qemu-devel
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [PATCH v32 04/13] target/avr: Add instruction translation - Register


From: Aleksandar Markovic
Subject: Re: [PATCH v32 04/13] target/avr: Add instruction translation - Registers definition
Date: Fri, 18 Oct 2019 10:52:25 +0200



On Thursday, October 17, 2019, Michael Rolnik <address@hidden> wrote:
On Thu, Oct 17, 2019 at 11:17 PM Aleksandar Markovic
<address@hidden> wrote:
>>
>>
>> >> +static TCGv cpu_Cf;
>> >> +static TCGv cpu_Zf;
>> >> +static TCGv cpu_Nf;
>> >> +static TCGv cpu_Vf;
>> >> +static TCGv cpu_Sf;
>> >> +static TCGv cpu_Hf;
>> >> +static TCGv cpu_Tf;
>> >> +static TCGv cpu_If;
>> >> +
>> >
>> >
>> > Hello, Michael,
>> >
>> > Is there any particular reason or motivation beyond modelling status register flags as TCGv variables?
>>
>>
>>
>> I think it's easier this way as I don't need to convert flag values to
>> bits or bits to flag values.
>
>
> Ok. But, how do you map 0/1 flag value to the value of a TCGv variable and vice versa? In other words, what value or values (out of 2^32 vales) of a TCGv variable mean the flag is 1? And the same question for 0.
>
> Is 0110000111000010100 one or zero?
>
> Besides, in such arrangement, how do you display the 8-bit status register in gdb, if at all?

each flag register is either 0 or 1,....



Michael,

If this is true, why is there a special handling of two flags in the following code:


static inline uint8_t cpu_get_sreg(CPUAVRState *env)
{
uint8_t sreg;
sreg = (env->sregC & 0x01) << 0
| (env->sregZ == 0 ? 1 : 0) << 1
| (env->sregN) << 2
| (env->sregV) << 3
| (env->sregS) << 4
| (env->sregH) << 5
| (env->sregT) << 6
| (env->sregI) << 7;
return sreg;
}
static inline void cpu_set_sreg(CPUAVRState *env, uint8_t sreg)
{
env->sregC = (sreg >> 0) & 0x01;
env->sregZ = (sreg >> 1) & 0x01 ? 0 : 1;
env->sregN = (sreg >> 2) & 0x01;
env->sregV = (sreg >> 3) & 0x01;
env->sregS = (sreg >> 4) & 0x01;
env->sregH = (sreg >> 5) & 0x01;
env->sregT = (sreg >> 6) & 0x01;
env->sregI = (sreg >> 7) & 0x01;
}
 ?


Thanks,
A.

 they are calculated here
1. https://github.com/michaelrolnik/qemu-avr/blob/avr-v32/target/avr/translate.c#L146-L148
2. https://github.com/michaelrolnik/qemu-avr/blob/avr-v32/target/avr/translate.c#L166
3. https://github.com/michaelrolnik/qemu-avr/blob/avr-v32/target/avr/translate.c#L185-L187
4. https://github.com/michaelrolnik/qemu-avr/blob/avr-v32/target/avr/translate.c#L205
5. https://github.com/michaelrolnik/qemu-avr/blob/avr-v32/target/avr/translate.c#L214-L215
6. https://github.com/michaelrolnik/qemu-avr/blob/avr-v32/target/avr/translate.c#L222-L223
The COU itself never uses SREG at all, only the flags.

As for the GDB it's get assembled/disassembled here
1. https://github.com/michaelrolnik/qemu-avr/blob/avr-v32/target/avr/cpu.h#L219-L243
2. https://github.com/michaelrolnik/qemu-avr/blob/avr-v32/target/avr/gdbstub.c#L35-L37
3. https://github.com/michaelrolnik/qemu-avr/blob/avr-v32/target/avr/gdbstub.c#L66-L68

>
> A.
>
>>
>> >
>> > A.
>> >
>> >
>> >
>> >>
>> >> +static TCGv cpu_rampD;
>> >> +static TCGv cpu_rampX;
>> >> +static TCGv cpu_rampY;
>> >> +static TCGv cpu_rampZ;
>> >> +
>> >> +static TCGv cpu_r[NO_CPU_REGISTERS];
>> >> +static TCGv cpu_eind;
>> >> +static TCGv cpu_sp;
>> >> +
>> >> +static TCGv cpu_skip;
>> >> +
>> >> +static const char reg_names[NO_CPU_REGISTERS][8] = {
>> >> +    "r0",  "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
>> >> +    "r8",  "r9",  "r10", "r11", "r12", "r13", "r14", "r15",
>> >> +    "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
>> >> +    "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
>> >> +};
>> >> +#define REG(x) (cpu_r[x])
>> >> +
>> >> +enum {
>> >> +    DISAS_EXIT   = DISAS_TARGET_0,  /* We want return to the cpu main loop.  */
>> >> +    DISAS_LOOKUP = DISAS_TARGET_1,  /* We have a variable condition exit.  */
>> >> +    DISAS_CHAIN  = DISAS_TARGET_2,  /* We have a single condition exit.  */
>> >> +};
>> >> +
>> >> +typedef struct DisasContext DisasContext;
>> >> +
>> >> +/* This is the state at translation time. */
>> >> +struct DisasContext {
>> >> +    TranslationBlock *tb;
>> >> +
>> >> +    CPUAVRState *env;
>> >> +    CPUState *cs;
>> >> +
>> >> +    target_long npc;
>> >> +    uint32_t opcode;
>> >> +
>> >> +    /* Routine used to access memory */
>> >> +    int memidx;
>> >> +    int bstate;
>> >> +    int singlestep;
>> >> +
>> >> +    TCGv skip_var0;
>> >> +    TCGv skip_var1;
>> >> +    TCGCond skip_cond;
>> >> +    bool free_skip_var0;
>> >> +};
>> >> +
>> >> +static int to_A(DisasContext *ctx, int indx) { return 16 + (indx % 16); }
>> >> +static int to_B(DisasContext *ctx, int indx) { return 16 + (indx % 8); }
>> >> +static int to_C(DisasContext *ctx, int indx) { return 24 + (indx % 4) * 2; }
>> >> +static int to_D(DisasContext *ctx, int indx) { return (indx % 16) * 2; }
>> >> +
>> >> +static uint16_t next_word(DisasContext *ctx)
>> >> +{
>> >> +    return cpu_lduw_code(ctx->env, ctx->npc++ * 2);
>> >> +}
>> >> +
>> >> +static int append_16(DisasContext *ctx, int x)
>> >> +{
>> >> +    return x << 16 | next_word(ctx);
>> >> +}
>> >> +
>> >> +
>> >> +static bool avr_have_feature(DisasContext *ctx, int feature)
>> >> +{
>> >> +    if (!avr_feature(ctx->env, feature)) {
>> >> +        gen_helper_unsupported(cpu_env);
>> >> +        ctx->bstate = DISAS_NORETURN;
>> >> +        return false;
>> >> +    }
>> >> +    return true;
>> >> +}
>> >> +
>> >> +static bool decode_insn(DisasContext *ctx, uint16_t insn);
>> >> +#include "decode_insn.inc.c"
>> >> +
>> >> --
>> >> 2.17.2 (Apple Git-113)
>> >>
>>
>>
>> --
>> Best Regards,
>> Michael Rolnik



--
Best Regards,
Michael Rolnik

reply via email to

[Prev in Thread] Current Thread [Next in Thread]