into your document and adapt it to

your needs.

rfc1345 defines special character escape sequences named for the glyph mnemonics specified in
RFC 1345 and the digraph table of the Vim text editor. See groff_rfc1345(7).

sboxes offers a simple interface to the “pdf: background” device control command supported by
gropdf(1). Using this package, groff ms documents can draw colored rectangles beneath any
output.

.BOXSTART SHADED color OUTLINED color INDENT size WEIGHT size
begins a box, where the argument after SHADED gives the fill color and that after
OUTLINED the border color. Omit the former to get a borderless filled box and the
latter for a border with no fill. The specified WEIGHT is used if the box is
OUTLINED.

INDENT precedes a value which leaves a gap between the border and the contents in-
side the box.

Each color must be a defined groff color name, and each size a valid groff numeric ex-
pression. The keyword/value pairs can be specified in any order.

Boxes can be stacked, so you can start a box within another box; usually the later boxes would
be smaller than the containing box, but this is not enforced. When using BOXSTART, the left
position is the current indent minus the INDENT in the command, and the right position is the
left position (calculated above) plus the current line length and twice the indent.

.BOXSTOP
takes no parameters. It closes the most recently started box at the current vertical posi-
tion after adding its INDENT spacing.

Your groff documents can conditionally exercise the sboxes macros. The register GSBOX is
defined if the package is loaded, and interpolates a true value if the pdf output device is in use.

sboxes furthermore hooks into the groff ms(7) package to receive notifications when footnotes
are growing, so that it can close boxes on a page before footnotes are printed. When that condi-
tion obtains, shoxes will close open boxes two points above the footnote separator and re-open
them on the next page. (This amount probably will not match the box’s INDENT.)

See “Using PDF boxes with groff and the ms macros” (file:///ust/local/share/doc/groff—1.23.0/
msboxes.pdf) for a demonstration.

trace aids the debugging of groff documents by tracing macro calls. See groff _trace(7).
www defines macros corresponding to HTML elements. See groff www(7).
Naming

AT&T nroff and troff were implemented before the conventions of the modern C gefopt(3) call evolved,
and used a naming scheme for macro packages that looks odd to modern eyes. Macro packages were typi-
cally loaded using the —m option to the formatter; when directly followed by its argument without an inter-
vening space, this looked like a long option preceded by a single minus—a sensation in the computer stone
age. Macro packages therefore came to be known by names that started with the letter “m”, which was
omitted from the name of the macro file as stored on disk. For example, the manuscript macro package was
stored as tmac.s and loaded with the option —ms.

groff commands permit space between an option and its argument. The syntax “groff —m s” makes the
macro file name more clear but may be jarring to users familiar with the original convention, unaware that

9o ¢

the package’s “real” name was “s” all along. For such packages of long pedigree, groff accommodates dif-

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 154

groff_tmac(5) File Formats Manual groff_tmac(5)

ferent users’ expectations by supplying wrapper macro files that load the desired file with mso requests.

Thus, all of “groff —-m s”, “groff —-m ms”, “groff -ms”, and “groff -mms” serve to load the manuscript
macros.

Wrappers are not provided for packages of more recent vintage. For example, the www package may be re-
quested at the command line only with “groff —-m www” or “groff -mwww”.

As noted in passing above, AT&T troff named macro files in the form fmac.name. It has since become
conventional in operating systems to use a suffixed file name extension to suggest a file type or format.
troff’s —m option and mso request attempt to load a macro package using either naming convention; if one
fails, the other is tried.

Inclusion
There are several ways to use a macro package in a document. The classical way is to specify the
troff/groff option —m name at run time; this makes the contents of the macro package name available. In
groff, the file name.fmac is searched within the tmac path; if not found, fmac.name is searched for instead.

Alternatively, it is also possible to include a macro file by adding the request .so filename to the document;
the argument must be the full file name of an existing file, possibly with the directory where it is kept. In
groff, this was improved by the similar request .mso package, which added searching in the tmac path, just
like option —m does.

In order to resolve the .so and .mso requests, the roff preprocessor soelim(1) must be called if the files to be
included need preprocessing. This can be done either directly by a pipeline on the command line or by giv-
ing the formatter the —s option. man(1) calls soelim automatically.

For example, suppose a macro file is stored as
/usr/local/share/groff/1.23.0/tmac/macros.tmac
and is used in some document called docu.roff .
At run time, the formatter call for this is
sh# groff -m macros docu.roff
To include the macro file directly in the document, use either
.msO macros.tmac
or
.so /usr/local/share/groff/1.23.0/tmac/macros.tmac
In both cases, the formatter should be called with option —s to invoke soelim.
sh# groff -s docu.roff

Writing macros
A roff(7) document is a text file that is enriched by predefined formatting constructs, such as requests, es-
cape sequences, strings, numeric registers, and macros from a macro package. These elements are de-
scribed in roff(7).

To give a document a personal style, it is most useful to extend the existing elements by defining some
macros for repeating tasks; the best place for this is near the beginning of the document or in a separate file.

Macros without arguments are just like strings. But the full power of macros occurs when arguments are
passed with a macro call. Within the macro definition, the arguments are available as the escape sequences
\$1, ..., \$9, \$[. . .1, \$*, and \$ @, the name under which the macro was called is in \$0, and the number of
arguments is in register \n[.$]; see groff(7).

Draft mode
Writing groff macros is easy when the escaping mechanism is temporarily disabled. In groff, this is done
by enclosing the macro definition(s) within a pair of .eo and .ec requests. Then the body in the macro defi-
nition is just like a normal part of the document — text enhanced by calls of requests, macros, strings, reg-
isters, etc. For example, the code above can be written in a simpler way by

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 155

groff_tmac(5) File Formats Manual groff_tmac(5)

.€eo0

.ds midpart was called with the following
.de print_args

\Nf[TI]I\SO\Nf[] *[midpart] \n[.$] arguments:
\$*

.ec

Unfortunately, draft mode cannot be used universally. Although it is good enough for defining normal
macros, draft mode fails with advanced applications, such as indirectly defined strings, registers, etc. An
optimal way is to define and test all macros in draft mode and then do the backslash doubling as a final
step; do not forget to remove the .eo request.

Tips for macro definitions
. Start every line with a dot, for example, by using the groff request .nop for text lines, or write your
own macro that handles also text lines with a leading dot.

.de Text
if (\\n[.$] == 0) \
return

nop \)\\$*\)

. Write a comment macro that works both for copy and draft modes; since the escape character is
off in draft mode, trouble might occur when comment escape sequences are used. For example,
the following macro just ignores its arguments, so it acts like a comment line:

.de c

.c This is like a comment line.

. In long macro definitions, make ample use of comment lines or almost-empty lines (this is, lines
which have a leading dot and nothing else) for a better structuring.

. To increase readability, use groff’s indentation facility for requests and macro calls (arbitrary
whitespace after the leading dot).

Diversions
Diversions can be used to implement quite advanced programming constructs. They are comparable to
pointers to large data structures in the C programming language, but their usage is quite different.

In their simplest form, diversions are multi-line strings, but diversions get their power when used dynami-
cally within macros. The (formatted) information stored in a diversion can be retrieved by calling the diver-
sion just like a macro.

Most of the problems arising with diversions can be avoided if you remember that diversions always store
complete lines. Using diversions when the line buffer has not been flushed produces strange results; not
knowing this, many people get desperate about diversions. To ensure that a diversion works, add line
breaks at the right places. To be safe, enclose everything that has to do with diversions within a pair of line
breaks; for example, by explicitly using .br requests. This rule should be applied to diversion definition,
both inside and outside, and to all calls of diversions. This is a bit of overkill, but it works nicely.

(If you really need diversions which should ignore the current partial line, use environments to save the cur-
rent partial line and/or use the .box request.)

The most powerful feature using diversions is to start a diversion within a macro definition and end it
within another macro. Then everything between each call of this macro pair is stored within the diversion
and can be manipulated from within the macros.

Authors
This document was written by Bernd Warken (groff-bernd.warken—72 @web.de), Werner Lemberg (wl@
gnu.org), and G. Branden Robinson (g.branden.robinson @ gmail.com).

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 156

groff_tmac(5) File Formats Manual groff_tmac(5)

See also
Groff: The GNU Implementation of troff, by Trent A. Fisher and Werner Lemberg, is the primary groff
manual. You can browse it interactively with “info groff”.

The Filesystem Hierarchy Standard ¢https://wiki.linuxfoundation.org/Isb/ths) is maintained by the Linux
Foundation.

groff(1) is an overview of the groff system.

groff_man(7),
groff_mdoc(7),
groff_me(7),
groff_mm(7),
groff_mom(7),
groff_ms(7),
groff_rfc1345(7),
groff_trace(7),
and
groff_www(7)
are groff macro packages.

groff(7) summarizes the language recognized by GNU troff .

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 157

lj4_font(5) File Formats Manual lj4_font(5)

Name
1j4_font — groff fonts for use with devlj4

Description
Nominally, all Hewlett-Packard LaserJet 4-series and newer printers have the same internal fonts: 45 scal-
able fonts and one bitmapped Lineprinter font. The scalable fonts are available in sizes between 0.25 points
and 999.75 points, in 0.25-point increments; the Lineprinter font is available only in 8.5-point size.

The LaserJet font files included with groff assume that all printers since the LaserJet 4 are identical. There
are some differences between fonts in the earlier and more recent printers, however. The LaserJet 4 printer
used Agfa Intellifont technology for 35 of the internal scalable fonts; the remaining 10 scalable fonts were
TrueType. Beginning with the LaserJet 4000-series printers introduced in 1997, all scalable internal fonts
have been TrueType. The number of printable glyphs differs slightly between Intellifont and TrueType
fonts (generally, the TrueType fonts include more glyphs), and there are some minor differences in glyph
metrics. Differences among printer models are described in the PCL 5 Comparison Guide and the PCL 5
Comparison Guide Addendum (for printers introduced since approximately 2001).

LaserJet printers reference a glyph by a combination of a 256-glyph symbol set and an index within that
symbol set. Many glyphs appear in more than one symbol set; all combinations of symbol set and index
that reference the same glyph are equivalent. For each glyph, hpftodit(1) searches a list of symbol sets, and
selects the first set that contains the glyph. The printing code generated by hpftodit is an integer that en-
codes a numerical value for the symbol set in the high byte(s), and the index in the low byte. See
groff_font(5) for a complete description of the font file format; symbol sets are described in greater detail in
the PCL 5 Printer Language Technical Reference Manual.

Two of the scalable fonts, Symbol and Wingdings, are bound to 256-glyph symbol sets; the remaining scal-
able fonts, as well as the Lineprinter font, support numerous symbol sets, sufficient to enable printing of
more than 600 glyphs.

The metrics generated by hpftodit assume that the DESC file contains values of 1200 for res and 6350 for
unitwidth, or any combination (e.g., 2400 and 3175) for which res x unitwidth = 7620 000. Although HP
PCL 5 LaserJet printers support an internal resolution of 7200 units per inch, they use a 16-bit signed inte-
ger for cursor positioning; if devlj4 is to support U.S. ledger paper (11 in X 17 in; in = inch), the maximum
usable resolution is 32767 + 17, or 1927 units per inch, which rounds down to 1200 units per inch. If the
largest required paper size is less (e.g., 8.5 in X 11 in, or AS), a greater res (and lesser unitwidth) can be
specified.

Limitations
Font metrics for Intellifont fonts were provided by Tagged Font Metric (TFM) files originally developed by
Agfa/Compugraphic. The TFM files provided for these fonts supported 600+ glyphs and contained exten-
sive lists of kerning pairs.

To accommodate developers who had become accustomed to TFM files, HP also provided TFM files for the
10 TrueType fonts included in the LaserJet 4. The TFM files for TrueType fonts generally included less in-
formation than the Intellifont TFMs, supporting fewer glyphs, and in most cases, providing no kerning in-
formation. By the time the LaserJet 4000 printer was introduced, most developers had migrated to other
means of obtaining font metrics, and support for new TFM files was very limited. The TFM files provided
for the TrueType fonts in the LaserJet 4000 support only the Latin 2 (ISO 8859-2) symbol set, and include
no kerning information; consequently, they are of little value for any but the most rudimentary documents.

Because the Intellifont TFM files contain considerably more information, they generally are preferable to
the TrueType TFM files even for use with the TrueType fonts in the newer printers. The metrics for the
TrueType fonts are very close, though not identical, to those for the earlier Intellifont fonts of the same
names. Although most output using the Intellifont metrics with the newer printers is quite acceptable, a few
glyphs may fail to print as expected. The differences in glyph metrics may be particularly noticeable with
composite parentheses, brackets, and braces used by egn(l). A script, located in /usr/local/share/groff/
1.23.0/font/devlj4/generate, can be used to adjust the metrics for these glyphs in the special font “S” for use
with printers that have all TrueType fonts.

At the time HP last supported TFM files, only version 1.0 of the Unicode standard was available. Conse-

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 158

lj4_font(5) File Formats Manual lj4_font(5)

quently, many glyphs lacking assigned code points were assigned by HP to the Private Use Area (PUA).
Later versions of the Unicode standard included code points outside the PUA for many of these glyphs.
The HP-supplied TrueType TFM files use the PUA assignments; TFM files generated from more recent
TrueType font files require the later Unicode values to access the same glyphs. Consequently, two different
mapping files may be required: one for the HP-supplied TFM files, and one for more recent TFM files.

Files
/usr/local/share/groff/1.23.0/font/devlj4/DESC
describes the 1j4 output device.

/usr/local/share/groff/1.23.0/font/devlj4/F
describes the font known as F on device 1j4.

/usr/local/share/groff/1.23.0/font/devlj4/generate/Makefile
is a make(1) script that uses hpftodit(1) to prepare the foregoing font description files from HP
TFM data; in can be used to regenerate the groff font descriptions in the event the TFM files are
updated.

/usr/local/share/groff/1.23.0/font/devlj4/generate/special.awk
is an awk(1) script that corrects the Intellifont-based height metrics for several glyphs in the S
(special) font for TrueType CG Times used in the HP LaserJet 4000 and later.

/usr/local/share/groff/1.23.0/font/devlj4/generate/special. map
/usr/local/share/groff/1.23.0/font/devlj4/generate/symbol.map
/usr/local/share/groff/1.23.0/font/devlj4/generate/text.map
/usr/local/share/groff/1.23.0/font/devlj4/generate/wingdings.map
map MSL indices and HP Unicode Private Use Area assignments to groff special character identi-
fiers.

See also
groff(1), hpftodit(1), grolj4(1), groff_font(5)

groff 1.23.0.rc1.2692-2d9%e 10 June 2022 159

groff (7) Miscellaneous Information Manual groff (7)

Name
groff — GNU roff language reference

Description
groff is short for GNU roff, a free reimplementation of the AT&T device-independent troff typesetting sys-
tem. See roff(7) for a survey of and background on roff systems.

This document is intended as a reference. The primary groff manual, Groff: The GNU Implementation of
troff , by Trent A. Fisher and Werner Lemberg, is a better resource for learners, containing many examples
and much discussion. It is written in Texinfo; you can browse it interactively with “info groff”’. Additional
formats, including plain text, HTML, DVI, and PDF, may be available in /usr/local/share/doc/groff—1.23.0.

groff is also a name for an extended dialect of the roff language. We use “roff” to denote features that are
universal, or nearly so, among implementations of this family. We apply the term “groff” to the language
documented here, the GNU implementation of the overall system, the project that develops that system, and
the command of that name.

GNU troff , installed on this system as troff(1), is the formatter: a program that reads device and font de-
scriptions (groff_font(5)), interprets the groff language expressed in text input files, and translates that input
into a device-independent output format (groff_out(5)) that is usually then post-processed by an output dri-
ver to produce PostScript, PDF, HTML, DVI, or terminal output.

Input format
Input to troff must be in one of two character encodings it can recognize: IBM code page 1047 on EBCDIC
systems, and ISO Latin-1 (8859-1) otherwise. Use of ISO 646-1991:IRV (“US-ASCII”) or (equivalently)
the “Basic Latin” subset of ISO 10646 (“Unicode”) is recommended; see groff_char(7). groff(1) and the
preconv(1) preprocessor can transform other encodings, including UTF-8, to satisfy troff ’s requirements.

groff input is organized into lines separated by the Unix newline character (U+000A).

Syntax characters
Several input characters are syntactically significant to groff.

A dot at the beginning of an input line marks it as a control line. It can also follow the .el and .nop re-
quests, and the condition in .if, .ie, and .while requests. The control character invokes requests and
calls macros by the name that follows it. The .cc request can change the control character.

The neutral apostrophe is recognized where the control character is; it is the no-break control charac-
ter. It works as the control character does, but suppresses the break implied by the .bp, .cf, fi, A, .in,
.af, .rj, .sp, .ti, .trf, requests. If the no-break control character is used with any of these requests, troff
suppresses the break; instead the requested operation takes effect at the next break. It makes .br nilpo-
tent. The no-break control character can be changed with the .c2 request. When formatted, “'"” may
be typeset as a typographical quotation mark; use the \[aq] special character escape sequence to format
a neutral apostrophe glyph.

The neutral double quote can be used to enclose arguments to macros and strings, and is required if
those arguments contain space or tab characters. In the .ds, .dsl, .as, and .as1 requests, a leading dou-
ble quote in the second argument is stripped off, enabling the inclusion of leading space characters in
the string definition or appendment. To include a double quote inside a quoted argument, use the \[dq]
special character escape sequence (which also serves to typeset the glyph in text).

\ A backslash introduces an escape sequence. The escape character can be changed with the .ec request;
.eo disables escape sequence recognition. Use the \[rs] special character escape sequence to format a
backslash glyph, and \e to typeset the glyph of the current escape character.

(An opening parenthesis is special only in certain escape sequences; when recognized, it introduces an
argument of exactly two characters. groff offers the more flexible square bracket syntax.

[An opening bracket is special only in certain escape sequences; when recognized, it introduces an ar-
gument (list) of any length, not including a closing bracket.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 160

groff (7) Miscellaneous Information Manual groff (7)

] A closing bracket is special only when an escape sequence using an opening bracket as an argument
delimiter is being interpreted. It ends the argument (list).

Horizontal white space characters are significant to groff, but trailing spaces on text lines are ignored.

space Space characters separate arguments in request invocations, macro calls, and string interpolations.
In text, they separate words. Multiple adjacent space characters in text cause groff to attempt
end-of-sentence detection on the preceding word (and trailing punctuation). The amount of space
between words and sentences is controlled by the .ss request. When filling is enabled (the de-
fault), a line may be broken at a space. When adjustment is enabled and set to both margins (the
default), inter-word spaces may be expanded to justify the line. An adjustable but non-breaking
space is available with \~. To get a space of fixed width, use one of the escape sequences ‘\ ’
(the escape character followed by a space), \0, \|, \, or \h; see section “Escape sequences” below.

newline In text, a newline puts an inter-word space onto the output and, if filling is enabled, triggers end-
of-sentence recognition on the preceding text. See section “Line continuation” below.

tab A tab character in text causes the drawing position to advance to the next defined tab stop.

Line continuation
The roff language distinguishes input and output line continuation.

A backslash \ immediately followed by a newline, sometimes discussed as \newline, suppresses the effects
of that newline on the input. The next input line thus retains the classification of its predecessor as a con-
trol or text line. \newline is useful for managing line lengths in the input during document maintenance;
you can break an input line in the middle of a request invocation, macro call, or escape sequence. Input line
continuation is invisible to the formatter, with two exceptions: the | operator recognizes the new input line,
and the input line counter register .c is incremented.

The \c escape sequence continues an output line. Nothing on the input line after it is formatted. In contrast
to \newline, a line after \c is treated as a new input line, so a control character is recognized at its beginning.
The visual results depend on whether filling is enabled. An intervening control line that causes a break
overrides \c, flushing out the pending output line in the usual way. The register .int contains a positive
value if the last output line was continued with \c; this datum is associated with the environment.

Colors
groff supports color output with a variety of color spaces and up to 16 bits per channel. Some devices, par-
ticularly terminals, may be more limited. When color support is enabled, two colors are current at any
given time: the stroke color, with which glyphs, rules (lines), and geometric objects like circles and poly-
gons are drawn, and the fill color, which can be used to paint the interior of a closed geometric figure. The
color, defcolor, gcolor, and fcolor requests; \m and \M escape sequences; and .color, .m, and .M registers
exercise color support.

Each output device has a color named “default”, which cannot be redefined. A device’s default stroke and
fill colors are not necessarily the same. For the dvi, html, pdf, ps, and xhtml output devices, froff auto-
matically loads a macro file defining many color names at startup. By the same mechanism, the devices
supported by grotty(1) recognize the eight standard ISO 6429/ECMA-48 color names (also known vulgarly
as “ANSI colors”).

Measurements
A numerical value is an integer or decimal fraction with an optional scaling unit appended. They are used
to express measurements or dimensionless quantities. A scaling unit is a one-letter abbreviation for a unit
of measurement.

The groff language defines the following scaling units.

c centimeter

i inch

P pica = 1/6 inch

p point = 1/72 inch

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 161

groff (7)

Miscellaneous Information Manual groff (7)

em = the font size in points (approx. width of letter ‘m’)

100th of an em

en =em/2

Basic unit for output device

vee (vertical line space)

scaled point = 1/sizescale of a point (defined in font DESC file)
multiply by 65,536 (used with color components)

—® <2525

Numeric expressions

A numeric expression is a syntactic structure, recognized only in specific contexts, that evaluates to an inte-
ger: it can be as simple as a literal “0” or it can be a complex sequence of register and string interpolations
interleaved with operators.

+ addition

— subtraction
multiplication
truncating division
modulo

N

o

+

unary assertion, motion, incrementation
unary — negation, motion, decrementation

(c;e) scaling
>? maximum
<? minimum

< less than
> greater than

<= less than or equal

>= greater than or equal
= equal

== equal

& logical conjunction (“and”)
: logical disjunction (“or”)
! logical complementation (‘“not”)

() precedence

| boundary-relative motion

troff provides a set of mathematical and logical operators familiar to programmers—as well as some un-
usual ones—but supports only integer arithmetic. (Provision is made for intepreting and reporting decimal
fractions in certain cases.) The internal data type used for computing results is usually a 32-bit signed inte-
ger, which suffices to represent magnitudes within a range of *2 billion. (If that’s not enough, see
groff_tmac(5) for the 62bit.tmac macro package.)

Arithmetic infix operators perform a function on the numeric expressions to their left and right; they are +
(addition), — (subtraction), * (multiplication), / (truncating division), and % (modulo). Truncating division
rounds to the integer nearer to zero, no matter how large the fractional portion. Overflow and division (or
modulo) by zero are errors and abort evaluation of a numeric expression.

Arithmetic unary operators operate on the numeric expression to their right; they are — (negation) and + (as-
sertion—for completeness; it does nothing). The unary minus must often be used with parentheses to avoid
confusion with the decrementation operator, discussed below.

The sign of the modulo of operands of mixed signs is determined by the sign of the first. Division and
modulo operators satisfy the following property: given a dividend a and a divisor b, a quotient g formed by
“(a/b)” and a remainder r by “(a % b)”, then gb + r = a.

GNU troff’s scaling operator (c;e) evaluates a numeric expression e using ¢ as the default scaling unit. If ¢
is omitted, scaling units are ignored in the evaluation of e. GNU troff also provides a pair of operators to
compute the extrema of two operands: >? (maximum) and <? (minimum).

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 162

groff (7) Miscellaneous Information Manual groff (7)

Comparison operators comprise < (less than), > (greater than), <= (less than or equal), >= (greater than or
equal), and = (equal). == is a synonym for =. When evaluated, a comparison is replaced with “0” if it is
false and “1” if true. In the roff language, positive values are true, others false.

We can operate on truth values with the logical operators & (logical conjunction or “and”) and : (logical
disjunction or “or”). They evaluate as comparison operators do. A logical complementation (“not”) opera-
tor, !, works only within “if”, “ie”, and “while” requests. Furthermore, ! is recognized only at the begin-
ning of a numeric expression not contained by another numeric expression. In other words, it must be the
“outermost” operator. Including it elsewhere in the expression produces a warning in the “number” cate-
gory (see troff(1)), and its expression evaluates false. This unfortunate limitation maintains compatibility
with AT&T troff. You can test a numeric expression for falsity by comparing it to a false value.

The roff language has no operator precedence: expressions are evaluated strictly from left to right, in con-
trast to schoolhouse arithmetic. Use parentheses () to impose a desired precedence upon subexpressions.

For many requests and escape sequences that cause motion on the page, the unary operators + and — work
differently when leading a numeric expression. They then indicate a motion relative to the drawing posi-
tion: positive is down in vertical contexts, right in horizontal ones.

+ and — are also treated differently by the following requests and escape sequences: bp, in, 1, pl, pn, po,
ps, pvs, rt, ti, \H, \R, and \s. Here, leading plus and minus signs serve as incrementation and decrementa-
tion operators, respectively. To negate an expression, subtract it from zero or include the unary minus in
parentheses with its argument.

A leading | operator indicates a motion relative not to the drawing position but to a boundary. For horizon-
tal motions, the measurement specifies a distance relative to a drawing position corresponding to the begin-
ning of the input line. By default, tab stops reckon movements in this way. Most escape sequences do not;
| tells them to do so. For vertical movements, the | operator specifies a distance from the first text baseline
on the page or in the current diversion, using the current vertical spacing.

The \B escape sequence tests its argument for validity as a numeric expression.

A register interpolated as an operand in a numeric expression must have an Arabic format; luckily, this is
the default.

Due to the way arguments are parsed, spaces are not allowed in numeric expressions unless the (sub)ex-
pression containing them is surrounded by parentheses.

Control structures
groff has “if” and “while” control structures like other languages. However, the syntax for grouping multi-
ple input lines in the branches or bodies of these structures is unusual.

They have a common form: the request name is (except for .el “else”) followed by a conditional expression
cond-expr; the remainder of the line, anything, is interpreted as if it were an input line. Any quantity of
spaces between arguments to requests serves only to separate them; leading spaces in anything are there-
fore not seen. anything effectively cannot be omitted; if cond-expr is true and anything is empty, the new-
line at the end of the control line is interpreted as a blank line (and therefore a blank text line).

It is frequently desirable for a control structure to govern more than one request, macro call, or text line, or
a combination of the foregoing. The opening and closing brace escape sequences \{ and \} perform such
grouping. Brace escape sequences outside of control structures have no meaning and produce no output.

\{ should appear (after optional spaces and tabs) immediately subsequent to the request’s conditional ex-
pression. \} should appear on a line with other occurrences of itself as necessary to match \{ sequences. It
can be preceded by a control character, spaces, and tabs. Input after any quantity of \} sequences on the
same line is only processed if all the preceding conditions to which they correspond are true. Furthermore,
a\} closing the body of a .while request must be the last such escape sequence on an input line.

Conditional expressions
The .if, .ie, and .while requests test the truth values of numeric expressions. They also support several addi-
tional Boolean operators; the members of this expanded class are termed conditional expressions; their
truth values are as shown below.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 163

groff (7) Miscellaneous Information Manual groff (7)

cond-expr... ...strueif...

'sl's2" sl produces the same formatted output as s2.
cg aglyph gis available.
dm astring, macro, diversion, or request m is defined.
e the current page number is even.
F f afontnamed f is available.
mc acolor named c is defined.
n the formatter is in nroff mode.
o the current page number is odd.
rn aregister named #n is defined.
S s afont style named s is available.
t the formatter is in froff mode.
v n/a (historical artifact; always false).

The first of the above, the output comparison operator, interpolates a true value if formatting its compara-
nds s/ and s2 produces the same output commands. Other delimiters can be used in place of the neutral
apostrophes. troff formats s/ and s2 in separate environments; after the comparison, the resulting data are
discarded. The resulting glyph properties, including font family, style, size, and slant, must match, but not
necessarily the requests and/or escape sequences used to obtain them. Motions must match in orientation
and magnitude to within the applicable horizontal or vertical motion quantum of the device, after rounding.

Surround the comparands with \? to avoid formatting them; this causes them to be compared character by
character, as with string comparisons in other programming languages. Since comparands protected with \?
are read in copy mode, they need not even be valid groff syntax. The escape character is still lexically rec-
ognized, however, and consumes the next character.

cy
.

The above operators can’t be combined with most others, but a leading “!”, not followed immediately by
spaces or tabs, complements an expression. Spaces and tabs are optional immediately after the “c”, “d”,
“F”, “m”, “r”, and “S” operators, but right after “!”, they end the predicate and the conditional evaluates
true. (This bizarre behavior maintains compatibility with AT&T troff .)

Syntax reference conventions
In the following request and escape sequence specifications, most argument names were chosen to be de-
scriptive. A few denotations may require introduction.

c denotes a single input character.

font a font either specified as a font name or a numeric mounting position.

anything all characters up to the end of the line, to the ending delimiter for the escape se-
quence, or within \{ and \}. Escape sequences may generally be used freely in any-
thing, except when it is read in copy mode.

n is a numerical expression that evaluates to an integer value.
N is an optionally-signed numerical expression.
N has three meanings, depending on its sign.

If a numerical expression presented as =N starts with a ‘+’ sign, an increment in the amount of of N is ap-
plied to the value applicable to the request or escape sequence. If it starts with a ‘=’ sign, a decrement of
magnitude N is applied instead. Without a sign, N replaces any existing value. A leading minus sign in N
is always interpreted as a decrementation operator, not an algebraic sign. To assign a register a negative
value or the negated value of another register, enclose it with its operand in parentheses or subtract it from
zero. If a prior value does not exist (the register was undefined), an increment or decrement is applied as if
to 0.

Requests
In groff, identifier names, including those of requests, can be arbitrarily long. No bracketing or marking of
long names is needed in request invocation syntax.

Most requests take one or more arguments. Tabs are permitted after a request name, before its first argu-
ment (if any), but arguments themselves must be separated only by space characters. There is no inherent
limit on argument length or quantity.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 164

groff (7) Miscellaneous Information Manual groff (7)

Not all details of request behavior are outlined here. Refer to the groff Texinfo manual or groff diff(7).

Request short reference
.ab [message]
Abort processing; write any message to the standard error stream and exit with failure status.
.ad Enable output line adjustment using mode stored in \n[.j].
.ad ¢ Enable output line adjustment in mode ¢ (c=b,c¢,l,n,r). Sets \n[.j].
.af register c
Assign format ¢ to register, where ¢ is “i”, “I”, “a”, “A”, or a sequence of decimal digits
whose quantity denotes the minimum width in digits to be used when the register is interpo-
lated. “i” and “a” indicate Roman numerals and basic Latin alphabetics, respectively, in the
lettercase specified. The default is “0”.
.aln new old
Create alias (additional name) new for existing register named old.
.als new old
Create alias (additional name) new for existing request, string, macro, or diversion old.
.am macro
Append to macro until .. is encountered.
.am macro end
Append to macro until .end is called.
.aml macro
Same as .am but with compatibility mode switched off during macro expansion.
.aml macro end
Same as .am but with compatibility mode switched off during macro expansion.
.ami macro
Append to a macro whose name is contained in the string macro until .. is encountered.
.ami macro end
Append to a macro indirectly. macro and end are strings whose contents are interpolated for
the macro name and the end macro, respectively.
.amil macro
Same as .ami but with compatibility mode switched off during macro expansion.
.amil macro end
Same as .ami but with compatibility mode switched off during macro expansion.
.as name [string]
Append string to the string name; no operation if string is omitted.
.asl name [string]
Same as .as but with compatibility mode switched off during string expansion.
.asciify diversion
Unformat ASCII characters, spaces, and some escape sequences in diversion.

.backtrace
Write a backtrace of the input stack to the standard error stream. Also see the —b option of
groff(l).
.bd font N
Embolden font by N—1 units.
.bd S font N
Embolden Special Font S when current font is font.
.blm Unset blank line macro (trap). Restore default handling of blank lines.
.blm name
Set blank line macro (trap) to name.
.box Stop directing output to current diversion; any pending output line is discarded.
.box name
Direct output to diversion name, omitting a partially collected line.
.boxa Stop appending output to current diversion; any pending output line is discarded.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 165

groff (7) Miscellaneous Information Manual groff (7)

.boxa name
Append output to diversion name, omitting a partially collected line.

.bp Eject current page and begin new page.
.bp *N Eject current page; next page number tN.
.br Line break.

.brp Break output line; adjust if applicable.
.break Break out of a while loop.

.c2 Reset no-break control character to “'”.
.e2 ¢ Set no-break control character to c.

.cc Reset control character to ‘. .

.ce ¢ Set control character to c.

.ce Center the next input line.

.ce N Center following N input lines.
.cf filename
Copy contents of file filename unprocessed to stdout or to the diversion.
.cflags nclc2...
Assign properties encoded by the number 7 to characters c/, ¢2, and so on.
.ch name [N]
Change a planted page location trap name by moving its location to N, or by unplanting it alto-
gether if N is absent.
.char canything
Define entity c as string anything.
.chop object
Remove the last character from the macro, string, or diversion named object.
.class namecl c2 ...
Define a (character) class name comprising the characters or range expressions c/, c2, and so
on.
.close stream
Close the stream.
.color Enable output of color-related device-independent output commands.
.color N
If N is zero, disable output of color-related device-independent output commands; otherwise,
enable them.
.composite from to
Map glyph name from to glyph name fo while constructing a composite glyph name.
.continue
Finish the current iteration of a while loop.
.cp Enable compatibility mode.
.cp N If N is zero disable compatibility mode, otherwise enable it.
.cs fontNM
Set constant character width mode for font to N/36 ems with em M.
.cu N Continuous underline in nroff, like .ul in troff.
.da Stop appending output to current diversion.
.da name
Append output to diversion name.
.de macro
Define or redefine macro until “..” occurs at the start of a control line in the current conditional
block.
.de macro end
Define or redefine macro until .end is called at the start of a control line in the current condi-
tional block.
.del macro
As .de, but disable compatibility mode during macro expansion.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 166

groff (7) Miscellaneous Information Manual groff (7)

.del macro end
As .de macro end, but disable compatibility mode during macro expansion.

.defcolor ident scheme color-component . ..
Define a color named ident. scheme identifies a color space and determines the number of re-
quired color-components; it must be one of “rgb” (three components), “cmy” (three), “cmyk”
(four), or “gray” (one). “grey” is accepted as a synonym of “gray”. The color components
can be encoded as a single hexadecimal value starting with # or ##. The former indicates that
each component is in the range 0-255 (0-FF), the latter the range 0-65,535 (0-FFFF). Alter-
natively, each color component can be specified as a decimal fraction in the range 0-1, inter-
preted using a default scaling unit of “f”, which multiplies its value by 65,536 (but clamps it at
65,535). Each output device has a color named “default”, which cannot be redefined. A de-
vice’s default stroke and fill colors are not necessarily the same.

.dei macro
Define macro indirectly. As .de, but use interpolation of string macro as the name of the de-
fined macro.

.dei macro end
Define macro indirectly. As .de, but use interpolations of strings macro and end as the names
of the defined and end macros.

.deil macro
As .dei, but disable compatibility mode during macro expansion.

.deil macro end
As .dei macro end, but disable compatibility mode during macro expansion.

.device anything
Write anything, read in copy mode, to the intermediate output as a device control command.

.devicem name
Write contents of macro or string name to the intermediate output as a device control com-
mand.

.di Stop directing output to current diversion.

.di name
Direct output to diversion name.

.do name ...
Interpret the string, request, diversion, or macro name (along with any arguments) with com-
patibility mode disabled. Compatibility mode is restored (only if it was active) when the
expansion of name is interpreted.

.ds name [string]
Define a string variable name with contents string, or as empty if string is omitted.

.dsl name [string]
Same as .ds but with compatibility mode switched off during string expansion.

.dt Clear diversion trap.
.dt N name
Set diversion trap to macro name at position N (default scaling indicator v).
.ec Set escape character to “\’.
.ec ¢ Set escape character to c.
.ecr Restore escape character saved with .ecs.
.ecs Save current escape character.

.el anything
Interpret anything as if it were an input line if the conditional expression of the corresponding
.e request was false.

.em name
Call macro name after the end of input.

.eo Unset escape character, turning off escape sequence interpretation.

.ev Pop environment stack, returning to previous one.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 167

groff (7)

Miscellaneous Information Manual groff (7)

.ev env Push current environment onto stack and switch to env.
.eve env Copy environment eny to the current one.

.ex Exit with successful status.
. fam Return to previous font family.
. fam name

Set the current font family to name.

.fc Disable field mechanism.

.fc a Set field delimiter to a and pad glyph to space.
.fc ab Set field delimiter to a and pad glyph to b.
.fchar c anything

Define fallback character (or glyph) c as string anything.

.fcolor Restore previous fill color.
.fcolor ¢

Set fill color to c.

.fi Enable filling of output lines; a pending output line is broken. Sets \n[.u].
.£1 Flush output buffer.
.fp n font

Mount font at position n.

. £p n internal external

Mount font with description file external under the name internal at position n.

.fschar fc anything

Define fallback character (or glyph) ¢ for font f as string anything.

.fspecial jfont

Reset list of special fonts for font to be empty.

.fspecial fontsls2...

When the current font is font, then the fonts s/, s2, ... are special.

.ft Select previous style or font; same as \f[] or \fP.
.ft font Select style, font name, or mounting position font; same as \£ [font] escape sequence.
.ftr fontl font2

Translate fontl to font2.

.fzoom font

Don’t magnify font.

.fzoom font zoom

Set zoom factor for font (in multiples of 1/1000th).

.gcolor Restore previous stroke color.
.gcolor ¢

Set stroke color to c.

.he Reset the hyphenation character to \% (the default).
.he char Change the hyphenation character to char.
.hcode c/ codel [c2 code?] ...

Set the hyphenation code of character c! to codel, that of c2 to code2, and so on.

.hla lang

Set the hyphenation language to lang.

.hlm n Set the maximum quantity of consecutive hyphenated lines to n.
.hpf pattern-file

Read hyphenation patterns from pattern-file.

.hpfa pattern-file

Append hyphenation patterns from pattern-file.

.hpfcode ab|cd]...

Define mapping values for character codes in pattern files read with the .hpf and .hpfa re-
quests.

.hw word . ..

[T3 L)

Define how each word is to be hyphenated, with each hyphen
point.

indicating a hyphenation

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 168

groff (7) Miscellaneous Information Manual groff (7)

.hy Set automatic hyphenation mode to 1.
.hy 0 Disable automatic hyphenation; same as .nh.
.hy mode

Set automatic hyphenation mode to mode; see section “Hyphenation” below.
.hym Set the (right) hyphenation margin to 0 (the default).
.hym length

Set the (right) hyphenation margin to length (default scaling indicator m).
.hys Set the hyphenation space to 0 (the default).

.hys hyphenation-space
Suppress hyphenation of the line in adjustment modes “b” or “n” if it can be justified by
adding no more than hyphenation-space extra space to each inter-word space (default scaling
indicator m).

.ie cond-expr anything
If cond-expr is true, interpret anything as if it were an input line, otherwise skip to a corre-
sponding .el request.

.if cond-expr anything
If cond-expr is true, then interpret anything as if it were an input line.

.ig Ignore input (except for side effects of \R on auto-incrementing registers) until “..” occurs at
the start of a control line in the current conditional block.

.ig end Ignore input (except for side effects of \R on auto-incrementing registers) until .end is called at
the start of a control line in the current conditional block.

.in Change to previous indentation value.

.in *N Change indentation according to £N (default scaling indicator m).

.it nname
Set an input trap, calling macro name, after the next » lines lines of input that directly produce
formatted output have been read.

.ite nname
As .it, but lines interrupted with the \c escape sequence are not applied to the line count.

.kern Enable pairwise kerning.
.kern n If nis zero, disable pairwise kerning, otherwise enable it.
.1lc Remove leader repetition glyph.

.le ¢ Set leader repetition glyph to ¢ (default: “.”).
.length reg anything
Compute the number of characters of anything and store the count in the register reg.
.linetabs
Enable line-tabs mode (calculate tab positions relative to beginning of output line).
.linetabs 0
Disable line-tabs mode.
.1f N Set input line number to N.
.1f Nfile
Set input line number to N and filename to file.
.1g N Ligature mode on if N>0.

.11 Change to previous line length.

.11 =N Set line length according to £N (default length 6.5 i, default scaling indicator m).

.1lsm Unset the leading space macro (trap). Restore default handling of lines with leading spaces.

.1lsm name
Set the leading space macro (trap) to name.

.1s Change to the previous value of additional intra-line skip.

.1s N Set additional intra-line skip value to N, i.e., N—1 blank lines are inserted after each text out-
put line.

.1t =N Length of title (default scaling indicator m).

.mc Margin glyph off.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 169

groff (7) Miscellaneous Information Manual groff (7)

.mec ¢ Print glyph c after each text line at actual distance from right margin.
.mc ¢ N Setmargin glyph to ¢ and distance to N from right margin (default scaling indicator m).
.mk [register]
Mark current vertical position in register, or in an internal register used by .rt if no argument.
.mso file As .so,except that file is sought in the tmac directories.
.msoquiet file
As .mso, but no warning is emitted if file does not exist.

.na Disable output line adjustment.
.ne Need a one-line vertical space.
.ne N Need N vertical space (default scaling indicator v).
.nf Disable filling of output lines; a pending output line is broken. Clears \n[.u].
nh Disable automatic hyphenation; same as “.hy 0”.
.nm Number mode off.
nm N [M[S []]
In line number mode, set number, multiple, spacing, and indentation.
.nn Do not number next line.

.nn N Do not number next N lines.
.nop anything
Interpret anything as if it were an input line.
.nr register TN [M]
Define or modify register using *N with auto-increment M.
.nroff Make the built-in conditions n true and t false.
.ns Turn on no-space mode.
.nx Immediately jump to end of current file.
.nx filename
Immediately continue processing with file file.
.open stream filename
Open filename for writing and associate the stream named stream with it.
.opena stream filename
Like .open but append to it.
.os Output vertical distance that was saved by the .sv request.
.output string
Emit string directly to intermediate output, allowing leading whitespace if string starts with "
(which is stripped off).

.pc Reset page number character to ‘%’.
.pc ¢ Page number character.
.pev Report the state of the current environment followed by that of all other environments to the

standard error stream.
.pi program
Pipe output to program (nroff only).

.pl Set page length to default 114i. The current page length is stored in register .p.
.p1l =N Change page length to N (default scaling indicator v).
.pm Report, to the standard error stream, the names and sizes in bytes of defined macros, strings,

and diversions.
.pn =N Next page number N.

.pnr Print the names and contents of all currently defined registers on stderr.

.po Change to previous page offset. The current page offset is available in register .0.
.po *N Page offset N.

.ps Return to previous type size.

.ps *N Set/increase/decrease the type size to/by N scaled points (a non-positive resulting type size is
set to 1 u); also see \s[tN].

.psbb filename
Get the bounding box of a PostScript image filename.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 170

groff (7) Miscellaneous Information Manual groff (7)

.pso command
This behaves like the .so request except that input comes from the standard output of com-

mand.
.ptr Report names and positions of all page location traps to the standard error stream.
.pvs Change to previous post-vertical line spacing.

.pvs N Change post-vertical line spacing according to N (default scaling indicator p).
.rchar clc2...
Remove the definitions of entities ¢/, c2, ...
.xrd prompt
Read insertion.
.return Return from a macro.
.return anything
Return twice, namely from the macro at the current level and from the macro one level higher.
.rfschar fclc2...
Remove the font-specific definitions of glyphs c1, c2, ... for font f.
.xrj n Right justify the next n input lines.
.rm name
Remove request, macro, diversion, or string name.
.rn old new
Rename request, macro, diversion, or string old to new.
.rnn regl reg2
Rename register regl to reg2.
.rr ident Remove register ident.

.rs Restore spacing; turn no-space mode off.

.rt Return (upward only) to vertical position marked by .mk on the current page.

.rt *N Return (upward only) to specified distance from the top of the page (default scaling indica-
tor v).

.schar c anything
Define global fallback character (or glyph) c as string anything.
.she Reset the soft hyphen glyph to \[hy].
.she ¢ Set the soft hyphen glyph to c.
.shift n
In a macro, shift the arguments by n positions.
.sizes s/s2...sn|[0]
Set available type sizes similarly to the sizes directive in a DESC file. Each si is interpreted in
units of scaled points (z).
.so file Replace the request’s control line with the contents of file, “sourcing” it.

.soquiet file
As .so, but no warning is emitted if file does not exist.
.sp Move the drawing position down one vee.

.sp N Move the drawing position vertically by N (default scaling indicator v). Positive values are
downwards. Prefixing N with the | operator moves to a position relative to the page top for
positive N, and the bottom if N is negative; in all cases, one line height (vee) is added to N. N
is ignored inside a diversion.

.special
Reset global list of special fonts to be empty.

.special s/s2...
Fonts s/, 52, etc. are special and are searched for glyphs not in the current font.

.spreadwarn
Toggle the spread warning on and off (the default) without changing its value.

.spreadwarn N
Emit a break warning if the additional space inserted for each space between words in an out-
put line adjusted to both margins is larger than or equal to N. A negative N is treated as 0.
The default scaling indicator is m. At startup, .spreadwarn is inactive and N is 3 m.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 171

groff (7)

Miscellaneous Information Manual groff (7)

.ss N Set minimal inter-word spacing to N 12ths of the space width of the current font.
.ss NM As.ss N, and set additional inter-sentence space to M 12ths of the space width of the current

font.

.stringdown stringvar

Replace each byte in the string named stringvar with its lowercase version.

.stringup stringvar

Replace each byte in the string named stringvar with its uppercase version.

.sty nstyle

Associate style with font position 7.

.substring str start [end]

Replace the string named str with its substring bounded by the indices start and end, inclusive.
Negative indices count backwards from the end of the string.

.8V Save 1 v of vertical space.
.sv N Save the vertical distance N for later output with .0s request (default scaling indicator v).
.sy command-line

Execute program command-line.

.tanin2...nnTrlir2...m

Set tabs at positions nl, n2, ..., nn, then set tabs at nn+mxrn+rl through nn+mxrn+rn, where
m increments from 0, 1, 2, ... to the output line length. Each n argument can be prefixed with
a “+” to place the tab stop ni at a distance relative to the previous, n(i—1). Each argument
ni or ri can be suffixed with a letter to align text within the tab column bounded by tab stops
i and i+1; “L” for left-aligned (the default), “C” for centered, and “R” for right-aligned.

.te Remove tab repetition glyph.

.te ¢ Set tab repetition glyph to ¢ (default: none).

.ti *N Temporary indent next line (default scaling indicator m).
.tk£f fontsl nl s2n2

Enable track kerning for font.

.t1l ‘'left' center'right'

Three-part title.

.tm anything

Print anything on stderr.

.tml anything

Print anything on stderr, allowing leading whitespace if anything starts with " (which is
stripped off).

.tmec anything

Similar to .tm1 without emitting a final newline.

.tr abcd...

Translate a to b, ¢ to d, etc. on output.

.trf filename

Transparently output the contents of file filename.

.trin abcd. ..

This is the same as the .tr request except that the asciify request uses the character code (if
any) before the character translation.

.trnt abcd. ..

This is the same as the .tr request except that the translations do not apply to text that is trans-
parently throughput into a diversion with \!.

.troff Make the built-in conditions t true and n false.

.uf font Setunderline fontto font (to be switched to by .ul).
.ul N Underline (italicize in troff mode) N input lines.
.unformat diversion

Unformat space characters and tabs in diversion, preserving font information.

.vpt Enable vertical position traps.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 172

groff (7) Miscellaneous Information Manual groff (7)

.vpt 0 Disable vertical position traps.

.Vs Change to previous vertical spacing.
.vs *N Set vertical spacing to =N (default scaling indicator p).
.warn Enable all warning categories.

.warn 0 Disable all warning categories.

.warn n Enable warnings in categories whose codes sum to n; see troff(1).

.warnscale si
Set scaling indicator used in warnings to si.

.wh N Remove active trap at vertical position N; a negative value is measured upward from page bot-
tom.

.wh N name
Plant trap, calling macro name when page location N is reached or passed; a negative value is
measured upward from page bottom. Any active trap already present at N is replaced.

.while cond-expr anything
Evaluate cond-expr, and repeatedly execute anything unless and until cond-expr evaluates
false.

.write stream anything
Write anything to the stream named stream.

.writec stream anything
Similar to .write without emitting a final newline.

.writem stream xx
Write contents of macro or string xx to the stream named stream.

Besides these standard groff requests, there might be further macro calls. They can originate from a macro
package (see roff(7) for an overview) or from a preprocessor.

Preprocessor macros are easy to recognize. They enclose their code between a pair of characteristic

macros.
preprocessor start macro end macro
chem .cstart .cend
eqgn .EQ .EN
grap .Gl .G2
grn .GS .GE
ideal IS IE
.IF
pic .PS .PE
.PF
refer .R1 .R2
soelim none none
tbl .TS .TE
glilypond .lilypond start .lilypond stop
gperl .Perl start .Perl stop
gpinyin .pinyin start .pinyin stop

The ‘ideal’ preprocessor is not available in groff yet.

Escape sequences
Whereas requests must occur on control lines, escape sequences can occur intermixed with text and appear
in arguments to requests and macros (and sometimes other escape sequences). An escape sequence is intro-
duced by the escape character, a backslash “\” (but see the .ec request). The next character identifies the es-
cape’s function. Escape sequences vary in length. Some take an argument, and of those, some have differ-
ent syntactical forms for a one-character, two-character, or arbitrary-length argument. Others accept only
an arbitrary-length argument. In the former convention, a one-character argument follows the function
character immediately, an opening parenthesis “(” introduces a two-character argument (no closing paren-
thesis is used), and an argument of arbitrary length is enclosed in brackets “[]”. In the latter convention, the
user selects a delimiter character; the neutral apostrophe “'” is a popular choice and shown in this docu-

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 173

groff (7) Miscellaneous Information Manual groff (7)

ment. Some characters cannot be used as delimiters; see subsection “Escape Sequences” in the groff’ Tex-
info manual for details. A few escape sequences are idiosyncratic, and support both of the foregoing con-
ventions (“\s”), designate their own terminating character (“\?”’), consume input until the next newline (“\!”,
A" “M#”), or support an additional modifier character (“\s” again).

Escape sequences serve a variety of purposes. Widespread uses include commenting the source document;
changing the font style; setting the type size; interpolating special characters, registers, and strings into the
text; and placing or suppressing break and hyphenation points. As with requests, use of escape sequences
in source documents may interact poorly with a macro package you use; consult its documentation to learn
of “safe” sequences or alternative facilities it provides to achieve the desired result.

If the escape character is followed by a character that does not identify a defined operation, the escape char-
acter is ignored (producing a diagnostic of the “escape” warning type, which is not enabled by default) and
the following character is processed normally.

Escape sequence short reference
The escape sequences \"', i, \$, *,\?,\a, \e, \n, \t, \g, \V, and \newline are interpreted even in copy mode.

\" Comment. Everything up to the end of the line is ignored.

\# Comment. Everything up to and including the next newline is ignored.
*s Interpolate string with one-character name s.

* (st Interpolate string with two-character name st.

* [string]

Interpolate string with name string (of arbitrary length).
* [string argl arg2 ...]
Interpolate string with name string (of arbitrary length), taking argl, arg2, ... as arguments.
\$0 Interpolate name by which currently-executing macro was invoked.
\$n Interpolate macro or string parameter numbered n (1<n<9).
\$ (nn Interpolate macro or string parameter numbered nn (01 <nn <99).
\$ [nnn]
Interpolate macro or string parameter numbered nnn (nnn = 1).
\$* Interpolate concatenation of all macro or string parameters, separated by spaces.
\$@ Interpolate concatenation of all macro or string parameters, with each surrounded by double
quotes and separated by spaces.
\$~ Interpolate concatenation of all macro or string parameters as if they were arguments to the .ds re-

quest.
\! is a synonym for \[aa], the acute accent special character.
\° is a synonym for \[ga], the grave accent special character.
\- is a synonym for \[-], the minus sign special character.
_ is a synonym for \[ul], the underrule special character.
\% Control hyphenation.
\! Transparent line. The remainder of the input line is interpreted (1) when the current diversion is

read; or (2) if in the top-level diversion, by the postprocessor (if any).
\ ?anything\?

Transparently embed anything, read in copy mode, in a diversion.
\space Move right one word space.

\~ Insert an unbreakable, adjustable space.

\O Move right by the width of a numeral in the current font.

\| Move one-sixth em to the right on typesetters.

* Move one-twelfth em to the right on typesetters.

\& Non-printing input break.

\) Non-printing input break, transparent to end-of-sentence recognition.

\/ Apply italic correction. Use between an immediately adjacent oblique glyph on the left and an up-
right glyph on the right.

\, Apply left italic correction. Use between an immediately adjacent upright glyph on the left and an

oblique glyph on the right.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 174

groff (7) Miscellaneous Information Manual groff (7)

\: Non-printing break point (similar to \%, but never produces a hyphen glyph).
\newline
Continue current input line on the next.
\ { Begin conditional input.
\1} End conditional input.
\ (g/ Interpolate glyph with two-character name gI.
\ [glyph]

Interpolate glyph with name glyph (of arbitrary length).
\ [base-glyph compl comp?2 ...]
Interpolate composite glyph constructed from base-glyph and components compl, comp2, and so
on.
\ [charnnn]
Interpolate glyph of eight-bit encoded character nnn, where 0 < nnn <255.
\ [unnnn[n[n]]]
Interpolate glyph of Unicode character with code point nnnn[n[n]] in uppercase hexadecimal.
\ [ubase-glyph[_combining-component]. . .]
Interpolate composite glyph from Unicode character base-glyph and combining-components.
\a In copy mode, interpolate leader character.
\A'anything'
Interpolate 1 if anything is an acceptable identifier for a string, macro, diversion, register, environ-
ment, or font, and 0 otherwise.
\b ' string"'
Build bracket: pile a sequence of glyphs corresponding to each character in string vertically, and
center it vertically on the output line.
\B ' anything"'
Interpolate 1 if anything is a valid numerical expression, and 0 otherwise.

\c Continue output line at next input line.
\C'glyph'

As \ [glyph], but compatible with other froff implementations.
\d Move downward ¥2 em on typesetters.

\D ' anything"'
Send anything to the output device as a drawing command; see groff_out(5).
\e Interpolate escape character.
\E As \e, but not interpreted in copy mode.
\fF Change to font or style with one-character name or one-digit position F'.
\fP Switch to previous font or style.
\f (ft Change to font with two-character name or two-digit position ft.
\£f[font]
Change to font with arbitrarily long name or position font.
\f[]1 Switch to previous font or style.
\Ff Change to font family with one-character name f.
\F (fm Change to font family with two-character name fm.
\F [fam]
Change to font family with arbitrarily long name fam.
\F[]1 Switch to previous font family.

\gr Interpolate format of register with one-character name r.
\g (rg Interpolate format of register with two-character name rg.
\glreg]

Interpolate format of register with arbitrarily long name reg.

\h'N"
Horizontally move the drawing position by N ems (or specified units); | may be used. Positive
motion is rightward.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 175

groff (7) Miscellaneous Information Manual groff (7)

\H'N"
Set height of current font to N scaled points (or specified units).
\kr Mark horizontal position in one-character register name r.
\k (rg Mark horizontal position in two-character register name rg.
\k[reg]
Mark horizontal position in register with arbitrarily long name reg.
\1' Mgl
Draw horizontal line of length N ems (or specified units), optionally using glyph g.
\L' Mgl
Draw vertical line of length N vees (or specified units), optionally using glyph g.
\mc Set stroke color to that with one-character name c.
\m (c/ Set stroke color to that with two-character name cl.
\m[color]

Set stroke color to that with arbitrarily long name color.
\m[] Restore previous stroke color.

\Mc Set fill color to that with one-character name c.
\M (c! Set fill color to that with two-character name cl.
\M[color]

Set fill color to that with arbitrarily long name color.
\M[] Restore previous fill color.

\nr Interpolate contents of register with one-character name r.
\n (rg Interpolate contents of register with two-character name rg.
\n[reg]

Interpolate contents of register with arbitrarily long name reg.

\N'n"' Interpolate glyph with index # in the current font.

\o'abc...'

Overstrike glyphs a, b, ¢, and so on.

\oo At the outermost suppression level, disable emission of glyphs and geometric primitives to the out-
put driver.

\o1 At the outermost suppression level, enable emission of glyphs and geometric primitives to the out-
put driver.

\o2 At the outermost suppression level, enable glyph and geometric primitive emission to the output
driver and write to the standard error stream the page number, four bounding box registers enclos-
ing glyphs written since the previous \Q escape sequence, the page offset, line length, image file
name (if any), horizontal and vertical device motion quanta, and input file name.

\o3 Begin a nested suppression level.

\o4 End a nested suppression level.

\O [5Pfile]

At the outermost suppression level, write the name file to the standard error stream at position P,
which must be one of 1, r, ¢, or i.

\p Break output line at next word boundary; adjust if applicable.
\r Move “in reverse” (upward) 1 em.
\R'name N '

Set, increment, or decrement register name by N.

\stN Set/increase/decrease the type size to/by N scaled points. N must be a single digit; O restores the
previous type size. (In compatibility mode only, a non-zero N must be in the range 4-39.) Other-
wise, as .ps request.

\s (N

\st (N
Set/increase/decrease the type size to/by N scaled points; N is a two-digit number >21. As .ps re-
quest.

\s[tN]

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 176

groff (7)

Miscellaneous Information Manual groff (7)

\s*[N]
\s'tN'
\st'N'
Set/increase/decrease the type size to/by N scaled points. As .ps request.
\S'N"
Slant output glyphs by N degrees; the direction of text flow is positive.
\t In copy mode, interpolate tab character.
\u Move upward Y2 em on typesetters.
\v'N'

Vertically move the drawing position by N vees (or specified units); | may be used. Positive mo-
tion is downward.
\Ve Interpolate contents of environment variable with one-character name e.
\V (ev Interpolate contents of environment variable with two-character name ev.
\V[env]
Interpolate contents of environment variable with arbitrarily long name env.
\w ' anything'
Interpolate width of anything, formatted in a dummy environment.
\x'N"'
Increase required line space by N vees (or specified units; negative before, positive after).
\X'anything"'
Write anything, read in copy mode, to the intermediate output as a device control command.
\¥n Write contents of macro or string n to the intermediate output as a device control command.
\Y (nm Write contents of macro or string nm to the intermediate output as a device control command.
\Y [name]
Write contents of macro or string name to the intermediate output as a device control command.
\zc Output glyph ¢ without advancing the print position, as if it were zero-width.
\Z ' anything"'
Print anything and then restore the horizontal and vertical position; anything must not contain tabs
or leaders.

Identifiers

Strings

An identifier is a label for an object of syntactical importance like a register, a name (macro, string, or di-
version), an environment, a font, a style, a character class, a glyph, or a stream, comprising a sequence of
one or more characters with the following exceptions.

. Spaces, tabs, or newlines.

. Invalid input characters; these are certain control characters (from the sets “CO Controls” and “C1
Controls” as Unicode describes them). When froff encounters one in an identifier, it produces a
warning in category “input” (see section “Warnings” in troff{(1)).

On a machine using the ISO 646, 8859, or 10646 character encodings, invalid input characters are
0x00, 0x08, 0x0B, 0x0D—-0x1F, and 0x80-0x9F.

On an EBCDIC host, they are 0x00-0x01, 0x08, 0x09, 0x0B, 0x0D-0x14, 0x17-0x1F, and
0x30-0x3F.

Some of these code points are used by troff internally, making it non-trivial to extend the program
to accept UTF-8 or other encodings that use characters from these ranges. (Consider what hap-
pens when a C1 control 0x80—0x9F is necessary as a continuation byte in a UTF-8 sequence.)

Invalid characters are removed during interpretation; an identifier “foo”, followed by an invalid
character and then “bar”, is processed as “foobar”.

groff has string variables primarily for user convenience. Only one string is predefined by the language.
\¥[.T] Contains the name of the output device (for example, “utf8” or “pdf”).

The .ds request creates a string with a specified name and contents and the * escape sequence dereferences

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 177

groff (7) Miscellaneous Information Manual groff (7)

its name, retrieving the contents. Dereferencing an undefined string name defines it as empty.

The .as request is similar to .ds but appends to a string instead of redefining it. If .as is called with only one
argument, no operation is performed (beyond dereferencing it).

The .ds1 request defines a string such that compatibility mode is off when the string is later interpolated.
Likewise, the .as1 request is similar to .as, but compatibility mode is switched off when the appended por-
tion of the string is later interpolated.

Caution: Unlike other requests, the second argument to these requests consumes the remainder of the input
line, including trailing spaces. It is good style to end string definitions (and appendments) with a comment,
even an empty one, to prevent unwanted space from creeping into them during source document mainte-
nance.

To store leading space in a string, start it with a double quote. A double quote is special only in that posi-
tion; double quotes in any other location are included in the string (the effects of escape sequences notwith-
standing).

Macros, strings, and diversions share a name space; see section “Identifiers” above. Internally, the same
mechanism is used to store them. You can thus call a macro with string interpolation syntax and vice versa.
Interpolating a string does not hide existing macro arguments. The sequence \\ can be placed at the end of a
line in a macro definition or, within a macro definition, immediately after the interpolation of a macro as a
string to suppress the effect of a newline.

Several requests exist to perform rudimentary string operations. Strings can be queried (.length) and modi-
fied (.chop, .substring, .stringup, .stringdown), and their names can be manipulated through renaming,
removal, and aliasing (.rn, .rm, .als).

Registers
Most registers store numerical values (see section “Numerical Expressions” above), but some (predefined,
read-only ones) interpolate text. Each register has a name. A register is defined and assigned with the .nr
request or the \R escape sequence; its value is interpolated with the \n escape sequence.

Registers can also be incremented or decremented by a configured amount at the time they are interpolated.
The value of the increment is specified with a third argument to the .nr request, and a special interpolation
syntax, \n* is used to alter and then retrieve the register’s value. Together, these features are called auto-in-
crement. (A negative auto-increment can be considered an “auto-decrement”.)

Many predefined registers are available. In the following presentation, the register interpolation syntax
\n[name] is used to refer to a register name to clearly distinguish it from a string or request name. The reg-
ister name space is separate from that used for requests, macros, strings, and diversions. Bear in mind that
the symbols \n[] are not part of the register name.

Read-only registers
The following registers have predefined values that should not be modified by the user (usually, registers
starting with a dot are read-only). Mostly, they provide information on the current settings or store results
from request calls.

\n[$$] The process ID of troff.

\n[. $] Number of arguments in the current macro or string.
\n[.a] Post-line extra line-space most recently utilized using \x.
\n[.A] Set to 1 in troff if option —A is used; always 1 in nroff.

\n[.b] The emboldening offset while .bd is active.
\n[.br] Within a macro, set to 1 if macro called with the ‘normal’ control character, and to 0 otherwise.

\n[.c] Current input line number.
\n[.C] 1 if compatibility mode is in effect, 0 otherwise. Always O in a .do request; see register .cp be-
low.

\n[.edp] The depth of the last glyph added to the current environment. It is positive if the glyph extends
below the baseline.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 178

groff (7)

\n| .
\n| .

\n[.

\n[.
\n| .

\n| .
\n| .
\n| .
\n| .
\n| .
\n| .
\n| .

\n[

\n|.
\n|.
\n|.

\n| .
\n| .
\n| .
\n| .
\n| .
\n| .
\n| .
\n| .
\n| .
\n| .
\n| .
\n| .
\n| .
\n| .
\n| .
\n| .

\n|.
\n|.

\n[
\n[

\n|.
\n|.

\n| .
\n| .
\n| .
\n| .
\n| .
\n| .

\n| .

Miscellaneous Information Manual groff (7)

ce] The count of lines remaining to be centered.
cht] The height of the last glyph added to the current environment. It is positive if the glyph ex-
tends above the baseline.
color]
1 if colors are enabled, O otherwise.
cp] Within a .do request, the saved value of compatibility mode (see register .C above).
csk] The skew of the last glyph added to the current environment. The skew of a glyph is how far to
the right of the center of a glyph the center of an accent over that glyph should be placed.
d] Current vertical place in current diversion; equal to register nl.
ev] The name of the current environment (string-valued).
£] Mounting position index of the current font.
F| The name of the current input file (string-valued).
fam] The current font family (string-valued).
£n] The current (internal) real font name (string-valued).
£p] The next free font mounting position index.
.g] Always 1 in GNU #roff. Use to test if running under groff .
h] Text baseline high-water mark on page or in diversion.
H] Number of basic units per horizontal unit of output device resolution.
height]
The current font height as set with \H.
hla] The hyphenation language in the current environment.
hlc] The count of immediately preceding consecutive hyphenated lines in the current environment.
hlm] The maximum quantity of consecutive hyphenated lines allowed in the current environment.
hy] The automatic hyphenation mode in the current environment.
hym] The hyphenation margin in the current environment.
hys] The hyphenation space adjustment threshold in the current environment.
i] Current indentation.
in] The indentation that applies to the current output line.
int] Positive if last output line contains \c.
3l Adjustment mode encoded as an integer. Do not interpret or perform arithmetic on its value.
k] The current horizontal output position (relative to the current indentation).
kern] 1 if pairwise kerning is enabled, O otherwise.
1] Current line length.
L] The current line spacing setting as set by .Is.
1qg] The current ligature mode (as set by the .1g request).
linetabs]
The current line-tabs mode (as set by the .linetabs request).
11] The line length that applies to the current output line.
1t] The title length (as set by the .1t request).
.m] Stroke color (string-valued).
.M] Fill color (string-valued).
n] Length of text portion on previous output line.
ne]j The amount of space that was needed in the last .ne request that caused a trap to be sprung.
Useful in conjunction with register .trunc.
nm]| 1 if output line numbering is enabled (even if temporarily suppressed), O otherwise.
ns]| 1 if in no-space mode, 0 otherwise.
o] Current page offset.
o] The suppression nesting level (see \O).
Pl Current page length.
P] 1 if the current page is being printed, 0 otherwise (as determined by the —o command-line op-
tion).
pel 1 during page ejection, 0 otherwise.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 179

groff (7)

\n[. u]

\n[. U]
\n[.v]
\n[.V]
\n[.vpt]
\n[.w]
\n[.warn]
\n[. x]
\n[.y]
\n[.Y]

\n[. z]

\n[. zoom]

Miscellaneous Information Manual groff (7)

The number of the next page: either the value set by a .pn request, or the number of the current
page plus 1.

The current type size in scaled points.

The last-requested type size in scaled points.

The current post-vertical line spacing.

The count of available unused registers; always 10000 in GNU troff .

The count of lines remaining to be right-aligned.

Current type size in points as a decimal fraction (string-valued).

The slant of the current font as set with \S.

The last requested type size in points as a decimal fraction (string-valued).

Size of minimal inter-word spacing in twelfths of the space width of the current font.

Size of additional inter-sentence space in twelfths of the space width of the current font.

The current font style (string-valued).

Distance to the next vertical position trap.

Set to 1 if option =T is used.

A string representation of the current tab settings suitable for use as an argument to the .ta re-
quest.

The amount of vertical space truncated by the most recently sprung vertical position trap, or, if
the trap was sprung by an .ne request, minus the amount of vertical motion produced by .ne.
Useful in conjunction with the register .ne.

Equal to 1 if filling is enabled, O otherwise.

1 in unsafe mode and 0 otherwise.

Current vertical line spacing.

Number of basic units per vertical unit of output device resolution.

1 if vertical position traps are enabled, O otherwise.

Width of previous glyph.

The sum of the numeric codes of currently enabled warning categories.

The major version number of the running froff formatter.

The minor version number of the running troff formatter.

The revision number of the running troff formatter.

Name of current diversion.

Zoom factor for current font (in multiples of 1/1000th; zero if no magnification).

Writable registers
The following registers can be read and written by the user. They have predefined default values, but these
can be modified for customizing a document.

\n[%] Current page number.

\n[e.] Current input line number.

\n[et] Character type (set by width function \w).

\n[d1] Maximal width of last completed diversion.

\n[dn] Height of last completed diversion.

\n[dw] Current day of week (1-7).

\n[dy] Current day of month (1-31).

\n[hours] The number of hours past midnight. Initialized at startup.

\n[hp] Current horizontal position at input line.

\n[11x] Lower left x-coordinate (in PostScript units) of a given PostScript image (set by .psbb).
\n[1ly] Lower left y-coordinate (in PostScript units) of a given PostScript image (set by .psbb).
\n[1n] Output line number.

\n[1sn] The count of leading spaces on an input line.

\n[1lss] The amount of horizontal space corresponding to the leading spaces on an input line.
\n[minutes]

The number of minutes after the hour. Initialized at startup.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 180

groff (7) Miscellaneous Information Manual groff (7)

\n[mo] Current month (1-12).
\n[nl1] Current vertical position.
\n[opmaxx]|
\n[opmaxy]
\n[opminx]
\n[opminy]
These four registers mark the top left and bottom right hand corners of a box which encom-
passes all written glyphs. They are reset to —1 by \O0 or \O1.
\n[rsb] Like register sb, but takes account of the heights and depths of glyphs.
\n[rst] Like register st, but takes account of the heights and depths of glyphs.
\n[sb] Depth of string below baseline (generated by width function \w).
\n[seconds]
The number of seconds after the minute. Initialized at startup.
\n[skw] Right skip width from the center of the last glyph in the \w argument.
\n[slimit]
If >0, sets the maximum quantity of objects on troff’s internal input stack. If <0, there is no
limit: recursion can continue until program memory is exhausted. The default is 1,000.
\n[ssc] The amount of horizontal space (possibly negative) that should be added to the last glyph be-
fore a subscript (generated by width function \w).
\n[st] Height of string above baseline (generated by width function \w).
\n[systat]
The return value of the system() function executed by the last .sy request.
\n[urx] Upper right x-coordinate (in PostScript units) of a given PostScript image (set by .psbb).
\n[ury] Upper right y-coordinate (in PostScript units) of a given PostScript image (set by .psbb).
\n[year] The current year.
\n[yr] The current year minus 1900.

Hyphenation
When filling, groff hyphenates words as needed at user-specified and automatically determined hyphen-
ation points. Explicitly hyphenated words such as “mother-in-law” are always eligible for breaking after
each of their hyphens. The hyphenation character \% and non-printing break point \: escape sequences
may be used to control the hyphenation and breaking of individual words. The .hw request sets user-de-
fined hyphenation points for specified words at any subsequent occurrence. Otherwise, groff determines
hyphenation points automatically by default.

Several requests influence automatic hyphenation. Because conventions vary, a variety of hyphenation
modes is available to the .hy request; these determine whether hyphenation will apply to a word prior to
breaking a line at the end of a page (more or less; see below for details), and at which positions within that
word automatically determined hyphenation points are permissible. The default is “1” for historical rea-
sons, but this is not an appropriate value for the English hyphenation patterns used by groff; localization
macro files loaded by troffrc and macro packages often override it.

0 disables hyphenation.
1 enables hyphenation except after the first and before the last character of a word.

The remaining values “imply” 1; that is, they enable hyphenation under the same conditions as “.hy 17, and
then apply or lift restrictions relative to that basis.

2 disables hyphenation of the last word on a page. (Hyphenation is prevented if the next page loca-
tion trap is closer to the vertical drawing position than the next text baseline would be. groff auto-
matically inserts an implicit page location trap at the end of each page to cause a page transition.
Users or macro packages can set such traps explicitly to prevent hyphenation of the last word in a
column in multi-column page layouts or before floating figures or tables. See section “Traps” be-
low.)

4 disables hyphenation before the last two characters of a word.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 181

groff (7) Miscellaneous Information Manual groff (7)

8 disables hyphenation after the first two characters of a word.
16 enables hyphenation before the last character of a word.
32 enables hyphenation after the first character of a word.

Apart from value 2, restrictions imposed by the hyphenation mode are not respected for words whose hy-
phenations have been explicitly specified with the hyphenation character (“\%” by default) or the .hw re-
quest.

The nonzero values above are additive. For example, value 12 causes groff to hyphenate neither the last
two nor the first two characters of a word. Some values cannot be used together because they contradict;
for instance, values 4 and 16, and values 8 and 32. As noted, it is superfluous to add 1 to any nonzero even
mode.

The places within a word that are eligible for hyphenation are determined by language-specific data (.hla,
.hpf, and .hpfa) and lettercase relationships (.hcode and .hpfcode). Furthermore, hyphenation of a word
might be suppressed because too many previous lines have been hyphenated (.hlm), the line has not
reached a certain minimum length (.hym), or the line can instead be adjusted with up to a certain amount of
additional inter-word space (.hys).

Localization

The set of hyphenation patterns is associated with the hyphenation language set by the .hla request. The
.hpf request is usually invoked by a localization file loaded by the froffrc file. By default, troffrc loads the
localization file for English. (As of groff 1.23.0, localization files for Czech (cs), German (de), English
(en), French (fr), Japanese (ja), Swedish (sv), and Chinese (zh) exist.) For Western languages, the local-
ization file sets the hyphenation mode and loads hyphenation patterns and exceptions. It also (re-)defines
translatable strings and macros that packages use to handle localization tasks, such as formatting the calen-
dar date.

Writing macros

The .de request defines a macro replacing the definition of any existing request, macro, string, or diversion
of the same name. froff enters “copy mode” (see below), storing subsequent input lines as the definition. If
the optional second argument is not specified, the definition ends with the control line “..” (two dots). Al-
ternatively, a second argument names a macro whose call syntax ends the definition; this “end macro” is
then called normally. Spaces or tabs are permitted after the first control character in the line containing this
ending token, but a tab immediately after the token prevents its recognition as the end of a macro definition.
Macro definitions can be nested; this requires use of unique end macros for each nested definition or escap-
ing of the line with the ending token. An end macro need not be defined until it is called. This fact enables
a nested macro definition to begin inside one macro and end inside another.

Variants of .de that disable compatibility mode and/or indirect the names of the macros being defined or
ending the definition through strings are available as .del, .dei, and .deil. Existing macro definitions can
be appended to with .am, .am1, .ami, and .amil. The .als, .rm, and .rn requests create an alias of, remove,
and rename a macro, respectively. .return stops the execution of a macro immediately, returning to the en-
closing context.

Parameters
Macro call and string interpolation parameters can be accessed using escape sequences starting with “\$”.
The \n[.$] read-only register stores the count of parameters available to a macro or string; its value can be
changed by the .shift request, which dequeues parameters from the current list. The \$0 escape sequence
interpolates the name by which a macro was called. Applying string interpolation to a macro does not
change this name.

Copy mode
When troff processes certain requests, most importantly those which define or append to a macro or string,
it does so in copy mode: it copies the characters of the definition into a dedicated storage region, interpolat-
ing the escape sequences \n, \g, \$, *, \V, and \? normally; interpreting \newline immediately; discarding
comments \" and \#; interpolating the current leader, escape, or tab character with \a, \e, and \t, respec-
tively; and storing all other escape sequences in an encoded form. The complement of copy mode—a roff

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 182

groff (7) Miscellaneous Information Manual groff (7)

formatter’s behavior when not defining or appending to a macro, string, or diversion—where all macros are
interpolated, requests invoked, and valid escape sequences processed immediately upon recognition, can be
termed interpretation mode.

The escape character, \ by default, can escape a backslash. This enables you to control whether a given \n,
\g, \$, *, \V, or \? escape sequence is interpreted at the time the macro containing it is defined, or later
when the macro is called.

You can think of \\ as a “delayed” backslash; it is the escape character followed by a backslash from which
the escape character has removed its special meaning. Consequently, \\ is not an escape sequence in the
usual sense. In any escape sequence \X that troff does not recognize, the escape character is ignored and
X is output, with two exceptions, \\ being one. The other is \., which escapes the control character. It is
used to permit nested macro definitions to end without a named macro call to conclude them. Without a
syntax for escaping the control character, this would not be possible. roff documents should not use the \\
or \. character sequences outside of copy mode; they serve only to obfuscate the input. Use \e to represent
the escape character, \[rs] to obtain a backslash glyph, and \& before “.” and “'” where troff expects them
as control characters if you mean to use them literally.

Macro definitions can be nested to arbitrary depth. In “\\”, each escape character is interpreted twice—once
in copy mode, when the macro is defined, and once outside of it, when the macro is called. This fact leads
to exponential growth in the quantity of escape characters required to delay interpolation of \n, \g, \$, *,
\V, and \? at each nesting level. An alternative is to use \E, which represents an escape character that is not
interpreted in copy mode. Because \. is not a true escape sequence, we can’t use \E to keep “..” from end-
ing a macro definition prematurely. If the multiplicity of backslashes complicates maintenance, use end
macros.

Traps
Traps are locations in the output, or conditions on the input that, when reached or fulfilled, cause a speci-
fied macro to be called. These traps can occur at a given location on the page (.wh, .ch); at a given location
in the current diversion (.dt)—together, these are known as vertical position traps, which can be disabled
and re-enabled (.vpt); at a blank line (.blm); at a line with leading space characters (.Ism); after a certain
number of input lines (.it, .itc); or at the end of input (.em). Macros called by traps are passed no argu-
ments. Setting a trap is also called planting one. It is said that a trap is sprung if its condition is fulfilled.

Registers associated with trap management include vertical position trap enablement status (\n[.vpt]), dis-
tance to the next trap (\n[.t]), amount of needed (.ne-requested) space that caused the most recent vertical
position trap to be sprung (\n[.ne]), amount of needed space truncated from the amount requested
(\n[.trunc]), page ejection status (\n[.pe]), and leading space count (\n[.Isn]) with its corresponding amount
of motion (\n[.Iss]).

Environments
Environments store most of the parameters that control text processing. A default environment named “0”
exists when troff starts up; it is modified by formatting-related requests and escape sequences.

You can create new environments and switch among them. Only one is current at any given time. Active
environments are managed using a stack, a data structure supporting “push” and “pop” operations. The
current environment is at the top of the stack. The same environment name can be pushed onto the stack
multiple times, possibly interleaved with others.

Popping the environment stack does not destroy the current environment; it remains accessible by name and
can be made current again by pushing it at any time. Environments cannot be renamed or deleted, and can
only be modified when current. To inspect the environment stack, use the pev request; see section “Debug-
ging” below.

Environments store the following information.
* typeface parameters (size, family, style, glyph height and slant, inter-word and inter-sentence space sizes)

* page parameters (line length, title length, vertical spacing, line spacing, indentation, line numbering, cen-
tering, right-justifying, underlining, hyphenation data)

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 183

groff (7) Miscellaneous Information Manual groff (7)

* filling enablement, adjustment enablement and mode

* tab stops; tab and leader characters; escape, control, no-break control, hyphenation control, and margin
characters

* partially collected lines
* input traps
* stroke and fill colors

The ev request pushes to and pops from the environment stack, while eve copies a named environment’s
contents to the current one.

Underlining
In the RUNOFF language, the underlining was quite easy. But in roff this is much more difficult.

Underlining with .ul
There exists a groff request .ul (see above) that can underline the next or further source lines in nroff, but
in troff it produces only a font change into italic. So this request is not really useful.

Underlining with .UL from ms
In the ‘ms’ macro package in tmac/s.tmac groff_ms(7), there is the macro .UL. But this works only in
troff, not in nroff.

Underlining macro definitions
So one can use the ifalic nroff idea from .ul and the troff definition in ms for writing a useful new macro,
something like
.de UNDERLINE
ie n \\SINEIII\\S2\f[P]I\\$3
el \\S$SI\Z'\\$2'"\v'.25m"'\D'1 \w'\\$2'u 0'\v'-.25m"\\$3

If doclifter(1) makes trouble, change the macro name UNDERLINE into some 2-letter word, like UL
Moreover, change the form of the font selection escape sequence from \f[P] to \fP.

Underlining without macro definitions

If one does not want to use macro definitions, e.g., when doclifter gets lost, use the following:

.ds ul before

.ds u2 in

.ds u3 after

cde n *[ull\f[TI*[u2]\f[P]*[u3]

el *[ull\Z'*[u2]'\v'.256m'\D'1l \w'*[u2]'u 0'\v'-.25m"*[u3]
When using doclifter, it might be necessary to change syntax forms such as \[xy] and *[xy] to those sup-
ported by AT&T troff : *(xy and \(xy, and so on.

Then these lines could look like

.ds ul before

.ds u2 in

.ds u3 after

.de n *[ul]\fI* (u2\fP* (u3

el *(ul\Z"* (u2'"\v'.25m"'\D'1 \w'*(u2'u 0'\v'—.25m"'* (u3
The result looks like

before in after

Underlining with overstriking \z and \(ul
There is another possibility for underlining by using overstriking with \zc¢ (print ¢ with zero width without
spacing) and \(ul (underline character). This produces the underlining of 1 character, both in nroff and in
troff.

For example the underlining of a character say t looks like \z\[ul]t or \z\(ult

Longer words look then a bit strange, but a useful mode is to write each character into a whole own line.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 184

groff (7) Miscellaneous Information Manual groff (7)

To underlines the 3 character part "tar" of the word "start":
before s\
\z\ [ul]lt\
\z\[ul]a\
\z\[ul]lr\
t after

or
before s\
\z\ (ult\
\z\ (ula\
\z\ (ulr\
t after

The result looks like
before start after

Compatibility
The differences between the roff language recognized by GNU troff and that of AT&T troff, as well as the
device, font, and device-independent intermediate output formats described by CSTR #54 are documented

in groff_diff(7).
groff provides an AT&T compatibility mode; see groff(1).
Debugging

groff is not the easiest language to debug, in part thanks to its design features of recursive interpolation and
the use of multi-stage pipeline processing in the surrounding system. Nevertheless there exist several fea-
tures useful for troubleshooting.

Preprocessors use the .If request to preserve the identities of line numbers and names of input files. groff
emits a variety of error diagnostics and supports several categories of warning; the output of these can be
selectively suppressed with .warn (and see the —E, —w, and —W options of #roff(1)). Backtraces can be au-
tomatically produced when errors or warnings occur (the —b option of troff(1)) or generated on demand
(.backtrace). .tm, .tmc, and .tm1 can be used to emit customized diagnostic messages or for instrumenta-
tion while troubleshooting. .ex and .ab cause early termination with successful and error exit codes respec-
tively, to halt further processing when continuing would be fruitless. The state of the formatter can be ex-
amined with requests that write lists of defined names—macros, strings, and diversions—(.pm); environ-
ments (.pev), registers (.pnr), and page location traps (.ptr) to the standard error stream.

Authors
This document was written by Bernd Warken (groff-bernd.warken—72@web.de) and revised by G. Bran-
den Robinson {g.branden.robinson @ gmail.com).

See also
Groff: The GNU Implementation of troff, by Trent A. Fisher and Werner Lemberg, is the primary groff
manual. You can browse it interactively with “info groff”.

“Troff User’s Manual” by Joseph F. Ossanna, 1976 (revised by Brian W. Kernighan, 1992), AT&T Bell
Laboratories Computing Science Technical Report No. 54, widely called simply “CSTR #54”, documents
the language, device and font description file formats, and device-independent output format referred to
collectively in groff documentation as “AT&T troff™.

“A Typesetter-independent TROFF” by Brian W. Kernighan, 1982, AT&T Bell Laboratories Computing
Science Technical Report No. 97 (CSTR #97), provides additional insights into the device and font descrip-
tion file formats and device-independent output format.

groff(1) is the preferred interface to the groff system; it manages the pipeline that carries a source docu-
ment through preprocessors, the froff formatter, and an output driver to viewable or printable form.
It also exhaustively lists the man pages provided with the GNU roff system.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 185

groff (7) Miscellaneous Information Manual groff (7)

groff_char(7)
discusses character encoding issues, escape sequences that produce glyphs, and enumerates groff’s
predefined special character escape sequences.

groff_diff(7)
covers the differences between the GNU troff formatter, its device and font description file for-
mats, its device-independent output format, and those of AT&T troff, whose design it reimple-
ments.

groff_font(5)
describes the formats of the files that describe devices (DESC) and fonts.

groff_tmac(5)
surveys macro packages provided with groff, describes how documents can take advantage of
them, offers guidance on writing macro packages and using diversions, and includes historical in-
formation on macro package naming conventions.

roff(7) presents a detailed history of roff systems and summarizes concepts common to them.

groff 1.23.0.rc1.2692-2d9%e 7 July 2022 186

groff_char(7) Miscellaneous Information Manual groff_char(T)

Name
groff_char — GNU roff special character and glyph repertoire

Description
The GNU roff typesetting system has a large glyph repertoire suitable for production of varied literary, pro-
fessional, technical, and mathematical documents. However, its input character set is restricted to that de-
fined by the standards ISO Latin-1 (ISO 8859-1) and IBM code page 1047 (an EBCDIC arrangement of
Latin-1). For ease of document maintenance in UTF-8 environments, it is advisable to use only the Uni-
code basic Latin code points, a subset of all of the foregoing historically referred to as US-ASCII, which
has only 94 visible, printable code points.

AT&T troff in the 1970s faced a similar problem of typesetter devices with a glyph repertoire differing
from that of the computers that controlled them. Its solution was a form of escape sequence known as a
special character to access several dozen additional glyphs available in the fonts prepared for mounting in
the phototypesetter. These glyphs were mapped onto a two-character name space for a degree of mnemonic
convenience; for example, the escape sequence \(aa encoded an acute accent and \(sc a section sign. (Char-

[T L]

acters that don’t require an escape sequence for their expression, like “a”, are termed “ordinary”.)

As in other respects, groff has removed historical roff limitations on the lengths of special character escape
sequences, but recognizes and retains compatibility with the historical names. groff expands the lexicon of
glyphs available by name and permits users to define their own special character escape sequences with the
char request.

This document lists all of the glyph names predefined by groff’s font description files and presents the sys-
tematic notation by which it enables access to arbitrary Unicode code points and construction of composite
glyphs. Glyphs listed may be unavailable, or may vary in appearance, depending on the output device and
font chosen when the page was formatted. This page was rendered for device pdf using font TR.

A few escape sequences that are not groff special characters also produce glyphs; these exist for syntactical
or historical reasons. \',\", \—, and _ are translated on input to the special character escape sequences \[aq],
\[ga], \[-], and \[ul], respectively. Others include \\, \. (backslash-dot), and \e; see groff(7). A small num-
ber of special characters represent glyphs that are not encoded in Unicode; examples include the baseline
rule \[ru] and the Bell System logo \[bs].

In groff, you can test output device support for any character (ordinary or special) with the conditional ex-
pression operator “c”.

.ie ¢ \[bs] \{Welcome to the \[bs] Bell System;

did you get the Wehrmacht helmet or the Death Star?\}

.el No Bell System logo.

For brevity in the remainder of this document, we shall refer to systems conforming to the ISO 646:1991
IRV, ISO 8859, or ISO 10646 (“Unicode”) character encoding standards as “ISO” systems, and those em-
ploying IBM code page 1047 as “EBCDIC” systems. That said, EBCDIC systems that support groff are
known to also support UTF-8.

While groff accepts eight-bit encoded input, not all such code points are valid as input. On ISO platforms,
character codes 0, 11, 13-31, and 128-159 are invalid. (This is all CO and C1 controls except for SOH
through LF [Control+A to Control+J], and FF [Control+L].) On EBCDIC platforms, 0, 8-9, 11, 13-20,
23-31, and 48-63 are invalid. Some of these code points are used by groff for internal purposes, which is
one reason it does not support UTF-8 natively.

Fundamental character set

The ninety-four characters catalogued above, plus the space, tab, and newline, form the fundamental char-
acter set for groff input; anything in the language, even over one million code points in Unicode, can be ex-
pressed using it. On ISO systems, code points in the range 33—126 comprise a common set of printable
glyphs in all of the aforementioned ISO character encoding standards. It is this character set and (with
some noteworthy exceptions) the corresponding glyph repertoire for which AT&T troff was implemented.
On EBCDIC systems, printable characters are in the range 66—201 and 203-254; those without counterparts
in the ISO range 33-126 are discussed in the next subsection.

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 187

groff_char(7) Miscellaneous Information Manual groff_char(T)

All of the following characters map to glyphs as you would expect.

'#s$s%& () *+, ./ 0123456789 :; <=>?
CDEFGHIJKLMNOPQRSTUVWXYZTI[1 _
cdefghijklmnopqrstuvwxyz{|}

The remaining seven of the ninety-four code points in this range surprise computing professionals and oth-
ers intimately familiar with the ISO character encodings. The developers of AT&T troff chose mappings
for them that would be useful for typesetting technical literature in a broad range of scientific disciplines:
Bell Labs used the system for preparation of AT&T’s patent filings with the U.S. government. Further, the
prevailing character encoding standard in the 1970s, USAS X3.4-1968 (“ASCII”) deliberately supported se-
mantic ambiguity at some code points, and outright substitution at several others, to suit the localization de-
mands of various national standards bodies.

@

The table below presents the seven exceptional code points with their typical keycap engravings, their
glyph mappings and semantics in roff systems, and the escape sequences producing the Unicode basic
Latin character they replace. The first, the neutral double quote, is a partial exception because it does repre-
sent itself, but since the roff language also uses it to quote macro arguments, groff supports a special char-
acter escape sequence as an alternative form so that the glyph can be easily included in macro arguments
without requiring the user to master the quoting rules that AT&T troff required in that context. (Some re-
quests, like ds, also treat "' non-literally.) Furthermore, not all of the special character escape sequences are
portable to AT&T troff and all of its descendants; these groff extensions are presented using its special
character form \[], whereas portable special character escape sequences are shown in the traditional \(form.
\— and \e are portable to all known troff's. \e means “the glyph of the current escape character”; it therefore
can produce unexpected output if the ec request is used. On devices with a limited glyph repertoire, glyphs
in the “keycap” and “appearance” columns on the same row of the table may look identical; except for the
neutral double quote, this will not be the case on more-capable devices. Review your document using as
many different output devices as possible.

Keycap Appearance and meaning Special character and meaning

" " neutral double quote \ [da] neutral double quote

' ’ closing single quote \ [ag] neutral apostrophe

- - hyphen \-or \ [-] minus sign/Unix dash
\ (escape character) \e or \ [rs] reverse solidus

A ~ modifier circumflex \ (ha circumflex/caret/“hat”

) ‘ opening single quote \ (ga grave accent

~ ~ modifier tilde \ (t1i tilde

The hyphen-minus is a particularly unfortunate case of overloading. Its awkward name in ISO 8859 and
later standards reflects the many distinguishable purposes to which it had already been put by the 1980s, in-
cluding a hyphen, a minus sign, and (alone or in repetition) dashes of varying widths. For best results in
roff systems, use the “~” character in input outside an escape sequence only to mean a hyphen, as in the
phrase “long-term”. For a minus sign in running text or a Unix command-line option dash, use \- (or \[-]
in groff if you find it helps the clarity of the source document). (Another minus sign, for use in mathemati-
cal equations, is available as \[mi]). AT&T troff supported em-dashes as \(em, as does groff .

The special character escape sequence for the apostrophe as a neutral single quote is typically needed only
in technical content; typing words like “can’t” and “Anne’s” in a natural way will render correctly, because
in ordinary prose an apostrophe is typeset either as a closing single quotation mark or as a neutral single
quote, depending on the capabilities of the output device. By contrast, special character escape sequences
should be used for quotation marks unless portability to limited or historical ¢roff implementations is neces-
sary; on those systems, the input convention is to pair the grave accent with the apostrophe for single
quotes, and to double both characters for double quotes. AT&T troff defined no special characters for quo-
tation marks or the apostrophe. Repeated single quotes (“‘thus’) will be visually distinguishable from dou-
ble quotes (“thus”) on terminal devices, and perhaps on others (depending on the font selected).

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 188

groff_char(7) Miscellaneous Information Manual groff_char(T)

AT&T troff input recommended groff input

A Winter's Tale A Winter's Tale

‘U.K. outer quotes' \[oglU outer quotes\ [cq]

"U.K. " “inner'' quotes' \[oglU \[lglinner\[rg] quotes\ [cq]
‘*U.S. outer quotes'' \[1lglU outer quotes\ [rg]
‘*U.S. “inner' quotes'' \[1lglU \ [oglinner\[cgq] quotes\[rg]

If you frequently require quotation marks in your document, see if the macro package you’re using supplies
strings or macros to facilitate quotation, or define them yourself (except in man pages).

Using Unicode basic Latin characters to compose boxes and lines is ill-advised. roff systems have special
characters for drawing horizontal and vertical lines; see subsection “Rules and lines” below. Preprocessors
like #bI(1) and pic(1) draw boxes and will produce the best possible output for the device, falling back to
basic Latin glyphs only when necessary.

Eight-bit encodings and Latin-1 supplement
ISO 646 is a seven-bit code encoding 128 code points; eight-bit codes are twice the size. ISO 8859-1 and
code page 1047 allocated the additional space to what Unicode calls “C1 controls” (control characters) and
the “Latin-1 supplement”. The C1 controls are neither printable nor usable as groff input.

Two characters in the Latin-1 supplement are handled specially on input. froff never produces them as out-
put.

NBSP encodes a no-break space; it is mapped to \~, the adjustable non-breaking space escape sequence.
SHY encodes a soft hyphen; it is mapped to \%, the hyphenation control escape sequence.

The remaining characters in the Latin-1 supplement represent themselves. Although they can be specified
directly with the keyboard on systems configured to use Latin-1 as the character encoding, it is more
portable, both to other roff systems and to UTF-8 environments, to use their special character escape se-
quences, shown below.

i \[r!] inverted exclamation mark N \[~N] Ntilde

¢ \[ct] centsign O \['0] O grave

£ \[Po] pound sign O \['O] Oacute

x \[Cs] currency sign O \[~0] O circumflex

¥ \[Ye] yensign O \[~0] Otilde

! \[bb] broken bar O \[:0] O dieresis

§ \l[sc] section sign X\ [mu] multiplication sign
" \[ad] dieresis accent @ \[/0] Oslash

© \[col copyrightsign U \[U] U grave

2 \ [0f] feminine ordinal indicator U \['U] U acute

« \[Fo] left double chevron U \[~U] U circumflex

= \[no] logical not U \[:U] U dieresis

® \[rg] registered sign Y \['Y] Y acute

- \ [a—] macron accent b \[TP] uppercase thorn
° \[de] degree sign B \[ss] lowercase sharp s
+ \[+-] plus-minus a \[a] agrave

2 \ [S2] superscript two a \['a] aacute

3 \ [S3] superscript three a4 \[”a] acircumflex

~ \[aa] acute accent i \[~a] atilde

u \[mc] micro sign i \[:a] adieresis

9 Nipsl pilcrow sign a \[oa] aring

. \ [pc] centered period ® \[ae] ae ligature

. \lac] cedilla accent ¢ \[,c] ccedilla

1 \ [S1] superscript one ¢ \['e] egrave

° \[Om] masculine ordinal indicator é \['e] e acute

» \[Fc] right double chevron € \["e] ecircumflex

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 189

groff_char(7) Miscellaneous Information Manual groff_char(T)

Y% \[14] one quarter symbol € \[:e] edieresis

Y2 \[12] one half symbol i \['1] igrave

% \[34] three quarters symbol i \['i] eacute

1A \[r?] inverted question mark T \[”1i] 1circumflex
A N[A] A grave 1 \[:1] idieresis
A\ ["A] A acute d \[Sd] lowercase eth
A\ [~A] A circumflex i \[~n] ntilde

A \[~A] Atilde 0 \[o] ograve

A \[:A] A dieresis 6 \['o] oacute

A \[oa] A ring 0 \["o ocircumflex
A \[AE] AE ligature 0 \[~o] otilde

C \[,C] Ccedilla 6 \[:0] odieresis

E \ ["E] E grave + \[di] division sign
E \['E] E acute ¢ \[/o] oslash

E \ [“E] E circumflex U \[ul] ugrave

E \[:E] E dieresis i \['ul uacute

I N[I] Igrave 0 \[”ul] ucircumflex
i \["'I] Iacute i \[:u] udieresis

i \[*I] Icircumflex ¥y \['y]l yacute

I \[:I] Idieresis b \I[Tpl lowercase thorn
b \[-D] uppercase eth ¥ \[:y] vy dieresis

Special character escape forms
Glyphs that lack a character code in the basic Latin repertoire to directly represent them are entered by one
of several special character escape forms. Such glyphs can be simple or composite, and accessed either by
name or numerically by code point. Code points and combining properties are determined by character en-
coding standards, whereas glyph names as used here originated in AT&T troff special character escape se-
quences. Any character valid in a groff identifier may be used in a glyph name. Predefined glyph names
use only characters in the basic Latin repertoire.

\(g! is a special character escape sequence for the glyph with the two-character name gl. This is the
original syntax form supported by AT&T troff . The acute accent, \(aa, is an example.

\C'glyph-name'
is a special character escape sequence for glyph-name, which can be of arbitrary length. The de-
limiter, shown here as a neutral apostrophe, can be any character not occurring in glyph-name.
This syntax form was introduced in later versions of AT&T device-independent troff. The forego-
ing acute accent example can be expressed as \C'aa'.

\[glyph-name]
is a special character escape sequence for glyph-name, which can be of arbitrary length but must
not contain a closing square bracket “]”. (No glyph names predefined by groff employ “]”.) The
foregoing acute accent example can be expressed in groff as \[aa].

[TPR1]

\C'c' and \[c] are not synonyms for the ordinary character “c”, but request the special character named “\c”.
For example, “\[a]” is not “a”, but rather a special character with the internal glyph name (used in font de-
scription files and diagnostic messages) \a, which is typically undefined. The only such glyph name groff
predefines is the minus sign, which can therefore be accessed as \C'-' or \[-].

\[base-glyph composite-1 composite-2 ... composite-n]
is a composite glyph. Glyphs like a lowercase “e” with an acute accent, as in the word “café”, can
be expressed as \[e aa]. See subsection “Accents” below for a table of combining glyph names.

Unicode encodes far more characters than groff has glyph names for; special character escape forms based
on numerical code points enable access to any of them. Frequently used glyphs or glyph combinations can
be stored in strings, and new glyph names can be created with the char request, enabling the user to devise
ad hoc names for them; see groff(7).

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 190

groff_char(7) Miscellaneous Information Manual groff_char(T)

\[unnnn[n[n]]]
is a Unicode numeric special character escape sequence. With this form, any Unicode character
can be accessed by code point using four to six hexadecimal digits, with hexadecimal letters ac-
cepted in uppercase form only. Thus, \[u02DA] accesses the (spacing) ring accent, producing “”.

Unicode code points can be composed as well; when they are, GNU troff requires NFD (Normalization
Form D), where all Unicode glyphs are maximally decomposed. (Exception: precomposed characters in
the Latin-1 supplement described above are also accepted. Do not count on this exception remaining in a
future GNU troff that accepts UTF-8 input directly.) Thus, GNU troff accepts “caf\['e]”, “caf\[e aa]”, and
“caf\[u0065_0301]", as ways to input “café”. (Due to its legacy 8-bit encoding compatibility, at present it
also accepts “caf\[u00E9]” on ISO Latin-1 systems.)

\[ubase-glyph[_combining-component]. . .]
constructs a composite glyph from Unicode numeric special character escape sequences. The code
points of the base glyph and the combining components are each expressed in hexadecimal, with

1211

an underscore (_) separating each component. Thus, \[u006E_0303] produces “ii”.

\[charnnn]
expresses an eight-bit code point where nnn is the code point of the character, a decimal number
between 0 and 255 without leading zeroes. This legacy numeric special character escape sequence
is used to map characters onto glyphs via the trin request in macro files loaded by grozty(1).

Glyph tables
In this section, groff’s glyph name repertoire is presented in tabular form. The meanings of the columns
are as follows.

Output shows the glyph as it appears on the device used to render this document; although it can have a
notably different shape on other devices (and is subject to user-directed translation and replace-
ment), groff attempts reasonable equivalency on all output devices.

Input shows the groff character (ordinary or special) that normally produces the glyph. Some code
points have multiple glyph names.

Unicode is the code point notation for the glyph or combining glyph sequence as described in subsection
“Special character escape forms” above. It corresponds to the standard notation for Unicode
short identifiers such that groff’s unnnn is equivalent to Unicode’s U+nnnn.

Notes describes the glyph, elucidating the mnemonic value of the glyph name where possible.

A plus sign “+” indicates that the glyph name appears in the AT&T froff user’s manual,
CSTR #54 (1992 revision). When using the AT&T special character syntax \(xx, widespread
portability can be expected from such names.

Entries marked with “***” denote glyphs used for mathematical purposes. On typesetter devices,
such glyphs are typically drawn from a special font (see groff_font(5)). Often, such glyphs lack
bold or italic style forms or have metrics that look incongruous in ordinary prose. A few which
are not uncommon in running text have “text variants”, which should work better in that context.
Conversely, a handful of glyphs that are normally drawn from a text font may be required in
mathematical equations. Both sets of exceptions are noted in the tables where they appear (“Log-
ical symbols” and ‘“Mathematical symbols”).

Basic Latin
Apart from basic Latin characters with special mappings, described in subsection “Fundamental character
set” above, a few others in that range have special character glyph names. These were defined for ease of
input on non-U.S. keyboards lacking keycaps for them, or for symmetry with other special character glyph
names serving a similar purpose.

The vertical bar is overloaded; the \[ba] and \[or] escape sequences may render differently. See subsection
“Mathematical symbols” below for special variants of the plus, minus, and equals signs normally drawn
from this range.

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 191

groff_char(7)

Miscellaneous Information Manual

groff_char(T)

Output Input Unicode Notes

" \ [dal u0022 neutral double quote

\ [sh] u0023 number sign

$ \[Do] u0024 dollar sign

' \ [aq] u0027 apostrophe, neutral single quote
/ \[sl] u002F slash, solidus +

@ \[at] u0040 at sign

[\[1B] u005B left square bracket

\ \[rs] u005C reverse solidus

] \ [rB] u005D right square bracket

A \ [ha] u005E circumflex, caret, “hat” +
{ \[1C] u007B left brace

| | u007C bar

| \[ba]l u007C bar

\ \[or] u007C bitwise or +

} \[zC] u007D right brace

~ \[ti] uO07E tilde +

Supplementary Latin letters

Historically, \[ss] could be considered a ligature of “sz”

. An uppercase form is available as \[ulE9E], but

in the German language it is of specialized use; 8 does not normally uppercase-transform to it, but rather to
“SS”. “Lowercase f with hook™ is also used as a function symbol; see subsection “Mathematical symbols”

below.
Output Input Unicode Notes
b \[-D] u00DO uppercase eth
0 \ [Sd] u0O0F0 lowercase eth
p \[TP] uOODE uppercase thorn
b \[Tp] uOOFE lowercase thorn
B \ [ss] uOODF lowercase sharp s
1 \[.1] u0131 1 without tittle

\N[.7] u0237 j without tittle
f \ [Fn] u0192 lowercase f with hook, function
b \[/L] u0141 L with stroke
1 \[/1] u0142 1 with stroke
%) \[/0] u00D8 O with stroke
1) \[/o] uO0F8 o with stroke

Ligatures and digraphs
Output Input Unicode Notes
ff \[ff] u0066_0066 ff ligature +
fi \[fi] u0066_0069 fi ligature +
fl \[f1l] u0066_006C fl ligature +
ffi \[Fi] u0066_0066_0069 ffi ligature +
ffl \[F1] u0066_0066_006C ffl ligature +
£ \ [AE] u00C6 AE ligature
& \ [ae] u00E6 ae ligature
E \ [OE] u0152 OE ligature
e \ [oe] u0153 oe ligature
1J \[IJ] u0132 1J digraph
ij \[ij] w0133 ij digraph
Accents

Normally, the formatting of a special character advances the drawing position as an ordinary character does.
groff’s composite request designates a special character as combining. The composite.tmac macro file,
loaded automatically by the default troffrc, maps the following special characters to the combining charac-

groff 1.23.0.rc1.2692-2d9%e

17 June 2022 192

groff_char(7)

Miscellaneous Information Manual

groff_char(T)

ters shown below. The non-combining code point in parentheses is used when the special character occurs
in isolation (compare “caf\[e aa]” and “caf\[aa]e”).

Output Input Unicode Notes

- \[a"] u030B (u02DD) double acute accent

- \[a-] u0304 (u00AF) macron accent
\[a.] u0307 (u02D9) dot accent

- \[a"] u0302 (u005E) circumflex accent
\ [aa] u0301 (u00B4) acute accent +
\[ga] u0300 (u0060) grave accent +

- \ [ab] u0306 (u02D8) breve accent

, \[ac] u0327 (u00B38) cedilla accent

h \ [ad] u0308 (u00AB) dieresis accent

v \ [ah] u030C (u02C7) caron accent
\ [a0] u030A (u02DA) ring accent

- \[a~] u0303 (u007E) tilde accent
\ [ho] u0328 (u02DB) hook accent

Accented characters
All of these glyphs can be composed using combining glyph names as described in subsection “Special

character escape forms” above; the names below are short aliases for convenience.

Output Input Unicode Notes

A \['A] u0041_0301 A acute

¢ \['C] u0043_0301 C acute

E \['E] u0045_0301 Eacute

I \['I] u0049_0301 Iacute

o} \['0] u004F_0301 O acute

U \['U] u0055_0301 U acute

Y \['Y] u0059_0301 Y acute

a \['a] u0061_0301 a acute

¢ \['c] u0063_0301 c acute

é \['e] u0065_0301 e acute

i \['i] u0069_0301 i acute

o) \['o] u006F_0301 0 acute

u \['u] u0075_0301 u acute

v \['y] u0079_0301 y acute

A \[:A] u0041_0308 A dieresis
E \[:E] u0045_0308 E dieresis

I \N[:I1 10049 0308 I dieresis

(o) \[:0] u004F_0308 O dieresis
U \[:U] u0055_0308 U dieresis
Y \N[:Y] 10059 0308 Y dieresis

i \[:a] u0061_0308 a dieresis

é \[:e] u0065_0308 e dieresis

i \[:1] u0069_0308 1 dieresis

0 \[:0] u006F _0308 o dieresis

i \[:u] u0075_0308 u dieresis

¥ \[:v] u0079_0308 y dieresis

A \[*A] u0041_0302 A circumflex
E \[*E] u0045_0302 E circumflex
i \[~I] u0049_0302 I circumflex
¢} \[~0] u004F_0302 O circumflex

groff 1.23.0.rc1.2692-2d9%e

17 June 2022

193

groff_char(7)

= O = M (@3

(=S o O Oy

Qv D 8 O 2

O NN U

o >a

> >
[

>

>

>

A
>
& O H 09

b

P A O
c 0Ok D0 G O HM™

1R
>

4

?

14

A
4
OB ® O =

Quotation marks
The neutral double quote, often useful when documenting programming languages, is also available as a
special character for convenient embedding in macro arguments; see subsection “Fundamental character

Miscellaneous Information Manual

u0055_0302 U circumflex
u0061_0302 a circumflex
u0065_0302 e circumflex
u0069_0302 1 circumflex
u006F_0302 o circumflex
u0075_0302 u circumflex
u0041_0300 A grave
u0045_0300 E grave
u0049_0300 I grave
u004F_0300 O grave
u0055_0300 U grave
u0061_0300 a grave
u0065_0300 e grave
u0069_0300 i grave
u006F_0300 0 grave
u0075_0300 u grave
u0041_0303 A tilde
u004E_0303 N tilde
u004F_0303 O tilde
u0061_0303 a tilde
u006E_0303 n tilde
u006F_0303 o tilde
u0053_030C S caron
u0073_030C S caron
u005A_030C Z caron
u007A_030C zcaron
u0043_0327 C cedilla
u0063_0327 ¢ cedilla
u0041_030A A ring
u0061_030A aring

groff_char(T)

set” above.

Output Input Unicode Notes

" \ [Bq] u201E low double comma quote

, \ [bal u201A low single comma quote

“ \[1lq] u201C left double quote

” \[rq] u201D right double quote

‘ \ [oq] u2018 single opening (left) quote
’ \ [cqal u2019 single closing (right) quote
' \ [aq] u0027 apostrophe, neutral single quote
" " u0022 neutral double quote

" \ [dal u0022 neutral double quote

« \ [Fo] u00OAB left double chevron

» \ [Fc] uOOBB right double chevron

< \[fo] u2039 left single chevron

> \[fc] u203A right single chevron

groff 1.23.0.rc1.2692-2d9%e

17 June 2022

194

groff_char(7) Miscellaneous Information Manual groff_char(T)

Punctuation
The Unicode name for U+00B7 is “middle dot”, which is unfortunately confusable with the groff
mnemonic for the visually similar but semantically distinct multiplication dot; see subsection ‘“Mathemati-
cal symbols” below.

Output Input Unicode Notes

i \[r!] u00A1 inverted exclamation mark
A \[r?] uO0OBF inverted question mark

. \ [pc] u00B7 centered period

— \ [em] u2014 em-dash +

- \ [en] u2013 en-dash

- \ [hy] u2010 hyphen +

Brackets
On typestter devices, the bracket extensions are font-invariant glyphs; that is, they are rendered the same
way regardless of font (with a drawing escape sequence). On terminals, they are not font-invariant; groff
maps them rather arbitrarily to U+23AA (“curly bracket extension”). In AT&T troff, only one glyph was
available to vertically extend brackets, braces, and parentheses: \(bv.

Not all devices supply bracket pieces that can be piled up with \b due to the restrictions of the escape’s pil-
ing algorithm. A general solution to build brackets out of pieces is the following macro:
.\" Make a pile centered vertically 0.5em above the baseline.
.\" The first argument is placed at the top.
.\" The pile is returned in string 'pile'.
.eo
.de pile-make
nr pile-wd O
nr pile-ht 0
ds pile-args

nr pile-# \n[.$]
while \n[pile—-#] \{\
nr pile-wd (\n[pile-wd] >? \w'\$[\n[pile-#]11")
nr pile-ht +(\n[rst] - \n[rsb])
as pile-args \v'\n[rsbJu'\"
as pile-args \z'\$[\n[pile—#]]"'\"
as pile-args \v'-\n[rst]u'\"
nr pile-# -1
\'}

ds pile \v'(-0.5m + (\n[pile-ht]u / 2u))"'\"
as pile *[pile-args]\"

as pile \v'((\n[pile-ht]Ju / 2u) + 0.5m)"\"
as pile \h'\n[pile-wd]u'\"

.ec

Another complication is the fact that some glyphs which represent bracket pieces in AT&T troff can be
used for other mathematical symbols as well, for example \(If and \(rf, which provide the floor operator.
Some output devices, such as dvi, don’t unify such glyphs. For this reason, the glyphs \[If], \[rf], \[Ic], and
\[rc] are not unified with similar-looking bracket pieces. In groff, only glyphs with long names are guaran-
teed to pile up correctly for all devices—provided those glyphs are available.

Output Input Unicode Notes
[[u005B left square bracket
[\[1B] u005B left square bracket

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 195

groff_char(7) Miscellaneous Information Manual groff_char(T)

u005D right square bracket

]]
] \ [u005D right square bracket
{ { u007B left brace
{ \ [u007B left brace
} } u007D right brace
} \ [zC] u007D right brace
(\[la] u27E8 left angle bracket
) \[ra] u27E9 right angle bracket
| \ [bv] u23AA brace vertical extension + **%*
| \ [braceex] u23AA brace vertical extension
\ [bracketlefttp] u23Al left square bracket top
\ [bracketleftex] u23A2 left square bracket extension
\ [bracketleftbt] u23A3 left square bracket bottom

\ [bracketrighttp] u23A4 right square bracket top
\ [bracketrightex] u23AS5 right square bracket extension
\ [bracketrightbt] u23A6 right square bracket bottom

1

(\[1t] u23A7 left brace top +
1 \ [1k] u23A8 left brace middle +
(\ [1Db] u23A9 left brace bottom +
(\ [bracelefttp] u23A7 left brace top
3 \ [braceleftmid] u23A8 left brace middle
(\ [braceleftbt] u23A9 left brace bottom
| \ [braceleftex] u23AA left brace extension
] \[rt] u23AB right brace top +
g \ [rk] u23AC right brace middle +
J \ [rDb] u23AD right brace bottom +
] \ [bracerighttp] u23AB right brace top
r \ [bracerightmid] u23AC right brace middle
J \ [bracerightbt] u23AD right brace bottom
| \ [bracerightex] u23AA right brace extension
(\ [parenlefttp] u239B left parenthesis top
\ [parenleftex] u239C left parenthesis extension
k \ [parenleftbt] u239D left parenthesis bottom
W \ [parenrighttp] u239E right parenthesis top
\ [parenrightex] u239F right parenthesis extension
) \ [parenrightbt] u23A0 right parenthesis bottom
Arrows
Output Input Unicode Notes
«— \[<=1 u2190 horizontal arrow left +
- \[—>] u2192 horizontal arrow right +
> \[<>] u2l9%4 bidirectional horizontal arrow
d \[da] u2193 vertical arrow down +
T \ [ual u2191 vertical arrow up +
) \[va] u2l195 bidirectional vertical arrow
= \[1A] u2IDO horizontal double arrow left
= \[rA] u21D2 horizontal double arrow right
o \[hA] u2lD4 bidirectional horizontal double arrow
U \[dA] u2lD3 vertical double arrow down

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 196

groff_char(7)

i \[uA] u2IDI1
\ [VA] u21D5
— \ [an] u23AF

Rules and lines

Miscellaneous Information Manual

vertical double arrow up
bidirectional vertical double arrow
horizontal arrow extension

groff_char(T)

On typesetter devices, the font-invariant glyphs (see subsection “Brackets” above) \[br], \[ul], and \[rn]
form corners when adjacent; they can be used to build boxes. On terminal devices, they are mapped as

shown in the table. The Unicode-derived names of these three glyphs are approximations.

The input character _ always accesses the underscore glyph in a font; \[ul], by contrast, may be font-invari-

ant on typesetter devices.

The baseline rule \[ru] is a font-invariant glyph, namely a rule of one-half em.

In AT&T troff, \[rn] also served as a one en extension of the square root symbol. groff favors \[radicalex]

for this purpose; see subsection ‘“Mathematical symbols” below.

Output Input Unicode Notes
| | u007C bar
| \[ba]l u007C bar
| \[br] 12502 box rule +
_ _ u005F underscore, low line +
_ \[ul] - underrule +
B \[rn] u203E overline +
_ \ [ru] -— baseline rule +
! \ [bb] u00A6 broken bar
/ / u002F slash, solidus +
/ \[sl] u002F slash, solidus +
\ \[rs] u005C reverse solidus
Text markers
Output Input Unicode Notes
0 \[ci] u25CB circle +
. \ [bu] u2022 bullet +
¥ \ [dg] u2020 dagger +
oo \ [dd] u2021 double dagger +
0 \[1lz] u25CA lozenge, diamond
a \ [sq] u25A1 square +
q \ [ps] u00B6 pilcrow sign
§ \ [sc] u00A7 section sign +
=1 \[1h] u261C hand pointing left +
=5 \[rh] u261E hand pointing right +
@ @ u0040 at sign
@ \[at] u0040 at sign
u0023 number sign
\ [sh] u0023 number sign
| \ [CR] u21B5 carriage return
v \ [OK] u2713 check mark
Legal symbols
The Bell System logo is not supported in groff .
Output Input Unicode Notes
© \[co]l u00A9 copyright sign +
® \[rg] u00AE registered sign +
™ \ [tm] u2122 trade mark sign
\[bs] - Bell System logo +
groff 1.23.0.rc1.2692-2d9%e 17 June 2022 197

groff_char(7)

Currency symbols

Miscellaneous Information Manual

groff_char(T)

Output Input Unicode Notes

$ $ u0024 dollar sign

$ \[Do] u0024 dollar sign

¢ \[ct] u00A2 cent sign +

€ \[eu] u20AC Euro sign

€ \[Eu] u20AC variant Euro sign

¥ \[Yel u00A5S yen sign

£ \ [Po] u00A3 pound sign

o \[Cs] u00A4 currency sign
Units

Output Input Unicode Notes

° \ [de] u00BO degree sign +

%o \[%0] u2030 per thousand, per mille sign

’ \ [fm] u2032 arc minute sign, foot mark +

” \ [sd] u2033 arc second sign

u \ [mc] u00B5 micro sign

2 \ [0f] u00AA feminine ordinal indicator

° \ [Om] uO0BA masculine ordinal indicator
Logical symbols

The variants of the not sign may differ in appearance or spacing depending on the device and font selected.
Unicode does not encode a discrete “bitwise or’” sign: on typesetter devices, it is drawn shorter than the bar,

about the same height as a capital letter. Terminal devices unify \[ba] and \[or].

Output Input Unicode Notes
A \ [AN] u2227 logical and
\% \ [OR] u2228 logical or
= \ [no] u00AC logical not + ***
- \ [tno] u00AC text variant of \[no]
3 \[te] u2203 there exists
v \[fa] u2200 for all
3 \[st] u220B such that
: \ [3d] u2234 therefore
\[t£f] u2234 therefore
| | u007C bar
\ \[or] u007C bitwise or +

Mathematical symbols

\[Fn] also appears in subsection “Supplementary Latin letters” above. Observe the two varieties of the
plus-minus, multiplication, and division signs; \[+—], \[mu], and \[di] are normally drawn from the special
font, but have text font variants. Also be aware of three glyphs available in special font variants that are
normally drawn from text fonts: the plus, minus, and equals signs. These variants may differ in appearance
or spacing depending on the device and font selected.

In AT&T troff , \(rn (“root en extender”) served as the horizontal extension of the radical (square root) sign,
\(sr, and was drawn at the maximum height of the typeface’s bounding box; this enabled the special charac-
ter to double as an overline (see subsection “Rules and lines” above). A contemporary font’s radical sign
might not ascend to such an extreme. In groff, you can instead use \[radicalex] to continue the radical sign
\[sr]; these special characters are intended for use with text fonts. \[sqrt] and \[sqrtex] are their counter-

parts with mathematical spacing.

Output Input Unicode Notes
1% \[12] u00BD one half symbol +
Y \[14] u00BC one quarter symbol +

groff 1.23.0.rc1.2692-2d9%e

17 June 2022

198

groff_char(7)

3% \[34]
Vs \[18]
% \[38]
% \[58]
3 \[78]
1 \[S1]
2 \[S2]
3 \ [S3]
+ +
+ \[pl]
- \[-]
- \ [mi]
\[—+]
+ \[+-]
+ \[t+-1]
\ [md]
X \ [mu]
X \ [tmu]
® \[c*]
@ \ [c+]
+ \ [di]
= \[tdi]
/ \[£/]
* *
* \[**]
< \ [<=]
> \ [>=]
<< \ [<<]
> \[>>]
= \ [eq]
\[!=]
= \ [==]
\ [ne]
= \ [=~]
= \[|=1
~ \[ti]
~ \ [ap]
\[~~]
= \ [~=]
o< \ [pt]
%] \ [es]
€ \ [mo]
¢ \ [nm]
c \ [sb]
oa \ [nb]
> \ [sp]
D \ [nc]
c \ [ib]
2 \ [ip]

groff 1.23.0.rc1.2692-2d9%e

Miscellaneous Information Manual

uO0BE
u215B
u215C
u215D
u215E
u00B9
u00B2
u00B3

u002B
u002B
u002D
u2212
u2213
u00B1
u00B1
u22C5
u00D7
u00D7
u2297
u2295
uO0F7
uO0F7
u2044
u002A
u2217

u2264
u2265
u226A
u226B
u003D
u003D
u003D_0338
u2261
u2261_0338
u2245
u2243
u007E
u223C
u2248
u2248
u221D

u2205
u2208
u2208_0338
u2282
u2282_0338
u2283
u2283_0338
u2286
u2287

three quarters symbol +
one eighth symbol
three eighths symbol
five eighths symbol
seven eighths symbol
superscript one
superscript two
superscript three

plus

special variant of plus + ***
minus

special variant of minus + ***
minus-plus

plus-minus + ***

text variant of \[+—]
multiplication dot
multiplication sign + ***
text variant of \[mu]

circled times

circled plus

division sign + ***

text variant of \[di]

fraction slash

asterisk

mathematical asterisk +

less than or equal to +
greater than or equal to +
much less than

much greater than

equals

special variant of equals + ***
not equals +

equivalent +

not equivalent
approximately equal to
asymptotically equal to +
tilde +

similar to, tilde operator +
almost equal to

almost equal to
proportional to +

empty set +
element of a set +
not element of set
proper subset +
not subset

proper superset +
not superset
subset or equal +
superset or equal +

17 June 2022

groff_char(T)

199

groff_char(7)

c>

<< OM——F N

| <_

L

I Vg R % 8

Greek glyphs

-

~
Q Q
c o

[/_
[p]
[is]
[integral]
[sum]
[product]
[coproduct]
[grl
[sr]
[rn]
[radicalex]
[sgrt]
[sgrtex]

P A O s

Miscellaneous Information Manual

u2229 intersection, cap +
u222A union, cup +
u2220 angle

u22A5 perpendicular
u222B integral +

u222B integral ***
u2211 summation ***
u220F product ***
u2210 coproduct ***
u2207 gradient +

u221A radical sign, square root +
u203E overline +

-— radical extension
u221A radical sign, square root ***
-— radical extension ***

u2308 left ceiling +

u2309 right ceiling +

u230A left floor +

u230B right floor +

u221E infinity +

u2135 aleph symbol

u0192 lowercase f with hook, function
u2l11 blackletter I, imaginary part
u211C blackletter R, real part
u2118 Weierstrass p

u2202 partial differential

u210F h bar

u210F h bar

groff_char(T)

These glyphs are intended for technical use, not for typesetting Greek language text; normally, the upper-

case letters have upright shape, and the lowercase ones are slanted.

Output Input Unicode Notes

A \[*A] u0391 uppercase alpha +
B \[*B] u0392 uppercase beta +

r \[*G] u0393 uppercase gamma +
A \[*D] u0394 uppercase delta +

E \[*E] u0395 uppercase epsilon +
Z \[*Z] u0396 uppercase zeta +

H \N[*Y] u0397 uppercase eta +

Q) \[*H] u0398 uppercase theta +

I \[*I] u0399 uppercase iota +

K \ [*K] u039A uppercase kappa +
A \[*L] u039B uppercase lambda +
M \ [*M] u039C uppercase mu +

N \ [*N] u039D uppercase nu +

o) \[*C] u039E uppercase xi +

0] \[*O] u039F uppercase omicron +
I1 \[*P] u03A0 uppercase pi +

P \ [*R] u03Al uppercase rho +

X \[*S] u03A3 uppercase sigma +

groff 1.23.0.rc1.2692-2d9%e

17 June 2022

200

groff_char(7)

Miscellaneous Information Manual

groff_char(T)

T \[*T] u03A4 uppercase tau +
T \[*U] u03AS5 uppercase upsilon +
(o \[*F] u03A6 uppercase phi +
X \[*X] u03A7 uppercase chi +
¥ \[*Q] u03A8 uppercase psi +
Q \[*W] u03A9 uppercase omega +
a \[*a]l u03Bl1 lowercase alpha +
B \[*b] u03B2 lowercase beta +
Y \[*g] u03B3 lowercase gamma +
o \[*d] u03B4 lowercase delta +
£ \[*e] u03B5 lowercase epsilon +
4 \[*z] u03B6 lowercase zeta +
n \[*y] u03B7 lowercase eta +
6 \[*h] u03B8 lowercase theta +
l \N[*1] u03B9 lowercase iota +
K \[*k] u03BA lowercase kappa +
A \[*1] u03BB lowercase lambda +
U \ [*m] u03BC lowercase mu +
14 \[*n] u03BD lowercase nu +
& \[*c] u03BE lowercase xi +
o \[*0] u03BF lowercase omicron +
V4 \[*p] u03CO lowercase pi +
P \[*r] u03Cl1 lowercase rho +
o} \[*s] u03C3 lowercase sigma +
T \[*t] u03C4 lowercase tau +
v \[*u]l u03C5 lowercase upsilon +
1) \[*f] u03D5 lowercase phi +
X \[*x] u03C7 lowercase chi +
72 \[*gq]l u03C8 lowercase psi +
w \[*w] u03C9 lowercase omega +
\ [+e] u03F5 variant epsilon (lunate)
15, \ [+h] u03D1 variant theta (cursive form)
o \ [+p] u03D6 variant pi (similar to omega)
Q \[+£f] u03C6 variant phi (curly shape)
S \[ts] u03C2 terminal lowercase sigma +
Playing card symbols
Output Input Unicode Notes
& \ [CL] u2663 solid club suit
a \[SP] u2660 solid spade suit
v \ [HE] u2665 solid heart suit
. \[DI] u2666 solid diamond suit
History

A consideration of the typefaces originally available to AT&T nroff and troff illuminates many conventions
that one might regard as idiosyncratic fifty years afterward. (See section “History” of roff(7) for more con-
text.) The face used by the Teletype Model 37 terminals of the Murray Hill Unix Room was based on
ASCII, but assigned multiple meanings to several code points, as suggested by that standard. Decimal 34
("") served as a dieresis accent and neutral double quotation mark; decimal 39 (') as an acute accent, apos-
trophe, and closing (right) single quotation mark; decimal 45 (-) as a hyphen and a minus sign; decimal 94
(™) as a circumflex accent and caret; decimal 96 (*) as a grave accent and opening (left) single quotation
mark; and decimal 126 (~) as a tilde accent and (with a half-line motion) swung dash. The Model 37 bore
an optional extended character set offering upright Greek letters and several mathematical symbols; these
were documented as early as the kbd(VII) man page of the (First Edition) Unix Programmer’s Manual.

groff 1.23.0.rc1.2692-2d9%e

17 June 2022

201

groff_char(7) Miscellaneous Information Manual groff_char(T)

At the time Graphic Systems delivered the C/A/T phototypesetter to AT&T, the ASCII character set was not
considered a standard basis for a glyph repertoire by traditional typographers. In the stock Times roman,
italic, and bold styles available, several ASCII characters were not present at all, nor was most of the Tele-
type’s extended character set. AT&T commissioned a “special” font to ensure no loss of repertoire.

A representation of the coverage of the C/A/T’s text fonts follows. The glyph resembling an underscore is
a baseline rule, and that resembling a vertical line is a box rule. In italics, the box rule was not slanted. We
also observe that the hyphen and minus sign were already “de-unified” by the fonts provided; a decision
whither to map an input “~” therefore had to be taken.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789fiflffiff
$%&() T +—.,/:5=211]
O—-_YUn%°t ¢®O

The special font supplied the missing ASCII and Teletype extended glyphs, among several others. The
plus, minus, and equals signs appeared in the special font despite availability in text fonts “to insulate the
appearance of equations from the choice of standard [read: text] fonts”—a priority since froff was turned to
the task of mathematical typesetting as soon as it was developed.

We note that AT&T took the opportunity to de-unify the apostrophe/right single quotation mark from the
acute accent (a choice ISO later duplicated in its 8859 series of standards). A slash intended to be mirror-
symmetric with the backslash was also included, as was the Bell System logo; we do not attempt to depict
the latter.

afydelnbikluvionposctvdyyvw

TAOAZIIXYDPY Q
TN /<> [JE@+b—=% ~
><==~2Tle oxt+0dValxy UNncocoPDe

stmeiof L1 r L]

One ASCII character as rendered by the Model 37 was apparently abandoned. That device printed decimal
124 (I) as a broken vertical line, like Unicode U+00AG6 (}). No equivalent was available on the C/A/T; the
box rule \[br], brace vertical extension \[bv], and “or”” operator \[or] were used as contextually appropriate.

Devices supported by AT&T device-independent troff exhibited some differences in glyph detail. For ex-
ample, on the Autologic APS-5 phototypesetter, the square \(sq became filled in the Times bold face.

Files
The files below are loaded automatically by the default troffrc.
Jusr/local/share/groff/1.23.0/tmac/composite.tmac
assigns alternate mappings for identifiers after the first in a composite special character escape se-
quence. See subsection “Accents” above.
Jusr/local/share/groff/1.23.0/tmac/fallbacks.tmac
defines fallback mappings for Unicode code points such as the increment sign (U+2206) and
upper- and lowercase Roman numerals.
Authors
This document was written by James Clark (jjc @jclark.com), with additions by Werner Lemberg (wl@ gnu
.org) and Bernd Warken (groff-bernd.warken—72@web.de), revised to use bl(1) by Eric S. Raymond
(esr@thyrsus.comy), and largely rewritten by G. Branden Robinson {g.branden.robinson @ gmail.com).
See also

Groff: The GNU Implementation of troff, by Trent A. Fisher and Werner Lemberg, is the primary groff
manual. Section “Using Symbols” may be of particular note. You can browse it interactively with “info

199

'(groff) Using Symbols™’.

“An extension to the troff character set for Europe”, E.G. Keizer, K.J. Simonsen, J. Akkerhuis; EUUG
Newsletter, Volume 9, No. 2, Summer 1989

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 202

groff_char(7) Miscellaneous Information Manual groff_char(T)

The Unicode Standard ¢http://www.unicode.org)

“7-bit Character Sets” ¢https://www.aivosto.com/articles/charsets—7bit.html) by Tuomas Salste documents
the inherent ambiguity and configurable code points of the ASCII encoding standard.

“Nroft/Troff User’s Manual” by Joseph F. Ossanna, 1976, AT&T Bell Laboratories Computing Science
Technical Report No. 54, features two tables that throw light on the glyph repertoire available to “typesetter
roff” when it was first written. Be careful of re-typeset versions of this document that can be found on the
Internet. Some do not accurately represent the original document: several glyphs are obviously missing.
More subtly, lowercase Greek letters are rendered upright, not slanted as they appeared in the C/A/T’s spe-
cial font and as expected by troff users.

groff_rfc1345(7) describes an alternative set of special character glyph names, which extends and in some
cases overrides the definitions listed above.

groff(1), troff(1), groff(’7)

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 203

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

Name
groff_diff — differences between GNU roff and AT&T troff

Description
The GNU roff text processing system, groff, is largely compatible with AT&T troff, the typesetting system
originating in Unix systems of the 1970s. At the same time, groff removes many arbitrary limitations and
adds features, both to the language and to the intermediate, device-independent output format. Differences
arising from groff”’s implementation of AT&T troff features are also noted.

Language
groff features identifiers of arbitrary length, supports non-integral type sizes, adds new escape sequences
and requests, provides new conditional expression operators, recognizes additional scaling units and numer-
ical operators, and extends the function of some escape sequences and requests already present in
AT&T troff .

Long names
groff introduces many new requests; with three exceptions, they all have names longer than two characters.
The names of registers, fonts, strings/macros/diversions, environments, special characters (glyphs), and col-
ors can be of any length. More generally, anywhere AT&T troff supports an escape form that uses an open-
ing parenthesis “(” to introduce a two-character argument, groff supports a square-bracketed form “[]”
where the argument within can be of arbitrary length.

Colors
groff supports color output with a variety of color spaces and up to 16 bits per channel. Some devices, par-
ticularly terminals, may be more limited. When color support is enabled, two colors are current at any
given time: the stroke color, with which glyphs, rules (lines), and geometric objects like circles and poly-
gons are drawn, and the fill color, which can be used to paint the interior of closed geometric figures. The
color, defcolor, gcolor, and fcolor requests; \m and \M escape sequences; and .color, .m, and .M registers
exercise color support.

Fractional type sizes and new scaling units
A scaled point is equal to 1/sizescale points, where sizescale is a parameter specified in the device descrip-
tion file, DESC, and defaults to 1. A new scaling unit “z” has the effect of multiplying by sizescale. Re-
quests and escape sequences in groff interpret arguments that represent a type size as being in units of
scaled points; that is, they evaluate such arguments using an implied default scaling unit of “z”. Arguments
treated in this way comprise those to the escape sequences \H and \s, to the request .ps, the third argument
to the .cs request, and the second and fourth arguments to the .tkf request.

For example, if sizescale is 1000, then a scaled point is one one-thousandth of a point. The request “.ps
10.25” is synonymous with “.ps 10.25z” and sets the type size to 10250 scaled points, or 10.25 points.

Consequently, in groff, the register \n[.s] can contain a non-integral type size. The new register \n[.ps] re-
turns the type size in scaled points.
It makes no sense to use the “z” scaling unit in a numeric expression whose default scaling unit is neither

u” nor “z”, so groff disallows this. Similarly, it is nonsensical to use a scaling unit other than “z” or “u
in a numeric expression whose default scaling unit is “z”, so groff disallows this as well.

Another new scaling unit, “s”, multiplies by the number of basic units in a scaled point. For instance,
“\n[.ps]s” is equal to “1m” by definition. Do not confuse the “s” and “z” scaling units.

A further two new measurement units available in groff are “M”, which indicates hundredths of an em, and
“f”, which multiplies by 65,536. The latter provides convenient fractions for color definitions with the .def-
color request. For example, 0.5f equals 32768u.

Numeric expressions
Spaces are permitted in a numeric expression within parentheses. Three new operators are available as
well.

el>?e¢2 Compute the maximum of e/ and e2.

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 204

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

el<?e¢2 Compute the minimum of e/ and e2.

(c;e) Evaluate e using c as the default scaling unit. If ¢ is missing, ignore scaling units in the evaluation
of e.

Conditional expressions
More conditions can be tested with the .if and .ie requests, as well as the new .while request.

cg True if a glyph g is available, where g is a Unicode basic Latin character; a groff special character
\(xx or \[xxx]; \N'xxx'; or has been defined by any of the .char, .fchar, .fschar, or .schar requests.

d name True if there is a string, macro, diversion, or request called name.

F font True if a font called font exists. font is handled as if it were opened with the .ft request (that is,
font translation and styles are applied), without actually mounting it. This test doesn’t load the
complete font, but only its header, to verify its validity.

m color
True if there is a color called color.

rreg True if there is a register called reg.
S style True if a style called style has been registered. Font translation is applied.

v Always false. This condition is for compatibility with certain other troff implementations only.
(This refers to vtroff, a translator that would convert the C/A/T output from early-vintage
AT&T troff to a form suitable for Versatec and Benson-Varian plotters.)

Escape sequences
groff introduces several new escape sequences and extends the syntax of a few AT&T troff escape se-
quences (namely, \D, \f, \k, \n, \$, and \¥). In the following list, escape sequences are collated alphabeti-
cally at first, and then by symbol roughly in Unicode code point order.

\A'anything'
This expands to 1 or 0, depending on whether anything is or is not acceptable as the name of a
string, macro, diversion, register, environment, font, or color. It returns 0 if anything is empty.
This is useful if you want to look up user input in some sort of associative table.

\B'anything'
This expands to 1 or 0, depending on whether anything is or is not a valid numeric expression. It
returns 0 if anything is empty.

\D'..." All drawing commands supported by the AT&T troff device-independent intermediate output for-
mat are accepted. See subsection “Drawing Commands” below for GNU extensions.

\E This is equivalent to an escape character, but it is not interpreted in copy mode. Strings to start
and end superscripting could be defined as follows.

.ds { \v'-.3m'\s'"\En[.s]*6u/10u’
.ds } \sO\v'.3m'

The use of \E ensures that these definitions work even if *{ gets interpreted in copy mode (for ex-
ample, by being used in a macro argument).

M[xxx] Select font xxx, which may be a font name, mounting position, or registered style that is then com-
bined with the current font family to select the typeface. \f[] is a synonym of \fP; i.e., it selects the
previous font.

\F f

\F(fim

\F[fam]

Select font family. See the .fam request below. \F[] selects the previous font family, or the default
family if there is none. \FP does not; it selects font family “P” instead.

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 205

groff_diff (7)

\k(rg

Miscellaneous Information Manual groff_diff (7)

\k[reg] Mark horizontal position in register with two-character name rg or arbitrarily long name reg.

\m.x
\m(xx
\m[xxx]

Set the stroke color. \m[] restores the previous stroke color.

\M.x
\M (xx
\M [xxx]

Set the fill color. \M[] restores the previous fill color.

\n[xxx] Interpolate register xxx.

\On
\O[n] Suppress

troff output of glyphs and geometric primitives. The sequences \O2, \Q3, \O4, and \O5

are intended for internal use by grohtmli(1).

\O0
\01

\02

\O3
\04

Disable and enable, respectively, the emission of glyphs and geometric primitives to the
output driver, provided that this sequence occurs at the outermost level (see \O3 and \O4).
Horizontal motions corresponding to non-overstruck glyph widths still occur. These se-
quences also reset the registers opminx, opminy, opmaxx, and opmaxy to —1. These
four registers mark the top left and bottom right hand corners of a box encompassing all
written glyphs.

Provided that this sequence occurs at the outermost level, enable emission of glyphs and
geometric primitives, and write to the standard error stream the page number and values
of the four aforementioned registers encompassing glyphs written since the last interpola-
tion of a \O sequence, as well as the page offset, line length, image file name (if any),
horizontal and vertical device motion quanta, and input file name. Numeric values are in
basic units.

Begin and end a nesting level, respectively. This is an internal mechanism for grohtml
while producing images. At startup, troff is at the outermost level. These sequences are
generated when processing the source document with pre—grohtml, which uses troff with
the ps output device, Ghostscript, and the PNM tools to produce images in PNG format.
They start a new page if the device is not html or xhtml, to reduce the possibility of im-
ages crossing a page boundary.

\O5[Pfile]

\R'name tn'

Provided that this sequence occurs at the outermost level, write the name file to the stan-
dard error stream at position P, which must be one of 1, r, ¢, or i, corresponding to left,
right, centered, and inline alignments within the document, respectively. file is is a name
associated with the production of the next image.

Synonymous with “.nr name *n”.

\s[£n]
\st[n]
\s'tn'

\st'n' Set the type size to, or increment or decrement it by, n scaled points; » is a numeric expression
with a default scaling unit of “z”.

groff 1.23.0.rc1.2692-2d9%e

17 June 2022 206

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

\Vx

\V(xx

\V[xxx]
Interpolate the contents of the environment variable xxx, as returned by getenv(3). \V is inter-
preted even in copy mode.

\X'anything'
Within \X arguments, the escape sequences \&, \), \%, and \: are ignored; \space and \~ are con-
verted to single space characters; and \\ has its escape character stripped. So that the basic Latin
subset of the Unicode character set (that is, ISO 646:1991-IRV or, popularly, “US-ASCII”) can be
reliably encoded in device control commands, seven special character escape sequences (\—, \[aq],
\[dq], \[ga], \[ha], \[rs], and \[ti]) are mapped to basic Latin glyphs; see groff_char(7). The use of
any other escape sequence in \X arguments is normally an error.
If the use_charnames_in_special directive appears in the output device’s DESC file, the use of
special character escape sequences is not an error; they are simply output verbatim (with the ex-
ception of the seven mapped to Unicode basic Latin characters, discussed above). use_char-
names_in_special is currently employed only by grohtmi(1).

\Yx

\Y (xx

\Y[xxx]

This is approximately equivalent to \X"*[xxx]'. However the contents of the string or macro xxx
are not interpreted; also it is permitted for xxx to have been defined as a macro and thus contain
newlines (it is not permitted for the argument to \X to contain newlines). The inclusion of new-
lines requires an extension to the AT&T troff output format, and confuses drivers that do not know
about this extension.

\Z'anything'
Print anything and then restore the horizontal and vertical position; anything may not contain tabs
or leaders.

\# Everything up to and including the next newline is ignored. This escape sequence is interpreted
even in copy mode. M is like \'", except that \'" does not ignore a newline; the latter therefore can-
not be used by itself for a whole-line comment—it leaves a blank line on the input stream.

\$0 The name by which the current macro was invoked. The als request can make a macro have more
than one name.

\$(nn
\$[nnn] In a macro or string, this gives the nn-th or nnn-th argument. Macros and strings can have an un-
limited number of arguments.

\$:# In a macro or string, the concatenation of all the arguments separated by spaces.

\$@ In a macro or string, the concatenation of all the arguments with each surrounded by double
quotes, and separated by spaces.

\$A In a macro, the representation of all parameters as if they were an argument to the ds request.

\) Like \& except that it behaves like a character declared with the .cflags request to be transparent

for the purposes of end-of-sentence recognition.

\¥[xxx argl arg2 .. .]
Interpolate string xxx, taking argl, arg2, ... as arguments.

Vv Apply an italic correction: modify the spacing of the preceding glyph so that the distance between
it and the following glyph is correct if the latter is of upright shape. For example, if an italic “f” is
followed immediately by a roman right parenthesis, then in many fonts the top right portion of
the “f” overlaps the top left of the right parenthesis, producing f), which is ugly. Inserting V be-
tween them produces f) and avoids this problem. Use this escape sequence whenever an oblique
glyph is immediately followed by an upright glyph without any intervening space.

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 207

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

\, Apply a left italic correction: modify the spacing of the following glyph so that the distance be-
tween it and the preceding glyph is correct if the latter is of upright shape. For example, if a ro-
man left parenthesis is immediately followed by an italic “f”, then in many fonts the bottom left
portion of the “f” overlaps the bottom of the left parenthesis, producing (f, which is ugly. Inserting
\, between them produces (f and avoids this problem. Use this escape sequence whenever an up-
right glyph is followed immediately by an oblique glyph without any intervening space.

\: Insert a non-printing break point. That is, a word can break there, but the soft hyphen glyph is not
written to the output if it does (in contrast to “\%”). This escape sequence is an input word bound-
ary, so the remainder of the word is subject to hyphenation as normal.

\?anything\?
When used in a diversion, this transparently embeds anything in the diversion. anything is read in
copy mode. When the diversion is reread, anything is interpreted. anything may not contain new-
lines; use \! if you want to embed newlines in a diversion. The escape sequence \? is also recog-
nized in copy mode and turned into a single internal code; it is this code that terminates anything.
Thus

.nr x 1
.nf

.di d
V2NN 2NN 2NN R AN 2NN 2\ ?
.di

.nr x 2
.di e
.d

.di

.nr x 3
.di f
.e

.di

.nr x 4
.f

prints 4.
\[xxx] Typeset the special character (glyph) xxx.

\[base-glyph combining-component . . .]
Typeset a composite glyph consisting of base-glyph overlaid with one or more combining-compo-
nents. For example, “\[A ho]” is a capital letter “A” with a “hook accent” (ogonek). See Groff:
The GNU Implementation of troff , the groff Texinfo manual, for details of how a glyph name for a
composite glyph is constructed, and groff_char(7) for a list of glyph name components used in
composite glyph names.

\~ Insert an unbreakable space that is adjustable like an ordinary space. It is discarded from the end
of an output line if a break is forced.

Restricted requests
To mitigate risks from untrusted input documents, the pi and sy requests are disabled by default. 7roff(1)’s
-U option enables the formatter’s “unsafe mode”, restoring their function (and enabling additional groff
extension requests, open, opena, and pso).

New requests
.aln new old
Create an alias new for an existing register named old, causing the names to refer to the same
stored object. If old is undefined, a warning in category “reg” is generated and the request is ig-
nored. To remove a register alias, call .rr on its name. A register’s contents do not become inac-
cessible until it has no more names.

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 208

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

.als new old
Create an alias new for the existing request, string, macro, or diversion named old, causing the
names to refer to the same stored object. If old is undefined, a warning in category “mac” is pro-
duced, and the request is ignored. The .am, .as, .da, .de, .di, and .ds requests (together with their
variants) create a new object only if the name of the macro, diversion, or string is currently unde-
fined or if it is defined as a request; normally, they modify the value of an existing object. To re-
move an alias, call .rm on its name. The object itself is not destroyed until it has no more names.

.aml xx yy
Similar to .am, but compatibility mode is switched off during execution. To be more precise, a
“compatibility save” token is inserted at the beginning, and a “compatibility restore” token at the
end. As a consequence, the requests .am, .aml, .de, and .del can be intermixed freely since the
compatibility save/restore tokens only affect the macro parts defined by .am1 and .ds1.

.ami xx yy
Append to macro indirectly. See the dei request below.

.amil xx yy
Same as the ami request but compatibility mode is switched off during execution.

.asl name string
Similar to .as, but compatibility mode is switched off when the appended portion of the string is
later interpolated. To be more precise, a “compatibility save” token is inserted at the beginning of
the appended string string, and a “compatibility restore” token at the end. As a consequence, the
requests .as, .asl, .ds, and .ds1 can be intermixed freely since the compatibility save/restore tokens
only affect the (sub)strings defined by .asl and .ds1.

.asciify div
Unformat the diversion div in a way such that Unicode basic Latin (ASCII) characters, characters
translated with the .trin request, space characters, and some escape sequences, that were formatted
and diverted into div are treated like ordinary input characters when div is reread. Doing so can be
useful in conjunction with the .writem request. .asciify can be also used for gross hacks; for ex-
ample, the following sets register n to 1.

.tr @.

.di x

@nr n 1
.br

.di

.tr @@
.asciify x
.X

.asciify cannot return all items in a diversion to their source equivalent: nodes such as those pro-
duced by \N[...] will remain nodes, so the result cannot be guaranteed to be a pure string. See
section “Copy mode” in groff(7). Glyph parameters such as the type face and size are not pre-
served; use .unformat to achieve that.

.backtrace
Write a backtrace of the input stack to the standard error stream. Also see the —b option of

troff(1).

.blm [name]
Set a blank line macro (trap). If a blank line macro is thus defined, groff’ executes macro when a
blank line is encountered in the input file, instead of the usual behavior. A line consisting only of
spaces is also treated as blank and subject to this trap. If no argument is supplied, the default
blank line behavior is (re-)established.

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 209

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

.box name

.boxa name
These requests are similar to the di and da requests, respectively, with the exception that any pend-
ing output line does not become part of the diversion (i.e., a box diversion always starts on a new
output line) but is restored after ending the diversion, discarding any partially collected line in the
diversion.

.break Exit a while loop. Do not confuse this request with a typographical break or the br request. See
.continue.

.brp This is the same as \p.

«cflagsncilc2...
Assign properties encoded by the number 7 to characters c/, ¢2, and so on.

Input characters, including special characters introduced by an escape, have certain properties as-
sociated with them. (Note that output glyphs don’t have such properties. In groff, a glyph is a
numbered box with a given height above and depth below the baseline, and a width—nothing
more.) These properties can be modified with this request. The first argument is the sum of the
desired flags and the remaining arguments are the characters to be assigned those properties.
Spaces between the cn arguments are optional. Any argument cn can be a character class defined
with the .class request rather than an individual character.

The non-negative integer n is the sum of any of the following. Some combinations are nonsensi-
cal, such as “33” (1 + 32).

1 Recognize the character as ending a sentence if followed by a newline or two spaces. Ini-
tially, characters “.?!” have this property.

2 Enable breaks before the character. A line is not broken at a character with this property
unless the characters on each side both have non-zero hyphenation codes. This exception
can be overridden by adding 64. Initially, no characters have this property.

4 Enable breaks after the character. A line is not broken at a character with this property
unless the characters on each side both have non-zero hyphenation codes. This exception
can be overridden by adding 64. Initially, characters “~\[hy]\lem]” have this property.

8 Mark the glyph associated with this character as overlapping other instances of itself hori-
zontally. Initially, characters ‘“\[ul\[rn]\[ru]\[radicalex]\[sqrtex]” have this property.

16 Mark the glyph associated with this character as overlapping other instances of itself ver-
tically. Initially, the character “\[br]” has this property.

32 Mark the character as transparent for the purpose of end-of-sentence recognition. In
other words, an end-of-sentence character followed by any number of characters with this
property is treated as the end of a sentence if followed by a newline or two spaces. This
is the same as having a zero space factor in TgX. Initially, characters
“"*\[dgIN[dd]\MrqI\[eq]” have this property.

64 Ignore hyphenation codes of the surrounding characters. Use this value in combination
with values 2 and 4. Initially, no characters have this property.

For example, if you need an automatic break point after the en-dash in numerical ranges
like “3000-5000", insert

.cflags 68 \[en]
into your document. Note, however, that this can lead to bad layout if done without
thinking; in most situations, a better solution than changing the .cflags value is inserting
“\:” right after the hyphen at the places that really need a break point.

The remaining values were implemented for East Asian language support; those who use alpha-
betic scripts exclusively can disregard them.

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 210

groff_diff (7)

Miscellaneous Information Manual groff_diff (7)

128 Prohibit a break before the character, but allow a break after the character. This works
only in combination with values 256 and 512 and has no effect otherwise. Initially, no
characters have this property.

256 Prohibit a break after the character, but allow a break before the character. This works
only in combination with values 128 and 512 and has no effect otherwise. Initially, no
characters have this property.

512 Allow a break before or after the character. This works only in combination with values
128 and 256 and has no effect otherwise. Initially, no characters have this property.

In contrast to values 2 and 4, the values 128, 256, and 512 work pairwise. If, for example, the left
character has value 512, and the right character 128, no break will be automatically inserted be-
tween them. If we use value 6 instead for the left character, a break after the character can’t be
suppressed since the neighboring character on the right doesn’t get examined.

.char g string

Define a new character or glyph g to be string, which can be empty. More precisely, .char defines
a groff object (or redefines an existing one) that is accessed with the name g on input, and pro-
duces string on output. Every time glyph g needs to be printed, string is processed in a temporary
environment and the result is wrapped up into a single object. Compatibility mode is turned off
and the escape character is set to \ while string is processed. Any emboldening, constant spacing,
or track kerning is applied to this object rather than to individual glyphs in string.

An object defined by this request can be used just like a normal glyph provided by the output de-
vice. In particular, other characters can be translated to it with the .tr request; it can be made the
leader glyph with the .Ic request; repeated patterns can be drawn with it using the \l and \LL escape
sequences; and words containing g can be hyphenated correctly, if the .hcode request is used to
give the object a hyphenation code.

There is a special anti-recursion feature: use of the object within its own definition is handled like
a normal character (one not defined with .char).

The .tr and .trin requests take precedence if .char accesses the same symbol.

A glyph definition can be removed with the .rchar request.

.chop object

Remove the last character from the macro, string, or diversion named object. This is useful for re-
moving the newline from the end of a diversion that is to be interpolated as a string. This request
can be used repeatedly on the same object; see section “Gtroff Internals” in Groff: The GNU Im-
plementation of troff, the groff Texinfo manual, for details on nodes inserted additionally by

groff .

.class name cl c2 ...

Define a character class (or simply “class”) name comprising the characters or range expressions
cl, ¢2, and so on.

A class thus defined can then be referred to in lieu of listing all the characters within it. Currently,
only the .cflags request can handle references to character classes.

In the request’s simplest form, each cn is a character (or special character).
.class [quotes] ' \[ag] \[dg] \[og] \[cg]l \[lql \[rqg]

Since class and glyph names share the same name space, it is recommended to start and end the
class name with “[” and “]”, respectively, to avoid collisions with existing character names defined
by groff or the user (with .char and related requests). This practice applies the presence of “]” in
the class name to prevent the usage of the special character escape form “\[...]”, thus you must use
the \C escape to access a class with such a name.

I3k L)

You can also use a character range expression consisting of a start character followed by and
then an end character. Internally, groff converts these two character names to Unicode code points
(according to the groff glyph list [GGL]), which determine the start and end values of the range.

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 211

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

If that fails, the class definition is skipped. Furthermore, classes can be nested.

.class [prepunct] , : ; > }

.class [prepunctx] \C'[prepunct]' \[u2013]-\[u2016]
The class “[prepunctx]” thus contains the contents of the class “[prepunct]” and characters in the
range U+2013-U+2016.

[T L)

If you want to include in a class, it must be the first character value in the argument list, other-
wise it gets misinterpreted as part of the range syntax.

Note that it is not possible to use class names as end points of range definitions.

A typical use of the .class request is to control line-breaking and hyphenation rules as defined by
the .cflags request. For example, to inhibit line breaks before the characters belonging to the
“[prepunctx]” class defined in the previous example, you can write the following.

.cflags 2 \C'[prepunctx]'

.close stream
Close the stream named stream; stream will no longer be an acceptable argument to the write re-
quest. See the open request.

.composite glyphl glyph2
Map glyph name glyphl to glyph name glyph2 if it is used in \[...] with more than one compo-
nent.

.continue
Skip the remainder of a while loop’s body, immediately starting the next iteration. See .break.

.color n
If n is non-zero or missing, enable colors (this is the default), otherwise disable them.

.cpn If n is non-zero or missing, enable compatibility mode, otherwise disable it. In compatibility
mode, long names are not recognized, and the incompatibilities caused by long names do not arise.

.defcolor ident scheme color-component . ..

Define a color named ident. scheme identifies a color space and determines the number of re-
quired color-components; it must be one of “rgb” (three components), “cmy” (three components),
“cmyk” (four components), or “gray” (one component). “grey” is accepted as a synonym of
“gray”. The color components can be encoded as a hexadecimal value starting with # or ##. The
former indicates that each component is in the range 0-255 (0-FF), the latter the range 0-65535
(O-FFFF). Alternatively, each color component can be specified as a decimal fraction in the range
0-1, interpreted using a default scaling unit of “f”, which multiplies its value by 65,536 (but
clamps it at 65,535).

Each output device has a color named “default”, which cannot be redefined. A device’s default
stroke and fill colors are not necessarily the same.

.del xx yy
Similar to .de, but compatibility mode is switched off during execution. On entry, the current
compatibility mode is saved and restored at exit.

.dei xx [yy]
Define macro indirectly, with the name of the macro to be defined in string xx and the name of the
end macro terminating its definition in string yy.

.deil xx [yy]
As .dei, but compatibility mode is switched off when the definition of the macro named in the
string xx is executed.

.device anything
This request performs (almost) the same operation as the \X escape sequence. anything is read in
copy mode. A leading " is stripped; this enables anything to contain leading spaces.

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 212

groff_diff (7)

Miscellaneous Information Manual groff_diff (7)

.devicem name

This request performs the same operation as the \Y escape sequence, embedding the contents of a
macro in the intermediate output as a “x X device control command.

do name ...

Interpret the string, request, diversion, or macro name (along with any arguments) with compati-
bility mode disabled. Compatibility mode is restored (only if it was active) when the expansion of
name is interpreted; that is, the restored compatibility state applies to the contents of the macro,
string, or diversion name as well as data read from files or pipes if name is any of the so, soquiet,
mso, msoquiet, or pso requests.

For example,
.de macl
FOO

.del mac2
groff
.macl

.de mac3

compatibility

.macl

.de ma

\\$1

.cp 1

.do macl

.do mac2 \" mac2, defined with .del, calls "macl"

.do mac3 \" mac3 calls "ma" with argument "cl"

.do mac3 \[ti] \" groff syntax accepted in .do arguments
results in

FOO groff FOO compatibility cl ~
as output.

.dsl name string

Cr

.€CS

Similar to .ds, but compatibility mode is switched off when the string is later interpolated. To be
more precise, a “compatibility save” token is inserted at the beginning of the string, and a “com-
patibility restore” token at the end.

Restore the escape character saved with ecs, or set escape character to “\” if none has been saved.

Save the current escape character.

.eve environment

Copy the contents of environment to the current environment.

The following environment data are not copied:

 apartially collected line, if present;

* the interruption status of the previous input line (due to use of the \c¢ escape sequence);

* the count of remaining lines to center, to right-justify, or to underline (with or without under-
lined spaces)—these are set to zero;

* the activation status of temporary indentation;

* input traps and their associated data;

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 213

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

* the activation status of line numbering (which can be reactivated with “.nm +0”); and
* the count of consecutive hyphenated lines (set to zero).

fam [family]
Set the font family to family. If no argument is given, switch to the previous font family, or the
default family if there is none. Use “\F[]” to do this with an escape sequence; “\FP” selects font
family “P” instead. The initial font family is “T” (Times), but can be overridden by the output de-
vice—see groff_font(5)). The current font family is associated with the environment.

fchar c string
Define fallback character (or glyph) c to be string. The syntax of this request is the same as the
char request; the only difference is that a glyph defined with char hides the glyph with the same
name in the current font, whereas a glyph defined with .fchar is checked only if the particular
glyph isn’t found in the current font. This test happens before checking special fonts.

fcolor color
Set the fill color to color. Without an argument, restore the previous fill color.

fschar fc string
Define fallback character (or glyph) ¢ for font f to be string. The syntax of this request is the
same as the char request (with an additional argument to specify the font); a glyph defined with
fschar is searched after the list of fonts declared with the fspecial request but before the list of
fonts declared with .special.

fspecial fs/s2 ...
When the current font is f, fonts s/, s2, ... are special, that is, they are searched for glyphs not in
the current font. Any fonts specified in the .special request are searched after fonts specified in the
[fspecial request. Without argument, reset the list of global special fonts to be empty.

ftr fg Translate font f to g. Whenever a font named f is referred to in an \f escape sequence, in the F
and S conditional expression operators, or in the ft, ul, bd, cs, tkf, special, fspecial, fp, or sty re-
quests, font g is used. If g is missing or equal to f, then font f is not translated.

fzoom fzoom
Set zoom factor zoom for font f. zoom must a non-negative integer multiple of 1/1000th. If it is
missing or is equal to zero, it means the same as 1000, namely no magnification. f must be a real
font name, not a style.

.gcolor color
Set the stroke color to color. Without an argument, restore the previous stroke color.

.heode ¢! codel [c2 code?] ...
Set the hyphenation code of character c/ to codel, that of c2 to code2, and so on. A hyphenation
code must be an ordinary character (not a special character escape sequence) other than a digit or a
space. The request is ignored if given no arguments.

For hyphenation to work, hyphenation codes must be set up. At startup, groff assigns hyphenation
codes to the letters “a—z” (mapped to themselves), to the letters “A—Z" (mapped to “a—z"), and
zero to all other characters. Normally, hyphenation patterns contain only lowercase letters which
should be applied regardless of case. In other words, they assume that the words “FOO” and
“Foo” should be hyphenated exactly as “foo” is. The .hcode request extends this principle to let-
ters outside the Unicode basic Latin alphabet; without it, words containing such letters won’t be
hyphenated properly even if the corresponding hyphenation patterns contain them.

.hla lang
Set the hyphenation language to lang. Hyphenation exceptions specified with the .hw request and
hyphenation patterns and exceptions specified with the .hpf and .hpfa requests are associated with
the hyphenation language. The .hla request is usually invoked by a localization file, which is in
turn loaded by the troffrc or troffrc—end file; see the .hpf request below.

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 214

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

The hyphenation language is associated with the environment.

.him [#]
Set the maximum number of consecutive hyphenated lines to n. If n is negative, there is no maxi-
mum. If omitted, n is —1. This value is associated with the environment. Only lines output from
a given environment count towards the maximum associated with that environment. Hyphens re-
sulting from \% are counted; explicit hyphens are not.

hpf pattern-file
Read hyphenation patterns from pattern-file. This file is sought in the same way that macro files
are with the .mso request or the —-mname command-line option to groff(1).

The pattern-file should have the same format as (simple) TgX pattern files. More specifically, the
following scanning rules are implemented.

. A percent sign starts a comment (up to the end of the line) even if preceded by a back-
slash.

. “Digraphs” like \$ are not supported.

. “AAxx” (where each x is 0-9 or a—f) and *”c¢ (character ¢ in the code point range 0-127
decimal) are recognized; other uses of * cause an error.

. No macro expansion is performed.

. hpf checks for the expression \patterns{. ..} (possibly with whitespace before or after the
braces). Everything between the braces is taken as hyphenation patterns. Consequently,
“{”” and “}” are not allowed in patterns.

. Similarly, \hyphenation{. . .} gives a list of hyphenation exceptions.
. \endinput is recognized also.

. For backwards compatibility, if \patterns is missing, the whole file is treated as a list of
hyphenation patterns (except that the “%” character is recognized as the start of a com-
ment).

Use the .hpfcode request (see below) to map the encoding used in hyphenation pattern files to
groff’s input encoding.

The set of hyphenation patterns is associated with the hyphenation language set by the .hla re-
quest. The .hpf request is usually invoked by a localization file loaded by the froffrc file. By de-
fault, troffrc loads the localization file for English. (As of groff 1.23.0, localization files for Czech
(cs), German (de), English (en), French (fr), Japanese (ja), Swedish (sv), and Chinese (zh) exist.)
For Western languages, the localization file sets the hyphenation mode and loads hyphenation pat-
terns and exceptions.

A second call to .hpf (for the same language) replaces the old patterns with the new ones.
Invoking .hpf causes an error if there is no hyphenation language.

If no .hpf request is specified (either in the document, in a file loaded at startup, or in a macro
package), groff won’t automatically hyphenate at all.

-hpfa pattern-file
As .hpf, except that the hyphenation patterns and exceptions from pattern-file are appended to the
patterns already applied to the hyphenation language of the environment.

hpfeode a b [cd] ...
Define mapping values for character codes in pattern files. This is an older mechanism no longer
used by groff’s own macro files; for its successor, see .hcode above. .hpf or .hpfa aplly the map-
ping after reading or appending to the active list of patterns. Its arguments are pairs of character
codes—integers from 0 to 255. The request maps character code a to code b, code ¢ to code d,
and so on. Character codes that would otherwise be invalid in groff can be used. By default,

[73e1] [T

every code maps to itself except those for letters “A” to “Z”, which map to those for “a” to “z”.

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 215

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

hym [length]
Set the (right) hyphenation margin to length. If the adjustment mode is not “b” or “n”, the line is
not hyphenated if it is shorter than length. Without an argument, the default hyphenation margin
is reset to its default value, 0. The default scaling unit is “m”. The hyphenation margin is associ-
ated with the environment.

A negative argument resets the hyphenation margin to zero, emitting a warning in category
“range”.

Jhys [hyphenation-space]
Suppress hyphenation of the line in adjustment modes “b” or “n”, if it can be justified by adding
no more than hyphenation-space extra space to each inter-word space. Without an argument, the
hyphenation space adjustment threshold is set to its default value, 0. The default scaling unit
is “m”. The hyphenation space adjustment threshold is associated with the current environment.

A negative argument resets the hyphenation space adjustment threshold to zero, emitting a warn-
ing in category “range”.

.tc n name
As .it, but lines interrupted with the \c escape sequence are not applied to the line count.

kern n If n is non-zero or missing, enable pairwise kerning, otherwise disable it.

Jdength reg anything
Compute the number of characters in anything and return the count in the register reg. If reg
doesn’t exist, it is created. anything is read in copy mode.

.ds xxx abcd\h'3i'efgh
.length yyy *[xxx]

\n[yyyl
14

Jinetabs n
If n is non-zero or missing, enable line-tabs mode, otherwise disable it (which is the default). In
line-tabs mode, tab distances are computed relative to the (current) output line. Otherwise they are
taken relative to the input line. For example, the following

.ds x a\t\c

.ds y b\t\c

.ds z c

.ta 1i 3i

*x

*y

*z
yields

a b c
In line-tabs mode, the same code gives

a b c

Line-tabs mode is associated with the current environment; the read-only register \n[.linetabs] is
set to 1 if in line-tabs mode, and O otherwise.

Jdsm [name]
Set the leading space macro (trap) to name. If there are leading space characters on an input line,
name is invoked in lieu of the usual roff behavior; the leading spaces are removed. The count of
leading spaces on an input line is stored in \n[lsn], and the amount of corresponding horizontal
motion in \n[lIss], irrespective of whether a leading space trap is set. When it is, the leading spaces
are removed from the input line, and no motion is produced before calling name. If no argument
is supplied, the default leading space behavior is (re-)established.

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 216

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

.mso file
The same as the so request except that file is searched for in the same directories as macro files for
the —m command-line option. If the file name to be included has the form name.tmac and it isn’t
found, .mso tries to include tmac.name instead and vice versa. If file does not exist, a warning in
category “file” is emitted and the request has no other effect.

.msoquiet file
As .mso, but no warning is emitted if file does not exist.

.nop anything
Interpret anything as if it were an input line. This is similar to “.if 1”. .nop is not really “no oper-
ation”; its argument is processed—unconditionally. It can be used to cause text lines to share in-
dentation with surrounding control lines.

aroff Make the n built-in condition true and the t built-in condition false. This can be reversed using the
troff request.

.open stream filename
Open filename for writing and associate the stream named stream with it. See also the close and
write requests.

.opena stream filename
Like open, but if filename exists, append to it instead of truncating it.

.output string
Emit string directly to the intermediate output (subject to copy-mode interpretation); this is similar
to \! used at the top level. An initial double quote in string is stripped off to allow initial blanks.

.pev Report the state of the current environment followed by that of all other environments to the stan-
dard error stream.

.por Write the names and values of all currently defined registers to the standard error stream.

.psbb filename
Get the bounding box of a PostScript image filename. This file must conform to Adobe’s Docu-
ment Structuring Conventions; the request attempts to extract the bounding box values from a
% % BoundingBox comment. After invocation, the x and y coordinates (in PostScript units) of
the lower left and upper right corners can be found in the registers \n[lIx], \n[lly], \n[urx], and
\n[ury], respectively. If an error occurs, these four registers are set to zero.

.pso command
This behaves like the so request except that input comes from the standard output of command.

-ptr Print the names and positions of all traps (not including input line traps and diversion traps) on
stderr. Empty slots in the page trap list are printed as well, because they can affect the priority of
subsequently planted traps.

[T L)

.pvs n Set the post-vertical line space to n; default scaling unit is “p”. This value is added to each line af-
ter it has been output. With no argument, the post-vertical line space is set to its previous value.

The total vertical line spacing consists of four components: .vs and \x with a negative value which
are applied before the line is output, and .pvs and \x with a positive value which are applied after
the line is output.

xcharclc2...
Remove the definitions of glyphs c/, ¢2, and so on. This undoes the effect of a .char request.

-eturn Within a macro, return immediately. If called with an argument, return twice, namely from the
current macro and from the macro one level higher. No effect otherwise.

xfschar fclc2 ...
Remove the font-specific definitions of glyphs c/, ¢2, ... for font f. Whitespace is optional be-
tween cn arguments. See .fschar.

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 217

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

Tj

xrjn Right justify the next n input lines. Without an argument right justify the next input line. The
number of lines to be right justified is available in the \n[.rj] register. This implicitly does .ce 0.
The ce request implicitly does .rj 0.

.INN XX Yy
Rename register xx to yy. If xx doesn’t exist, the request is ignored.

.schar c string
Define global fallback character (or glyph) c to be string. The syntax of this request is the same as
the char request; a glyph defined with schar is searched after the list of fonts declared with the
special request but before the mounted special fonts.

she glyph
Set the soft hyphen glyph, inserted when a word is hyphenated automatically or at a hyphenation
character, to glyph. If the argument is omitted, the soft hyphen glyph is set to the default, \[hy]. If
the selected glyph does not exist in the font in use at a potential hyphenation point, then the line is
not broken at that point. Neither character definitions (specified with the .char request) nor trans-
lations (specified with the .tr request) are considered when assigning the soft hyphen glyph.

shift » In a macro, shift the arguments by n positions: argument i becomes argument i — n; arguments 1
to n are no longer available. If n is missing, arguments are shifted by 1. Shifting by negative
amounts is currently undefined.

.sizes s1 52 ... sn [0]
Set the available type sizes to s/, s2, ... sn scaled points. The list of sizes can be terminated by an
optional “0”. Each si can also be a range m—n. In contrast to the device description file directive
of the same name (see groff_font(5)), the argument list can’t extend over more than one line.

.soquiet file
As .so, but no warning is emitted if file does not exist.

.special s/ s2 ...
Fonts s/, s2, ... are special and are searched for glyphs not in the current font. Without argu-
ments, reset the list of special fonts to be empty.

.spreadwarn [limit]
Emit a break warning if the additional space inserted for each space between words in an output
line adjusted to both margins with “.ad b” is larger than or equal to /imit. A negative value is
treated as zero; an absent argument toggles the warning on and off without changing limit. The
default scaling unit is m. At startup, .spreadwarn is inactive and /imit is 3 m.

For example,
.spreadwarn 0.2m

causes a warning if break warnings are not suppressed and troff must add 0.2 m or more for each
inter-word space in a line. See froff(1) for warning types and control.

.stringdown str

.stringup str
Alter the string named str by replacing each of its bytes with its lowercase (down) or uppercase
(up) version (if one exists). groff special characters (see groff_char(7)) can be used and the output
will usually transform in the expected way due to the regular glyph naming convention for ac-
cented characters.

.ds resume R\['e]sum\['e]\"
* [resume]

.stringdown resume

* [resume]

.stringup resume

* [resume]

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 218

groff_diff (7)

Miscellaneous Information Manual groff_diff (7)

Résumé résumé RESUME

sty nf Associate style f with font position n. A font position can be associated either with a font or with

a style. The current font is the index of a font position and so is also either a font or a style. When
it is a style, the font that is actually used is the font the name of which is the concatenation of the
name of the current family and the name of the current style. For example, if the current font is 1
and font position 1 is associated with style R and the current font family is T, then font TR is
used. If the current font is not a style, then the current family is ignored. When the requests cs,
bd, tkf, uf, or fspecial are applied to a style, then they are applied instead to the member of the
current family corresponding to that style. The default family can be set with the —f command-
line option. The styles command in the DESC file controls which font positions (if any) are ini-
tially associated with styles rather than fonts.

.substring str start [end]

Replace the string named str with its substring bounded by the indices start and end, inclusive.
The first character in the string has index 0. If end is omitted, it is implicitly set to the largest
valid value (the string length minus one). Negative indices count backwards from the end of the
string: the last character has index —1, the character before the last has index —2, and so on.

.ds xxx abcdefgh
.substring xxx 1 -4
* [xxx]

bcde

.substring xxx 2

* [xxx]

de

Akf fsl nl s2n2

Enable track kerning for font f. When the current font is f the width of every glyph is increased
by an amount between n/ and n2; when the current type size is less than or equal to s/ the width is
increased by nl; when it is greater than or equal to s2 the width is increased by n2; when the type
size is greater than or equal to s/ and less than or equal to s2 the increase in width is a linear func-
tion of the type size.

.tml1 string

Similar to the tm request, string is read in copy mode and written on the standard error, but an ini-
tial double quote in string is stripped off to allow initial blanks.

.tmc string

Similar to tm1 but without writing a final newline.

trf filename

Transparently output the contents of file filename. Each line is output as if preceded by \!; how-
ever, the lines are not subject to copy-mode interpretation. If the file does not end with a newline,
then a newline is added. For example, you can define a macro x containing the contents of file f,
using

.di x

.trf £

.di

Unlike with the cf request, the file cannot contain characters, such as NUL, that are not valid troff
input characters.

trin abcd

This is the same as the tr request except that the asciify request uses the character code (if any) be-
fore the character translation. Example:

.trin ax
.di xxx
a

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 219

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

.br

.di

. XXX

.trin aa
.asciify =xxx
. XXX

The result is x a. Using tr, the result would be x x.

.trnt abcd
This is the same as the tr request except that the translations do not apply to text that is transpar-
ently throughput into a diversion with \!. For example,

.tr ab
.di x
\!.tm a
.di

.X

prints b; if trnt is used instead of tr it prints a.

troff Make the n built-in condition false, and the t built-in condition true. This undoes the effect of the
nroff request.

.unformat div
Like .asciify, unformat the diversion div. However, .unformat handles only tabs and spaces be-
tween words, the latter usually arising from spaces or newlines in the input. Tabs are treated as in-
put tokens, and spaces become adjustable again. The vertical sizes of lines are not preserved, but
glyph information (font, type size, space width, and so on) is retained.

.vpt n Enable vertical position traps if n is non-zero, disable them otherwise. Vertical position traps are
traps set by the wh or dt requests. Traps set by the it request are not vertical position traps. The
parameter that controls whether vertical position traps are enabled is global. Initially, vertical po-
sition traps are enabled.

.warn [n]
Select the categories, or “types”, of reported warnings. n is the sum of the numeric codes associ-
ated with each warning category that is to be enabled; all other categories are disabled. The cate-
gories and their associated codes are listed in section “Warnings” of troff(1). For example, “.warn
0” disables all warnings, and “.warn 1” disables all warnings except those about missing glyphs.
If no argument is given, all warning categories are enabled.

.warnscale si
Set the scaling unit used in warnings to si. Valid values for si are u, i, ¢, p, and P. At startup, it is
settoi.

-while cond-expr anything
Evaluate the conditional expression cond-expr, and repeatedly execute anything unless and until
cond-expr evaluates false. anything, which is often a conditional block, is referred to as the while
request’s body.

troff treats the body of a while request similarly to that of a de request (albeit one not read in copy
mode), but stores it under an internal name and deletes it when it exits. The operation of a macro
containing a while request can slow significantly if the while body is large. Each time the macro
is executed, the while body is parsed and stored again. An often better solution—and one that is
more portable, since AT&T troff lacked the while request—is to instead write a recursive macro.
It will only be parsed once (unless you redefine it). To prevent infinite loops, the default number
of available recursion levels is 1,000 or somewhat less (because things other than macro calls can
be on the input stack). You can disable this protective measure, or raise the limit, by setting the
slimit register. See section “Debugging” below.

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 220

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

If a while body begins with a conditional block, its closing brace must end an input line.
The break and continue requests alter a while loop’s flow of control.

.write stream anything
Write anything to the stream named stream. stream must previously have been the subject of an
open request. anything is read in copy mode; a leading " is stripped.

.writec stream anything
Similar to write but without writing a final newline.

-writem stream xx
Write the contents of the macro or string xx to the stream named stream. stream must previously
have been the subject of an open request. xx is read in copy mode.

Extended requests
«f filename
When used in a diversion, this embeds in the diversion an object which, when reread, will cause
the contents of filename to be transparently copied through to the output. In AT&T troff, the con-
tents of filename are immediately copied through to the output regardless of whether there is a
current diversion; this behavior is so anomalous that it must be considered a bug.

.de xx yy

.am xx yy

.ds xx yy

.as xx yy
In compatibility mode, these requests behave similarly to .del, .aml, .ds1, and .as1, respectively:
a “compatibility save” token is inserted at the beginning, and a “compatibility restore” token at the
end, with compatibility mode switched on during execution.

hyn New values 16 and 32 are available; the former enables hyphenation before the last character in a
word, and the latter enables hyphenation after the first character in a word.

.Ss word-space-size additional-sentence-space-size
A second argument to the .ss request sets the amount of additional space separating sentences on
the same output line. If omitted, this amount is set to word-space-size. The arguments’ units are
twelfths of the space width of the current font (see groff_font(5)) and default to 12.

ga[[nin2...nn T rir2...rn]
groff supports an extended syntax to specify repeating tab stops after the “T”” mark. These values
are always taken as relative distances from the previous tab stop. This is the idiomatic way to
specify tab stops at equal intervals in groff.

The syntax summary above instructs groff to set tabs at positions nl, n2, ..., nn, then at nn +rl,
m+r2,...,nn+rn,thenatnn+rn+rl, nn+rm+r2, ..., nn+rn+rn, and so on.

New registers
The following read-only registers are available:

\n[.br] Within a macro call, it is set to 1 if the macro is called with the ‘normal’ control character (‘.” by
default), and set to O otherwise. This allows the reliable modification of requests.

.als bp*orig bp

.de bp

.tm before bp

.ie \\n[.br] .bp*orig
.el 'bp*orig

.tm after bp

Using this register outside of a macro makes no sense (it always returns zero in such cases).

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 221

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

\n[.C] 1 if compatibility mode is in effect, 0 otherwise.

\n[.cdp]
The depth of the last glyph added to the current environment. It is positive if the glyph extends be-
low the baseline.

\n[.ce] The number of lines remaining to be centered, as set by the ce request.

\n[.cht] The height of the last glyph added to the current environment. It is positive if the glyph extends
above the baseline.

\n[.color]
1 if colors are enabled, O otherwise.

\n[.cp] Within a .do request, holds the saved value of compatibility mode (see \n[.C] above).

\n[.csk]
The skew of the last glyph added to the current environment. The skew of a glyph is how far to the
right of the center of a glyph the center of an accent over that glyph should be placed.

\n[.ev] The name or number of the current environment. This is a string-valued register.

\n[.fam]
The current font family. This is a string-valued register.

\n[.fn] The current (internal) real font name. This is a string-valued register. If the current font is a style,
the value of \n[.fn] is the proper concatenation of family and style name.

\n[.fp] The number of the next free font position.
\n[.g] Always 1. Macros should use this to determine whether they are running under GNU troff.

\n[.height]
The current height of the font as set with \H.

\n[.hla] The hyphenation language in the current environment.

\n[.hlc] The count of immediately preceding consecutive hyphenated lines in the current environment.

\n[.hlm]
The maximum number of consecutive hyphenated lines allowed in the current environment.

\n[.hy] The hyphenation mode in the current environment.

\n[.hym]
The hyphenation margin in the current environment.

\n[.hys]
The hyphenation space adjustment threshold in the current environment.

\n[.in] The indentation that applies to the current output line.
\n[.int] Set to a positive value if last output line is interrupted (i.e., if it contains \c).

\n[.kern]
1 if pairwise kerning is enabled, 0 otherwise.

\n[.lg] The current ligature mode (as set by the 1g request).

\n[.linetabs]
The current line-tabs mode (as set by the linetabs request).

\n[.ll] The line length that applies to the current output line.
\n[.It] The title length as set by the It request.
\n[.m] The name of the current stroke color. This is a string-valued register.

\n[.M] The name of the current fill color. This is a string-valued register.

groff 1.23.0.rc1.2692-2d9%e 17 June 2022 222

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

\n[.ne] The amount of space that was needed in the last ne request that caused a trap to be sprung. Useful
in conjunction with the \n[.trunc] register.

\n[.nm]
1 if output line numbering is enabled (even if temporarily suppressed), 0 otherwise.

\n[.ns] 1 if no-space mode is active, 0 otherwise.

\n[.0O] The current output level as set with \O.

\n[.P] 1 if the current page is in the output list set with —o.

\n[.pe] 1 during a page ejection caused by the bp request, 0 otherwise.

\n[.pn] The number of the next page, either the value set by a pn request, or the number of the current
page plus 1.
\n[.ps] The current type size in scaled points.

\n[.psr]
The last-requested type size in scaled points.

\n[.pvs]
The current post-vertical line space as set with the pvs request.

\n[.rj]l The number of lines to be right-justified as set by the rj request.

\n[.slant]
The slant of the current font as set with \S.

\n[.sr] The last requested type size in points as a decimal fraction. This is a string-valued register.

\n[.ss]

\n[.sss] The values of minimal inter-word spacing and additional inter-sentence space, respectively, in
twelfths of the space width of the current font. Set by the .ss request.

\n[.sty] The current font style. This is a string-valued register.

\n[.tabs]
A string represen