Color Key: Swarms, Objects/agents, Methods, Types/Classes, parameters/varibles, Comments

// Heatbugs application. Copyright (C) 1996 Santa Fe Institute.

// This library is distributed without any warranty; without even the

// implied warranty of merchantability or fitness for a particular purpose.

// See file LICENSE for details and terms of copying.

#import "HeatbugBatchSwarm.h"

#import "HeatbugModelSwarm.h"

#import <collections.h>

@implementation HeatbugBatchSwarm

// createBegin: here we set up the default observation parameters.

+createBegin: (id) aZone {

 HeatbugBatchSwarm * obj;

 // Superclass createBegin to allocate ourselves.

 obj = [super createBegin: aZone];

 // Fill in the relevant parameters.

 obj->loggingFrequency = 1;

 obj->experimentDuration = 250;

 return obj;

}

-buildObjects {

 id modelZone;					 // zone for model.

 [super buildObjects];

 // create a zone for the model, create the model there.

 modelZone = [Zone create: [self getZone]];

 heatbugModelSwarm = [HeatbugModelSwarm create: modelZone];

 // In HeatbugObserverSwarm, we'd build some probes and wait for a

 // user control event (this allows the user to fiddle with the

 // parameters of the experiment). But since we don't have any graphics,

 // we load the batch.setup parameter file (which should contain values

 // for such variables as experimentDuration and loggingFrequency) and

 // the model.setup parameter file (which contains values for the model

 // specific variables such as numBugs etc.).

 [ObjectLoader load: self fromFileNamed: "batch.setup"] ;

 [ObjectLoader load: heatbugModelSwarm fromFileNamed: "experiment.setup"] ;

 // Now, let the model swarm build its objects.

 [heatbugModelSwarm buildObjects];

 // Finally, build some data analysis objects. In this case we're just

 // going to create an EZGraph (with graphics turned off and fileI/O

 // turned on) collect some statistics (the average) over the collection

 // of heatbugs (which we get from the heatbugModelSwarm).

 // If the user sets loggingFrequency to 0 s/he does not require the

 // logging of results at all. Consequently, some objects will not

 // be created -> the schedule will also be simplified. This sort of

 // switch is useful when the Sim could potentially log many different

 // aspects of the model...

 if(loggingFrequency){

 unhappyGraph = [EZGraph createBegin: [self getZone]];

 [unhappyGraph setGraphics: 0] ;

 [unhappyGraph setFileOutput: 1] ;

 unhappyGraph = [unhappyGraph createEnd] ;

 [unhappyGraph createAverageSequence: "unhappiness.output"

 withFeedFrom: [heatbugModelSwarm getHeatbugList]

 andSelector: M(getUnhappiness)] ;

 }

 // All done - we're ready to build a schedule and go.

 return self;

}

// Create the actions necessary for the simulation. This is where

// the schedule is built (but not run!)

-buildActions {

 [super buildActions];

 // First, let our model swarm build its own schedule.

 [heatbugModelSwarm buildActions];

 if(loggingFrequency){

 // Create an ActionGroup for display. This is pretty minimal in this

 // case. Note, there's no doTkEvents message - no control panel!

 displayActions = [ActionGroup create: [self getZone]];

 // Now schedule the update of the unhappyGraph, which will in turn

 // cause the fileI/O to occur...

 [displayActions createActionTo: unhappyGraph message: M(step)];

 // the displaySchedule controls how often we write data out.

 displaySchedule = [Schedule createBegin: [self getZone]];

 [displaySchedule setRepeatInterval: loggingFrequency];

 displaySchedule = [displaySchedule createEnd];

 [displaySchedule at: 0 createAction: displayActions];

 }

 // We also add in a "stopSchedule", another schedule with an absolute

 // time event - stop the system at time .

 stopSchedule = [Schedule create: [self getZone]];

 [stopSchedule at: experimentDuration

 createActionTo: self

 message: M(stopRunning)];

 return self;

}

// activateIn: - get the Swarm ready to run.

-activateIn: (id) swarmContext {

 // First, activate ourselves (just pass along the context).

 [super activateIn: swarmContext];

 // We need to activate the model swarm.

 [heatbugModelSwarm activateIn: self];

 // Now activate our schedules in ourselves. Note that we just activate

 // both schedules: the activity library will merge them properly.

 [stopSchedule activateIn: self];

 if(loggingFrequency)

 [displaySchedule activateIn: self];

 // Activate returns the swarm activity - the thing that's ready to run.

 return [self getActivity];

}

// the HeatbugObserverSwarm had a go method inherited from GUISwarm,

// but we have to define our own here. It's pretty simple. There's also

// a friendly message printed out here just in case someone is confused

// when they run heatbugs and see no graphics.

-go {

 printf(

 "You typed 'heatbugs -batchmode', so we're running without graphics.\n");

 printf("Heatbugs is running for %d timesteps.\n",experimentDuration) ;

 if(loggingFrequency)

 printf("It is logging data every %d timesteps to: unhappiness.output.\n",

 loggingFrequency);

 [[self getActivity] run];

 return [[self getActivity] getStatus];

}

// And the termination method. When this fires we just terminate everything

// that's running and close our output file(s) by dropping the EZGraph which

// "owns" the sequence(s) we are logging.

-stopRunning {

 [getTopLevelActivity() terminate]; // Terminate the simulation.

 if(loggingFrequency)

