Color Key: Swarms, Objects/agents, Methods, Types/Classes, parameters/varibles, Comments

// Heatbugs application. Copyright (C) 1996 Santa Fe Institute.

// This library is distributed without any warranty; without even the

// implied warranty of merchantability or fitness for a particular purpose.

// See file LICENSE for details and terms of copying.

// Bits to support a specialization of diffusion objects: "heat space".

// Most of the real work is done in Diffuse, which implements a CA.

// These functions simplify and stereotype access to the space variable,

// making the Heatbug code higher level.

#import "HeatSpace.h"

// global constant: maximum heat.

// This could just be used from the Diffuse2d object's max states.

const HeatValue maxHeat = 0x7fff;

@implementation HeatSpace

// Add heat to the current spot. This code checks the bounds on maxHeat,

// pegs value at the top.

-addHeat: (HeatValue) moreHeat X: (int) x Y: (int) y {

 HeatValue heatHere;

 heatHere = [self getValueAtX: x Y: y];		 // read the heat

 if (moreHeat <= maxHeat - heatHere) 		 // would add be too big?

 heatHere = heatHere + moreHeat;		 // no, just add

 else

 heatHere = maxHeat;				 // yes, use max

 [self putValue: heatHere atX: x Y: y];		 // set the heat.

 return self;

}

// Search the 9 cell neighbourhood for the requested extreme (cold or hot)

// The X and Y arguments are used both as input (where to search from)

// and as output (pointers are filled with the coordinate of the extreme).

// Note that wraparound edges (boundary conditions) are implicitly in

// the code - look at the call to [self getCellX:Y:].

-(HeatValue) findExtremeType: (HeatExtremeType) type X: (int *) px Y: (int *) py {

 HeatValue bestHeat;

 int x, y;

 int bestX, bestY;

 // prime loop: assume extreme is right where we're standing

 bestX = *px;

 bestY = *py;

 bestHeat = [self getValueAtX: bestX Y: bestY];

 // Now scan through the world, finding the best cell in the 8 cell nbd.

 // Note that this is slightly biased: if two cells have the same

 // best heat, then the one more to the top (or left) is preferred.

 // To do this exactly, you have to keep a list of all best ones and

 // then choose a random element.

 for (x = *px - 1; x <= *px + 1; x++) {

 for (y = *py - 1; y <= *py + 1; y++) {

 HeatValue heatHere;

 BOOL hereIsBetter;

 heatHere = [self getValueAtX: (x+xsize)%xsize Y: (y+ysize)%ysize];

 hereIsBetter = (type == cold) ? (heatHere < bestHeat): (heatHere > bestHeat);

 if (hereIsBetter) {				 // this spot more extreme

	bestHeat = heatHere;			 // update information

	bestX = x;

	bestY = y;

 }

 }

 }

 // Now we've found the requested extreme. Arrange to return the

 // information (normalize coordinates), and return the heat we found.

 *px
