Color Key: Swarms, Objects/agents, Methods, Types/Classes, parameters/varibles, Comments

// Heatbugs application. Copyright (C) 1996 Santa Fe Institute.

// This library is distributed without any warranty; without even the

// implied warranty of merchantability or fitness for a particular purpose.

// See file LICENSE for details and terms of copying.

// Heatbugs are agents in a 2d world with simple behaviour:

// if too cold, move to warmer spot

// if too warm, move to cooler spot.

// and some occasional exceptions

// if the spot is occupied, try to move to an unoccupied spot.

// randomMoveProbability chance of moving to a random spot

#import "Heatbug.h"

#import <simtools.h>

// Defining the methods for a Heatbug.

@implementation Heatbug

// Initialize crucial state for the heatbug.

-setWorld: (Grid2d *) w Heat: (HeatSpace *) h {

 // Strictly speaking, this check isn't necessary. But we intend these

 // parameters to be immutable once set, so to be extrasafe we check:

 // it could catch an error later.

 if (world != nil || heat != nil) {

 [InvalidArgument raiseEvent: "You can only set the world/heat of a heatbug at once at creation time\n"];

 }

 world = w;

 heat = h;

 return self;

}

// createEnd. This is a good place to put code that does various sorts

// of initialization that can only be done after some parameters of the

// object are set. It's also a good time to check for errors in creation.

-createEnd {

 // make sure the user set up world and heat.

 if (world == nil || heat == nil) {

 [InvalidCombination raiseEvent: "Heatbug was created without a world or heat.\n"];

 }

 // Cache the worldSize for speed of later access. Note how we do

 // this in createEnd - it could also have been done when setWorld:Heat:

 // was called, but this is a good place to do it, too. If an object

 // needed to allocate extra memory, this is the right place to do it.

 worldXSize = [world getSizeX];

 worldYSize = [world getSizeY];

 // Someday, it'd be good if the space library to be powerful enough that

 // the heatbugs never need to be aware how big their world is.

 return self;					 // CRUCIAL!

}

// Methods for reading/writing a Heatbug's state during runtime.

// The probe mechanism is the lowlevel way of getting at an object's

// state - you're also allowed (but not required) to write methods to

// access the state as you find it is necessary or convenient.

// Note the naming convention: for a variable named "fooBar" methods are

// -(sometype) getFooBar;

// -setFooBar;

// this naming convention will be important for a later version of probe.

// (probe will preferentially use these methods instead of direct access).

// Reading unhappiness is a common enough operation that we provide a

// special method.

-(double) getUnhappiness {

 return unhappiness;

}

// Simple set methods for Heatbug state. Some of these are probably not

// going to normally change in a heatbugs lifetime, but there's no reason

// they couldn't change.

-setIdealTemperature: (HeatValue) i {

 idealTemperature = i;

 return self;

}

-setOutputHeat: (HeatValue) o {

 outputHeat = o;

 return self;

}

-setRandomMoveProbability: (float) p {

 randomMoveProbability = (float) p;

 return self;

}

// This method is a bit dangerous: we blindly put ourselves on top of

// the grid no matter what's underneath us: because Grid2d only allows

// one object per square, we could be destroying data. This is poor

// design, but fortunately doesn't kill us in this particular app. If

// some other object really needed to find all objects based on

// looking in the grid, it would cause problems. (But note, in heatbug

// creation, how we tell Grid2d to turn off its warnings about overwrites)

-setX: (int) inX Y: (int) inY {

 x = inX;

 y = inY;

 [world putObject: self atX: x Y: y];		 // yikes!

 return self;

}

// All of the previous code is basic Swarm object programming. The

// real simulation code follows.

// Heatbug behaviour is actually implemented here. The notion of a "step"

// method is a nice simplification for basic simulations.

-step {

 HeatValue heatHere;

 int newX, newY;

 int tries;

 // find out the heat where we are sitting.

 heatHere = [heat getValueAtX: x Y: y];

 // update my current unhappiness value: abs(ideal - here);

 if (heatHere < idealTemperature)

 unhappiness = (double)(idealTemperature - heatHere) / maxHeat;

 else

 unhappiness = (double)(heatHere - idealTemperature) / maxHeat;

 // now ask the heatspace to tell us where the warmest or coldest spot is

 // The method call returns values back into newX and newY.

 newX = x;

 newY = y;

 [heat findExtremeType: (heatHere < idealTemperature) ? hot :

	X: &newX Y: &newY];

 // After choice of ideal spot is made, there's a chance of random move.

 // (Note the normalization of coordinates to [0, worldSize). The current

 // space library does not enforce boundary conditions.)

 if (((float)[uniformDblRand

 getDoubleWithMin: 0.0 withMax: 1.0]) < randomMoveProbability) {

 newX = (x +

 [uniformIntRand

 getIntegerWithMin: -1L withMax: 1L]); // pick a random spot

 newY = (y + [uniformIntRand getIntegerWithMin: -1L withMax: 1L]);

 newX = (newX + worldXSize) % worldXSize; // normalize coords

 newY = (newY + worldYSize) % worldYSize;

 }

 // Part of the heatbug simulation is that two bugs cannot be in the

 // same spot. The code to enforce that is done here: if the site we

 // want is occupied by another heatbug, move randomly. Note that

 // this code does not parallelize properly, it requires that each

 // bug be set a "step" method in sequence. This is a design flaw in

 // heatbugs: proper conflict resolution is difficult.

 // Also note we only look for 10 random spots - if we don't find an

 // unoccupied spot by then, assume it's too crowded and just don't move.

 tries = 0;

 while ([world getObjectAtX: newX Y: newY] != nil && tries < 10) {

 newX = (x + [uniformIntRand getIntegerWithMin: -1L withMax: 1L] + worldXSize) % worldXSize;

 newY = (y + [uniformIntRand getIntegerWithMin: -1L withMax: 1L] + worldYSize) % worldYSize;

 tries++;					 // don't try too hard.

 }

 if (tries == 10) {					 // no nearby clear spot

 newX = x;					 // so just don't move.

 newY = y;

 }

 // Phew - we've finally found a spot to move ourselves, in (newX, newY).

 // Update heat where we were sitting.

 [heat addHeat: outputHeat X: x Y: y];

 // Now move ourselves in the grid and update our coordinates.

 [world putObject: nil atX: x Y: y];

 x = newX;

 y = newY;

 [world putObject: self atX: newX Y: newY];

 // all done moving! Return self.

 return self;

}

// Extra bits of display code: setting our colour, drawing on a window.

// This code works, but it'd be better if there were a generic object

// that knew how to draw agents on grids.

-setBugColor: (Color) c {

 bugColor = c;

 return self;

}

-setPixmap: pm {

 bugPixmap = pm;

 return self;

}

-drawSelfOn: (Raster *) r {

 [r
