qemu-devel
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[Qemu-devel] [PATCH RESEND v6 09/14] numa: Extend the CLI to provide mem


From: Tao Xu
Subject: [Qemu-devel] [PATCH RESEND v6 09/14] numa: Extend the CLI to provide memory latency and bandwidth information
Date: Tue, 9 Jul 2019 15:15:15 +0800

From: Liu Jingqi <address@hidden>

Add -numa hmat-lb option to provide System Locality Latency and
Bandwidth Information. These memory attributes help to build
System Locality Latency and Bandwidth Information Structure(s)
in ACPI Heterogeneous Memory Attribute Table (HMAT).

Signed-off-by: Liu Jingqi <address@hidden>
Signed-off-by: Tao Xu <address@hidden>
---

Changes in v6:
    - Update the describes in ACPI 6.3(The entry base unit for latency is
      in picoseconds)
    - Update the designator to 4.2 (Eric)
---
 hw/core/numa.c        | 127 ++++++++++++++++++++++++++++++++++++++++++
 include/sysemu/numa.h |   2 +
 qapi/machine.json     | 103 +++++++++++++++++++++++++++++++++-
 qemu-options.hx       |  45 ++++++++++++++-
 4 files changed, 274 insertions(+), 3 deletions(-)

diff --git a/hw/core/numa.c b/hw/core/numa.c
index cfb6339810..83ead77191 100644
--- a/hw/core/numa.c
+++ b/hw/core/numa.c
@@ -37,6 +37,7 @@
 #include "qemu/option.h"
 #include "qemu/config-file.h"
 #include "qemu/cutils.h"
+#include "hw/acpi/hmat.h"
 
 QemuOptsList qemu_numa_opts = {
     .name = "numa",
@@ -183,6 +184,126 @@ void parse_numa_distance(MachineState *ms, 
NumaDistOptions *dist, Error **errp)
     ms->numa_state->have_numa_distance = true;
 }
 
+void parse_numa_hmat_lb(MachineState *ms, NumaHmatLBOptions *node,
+                        Error **errp)
+{
+    int nb_numa_nodes = ms->numa_state->num_nodes;
+    NodeInfo *numa_info = ms->numa_state->nodes;
+    HMAT_LB_Info *hmat_lb = NULL;
+
+    if (node->data_type <= HMATLB_DATA_TYPE_WRITE_LATENCY) {
+        if (!node->has_latency) {
+            error_setg(errp, "Missing 'latency' option.");
+            return;
+        }
+        if (node->has_bandwidth) {
+            error_setg(errp, "Invalid option 'bandwidth' since "
+                       "the data type is latency.");
+            return;
+        }
+        if (node->has_base_bw) {
+            error_setg(errp, "Invalid option 'base_bw' since "
+                       "the data type is latency.");
+            return;
+        }
+    }
+
+    if (node->data_type >= HMATLB_DATA_TYPE_ACCESS_BANDWIDTH) {
+        if (!node->has_bandwidth) {
+            error_setg(errp, "Missing 'bandwidth' option.");
+            return;
+        }
+        if (node->has_latency) {
+            error_setg(errp, "Invalid option 'latency' since "
+                       "the data type is bandwidth.");
+            return;
+        }
+        if (node->has_base_lat) {
+            error_setg(errp, "Invalid option 'base_lat' since "
+                       "the data type is bandwidth.");
+            return;
+        }
+    }
+
+    if (node->initiator >= nb_numa_nodes) {
+        error_setg(errp, "Invalid initiator=%"
+                   PRIu16 ", it should be less than %d.",
+                   node->initiator, nb_numa_nodes);
+        return;
+    }
+    if (!numa_info[node->initiator].has_cpu) {
+        error_setg(errp, "Invalid initiator=%"
+                   PRIu16 ", it isn't an initiator proximity domain.",
+                   node->initiator);
+        return;
+    }
+
+    if (node->target >= nb_numa_nodes) {
+        error_setg(errp, "Invalid target=%"
+                   PRIu16 ", it should be less than %d.",
+                   node->target, nb_numa_nodes);
+        return;
+    }
+    if (!numa_info[node->target].initiator_valid) {
+        error_setg(errp, "Invalid target=%"
+                   PRIu16 ", it hasn't a valid initiator proximity domain.",
+                   node->target);
+        return;
+    }
+
+    if (node->has_latency) {
+        hmat_lb = ms->numa_state->hmat_lb[node->hierarchy][node->data_type];
+
+        if (!hmat_lb) {
+            hmat_lb = g_malloc0(sizeof(*hmat_lb));
+            ms->numa_state->hmat_lb[node->hierarchy][node->data_type] = 
hmat_lb;
+        } else if (hmat_lb->latency[node->initiator][node->target]) {
+            error_setg(errp, "Duplicate configuration of the latency for "
+                       "initiator=%" PRIu16 " and target=%" PRIu16 ".",
+                       node->initiator, node->target);
+            return;
+        }
+
+        /* Only the first time of setting the base unit is valid. */
+        if ((hmat_lb->base_lat == 0) && (node->has_base_lat)) {
+            hmat_lb->base_lat = node->base_lat;
+        }
+
+        hmat_lb->latency[node->initiator][node->target] = node->latency;
+    }
+
+    if (node->has_bandwidth) {
+        hmat_lb = ms->numa_state->hmat_lb[node->hierarchy][node->data_type];
+
+        if (!hmat_lb) {
+            hmat_lb = g_malloc0(sizeof(*hmat_lb));
+            ms->numa_state->hmat_lb[node->hierarchy][node->data_type] = 
hmat_lb;
+        } else if (hmat_lb->bandwidth[node->initiator][node->target]) {
+            error_setg(errp, "Duplicate configuration of the bandwidth for "
+                       "initiator=%" PRIu16 " and target=%" PRIu16 ".",
+                       node->initiator, node->target);
+            return;
+        }
+
+        /* Only the first time of setting the base unit is valid. */
+        if (hmat_lb->base_bw == 0) {
+            if (!node->has_base_bw) {
+                error_setg(errp, "Missing 'base-bw' option");
+                return;
+            } else {
+                hmat_lb->base_bw = node->base_bw;
+            }
+        }
+
+        hmat_lb->bandwidth[node->initiator][node->target] = node->bandwidth;
+    }
+
+    if (hmat_lb) {
+        hmat_lb->hierarchy = node->hierarchy;
+        hmat_lb->data_type = node->data_type;
+    }
+}
+
 void set_numa_options(MachineState *ms, NumaOptions *object, Error **errp)
 {
     Error *err = NULL;
@@ -221,6 +342,12 @@ void set_numa_options(MachineState *ms, NumaOptions 
*object, Error **errp)
         machine_set_cpu_numa_node(ms, qapi_NumaCpuOptions_base(&object->u.cpu),
                                   &err);
         break;
+    case NUMA_OPTIONS_TYPE_HMAT_LB:
+        parse_numa_hmat_lb(ms, &object->u.hmat_lb, &err);
+        if (err) {
+            goto end;
+        }
+        break;
     default:
         abort();
     }
diff --git a/include/sysemu/numa.h b/include/sysemu/numa.h
index 6aecbdbdc7..9aa5ea9add 100644
--- a/include/sysemu/numa.h
+++ b/include/sysemu/numa.h
@@ -43,6 +43,8 @@ typedef struct NumaState NumaState;
 
 void set_numa_options(MachineState *ms, NumaOptions *object, Error **errp);
 void parse_numa_opts(MachineState *ms);
+void parse_numa_hmat_lb(MachineState *ms, NumaHmatLBOptions *node,
+                        Error **errp);
 void numa_complete_configuration(MachineState *ms);
 void query_numa_node_mem(NumaNodeMem node_mem[], MachineState *ms);
 extern QemuOptsList qemu_numa_opts;
diff --git a/qapi/machine.json b/qapi/machine.json
index 05e367d26a..541834f358 100644
--- a/qapi/machine.json
+++ b/qapi/machine.json
@@ -377,10 +377,12 @@
 #
 # @cpu: property based CPU(s) to node mapping (Since: 2.10)
 #
+# @hmat-lb: memory latency and bandwidth information (Since: 4.2)
+#
 # Since: 2.1
 ##
 { 'enum': 'NumaOptionsType',
-  'data': [ 'node', 'dist', 'cpu' ] }
+  'data': [ 'node', 'dist', 'cpu', 'hmat-lb' ] }
 
 ##
 # @NumaOptions:
@@ -395,7 +397,8 @@
   'data': {
     'node': 'NumaNodeOptions',
     'dist': 'NumaDistOptions',
-    'cpu': 'NumaCpuOptions' }}
+    'cpu': 'NumaCpuOptions',
+    'hmat-lb': 'NumaHmatLBOptions' }}
 
 ##
 # @NumaNodeOptions:
@@ -504,6 +507,102 @@
    'base': 'CpuInstanceProperties',
    'data' : {} }
 
+##
+# @HmatLBMemoryHierarchy:
+#
+# The memory hierarchy in the System Locality Latency
+# and Bandwidth Information Structure of HMAT (Heterogeneous
+# Memory Attribute Table)
+#
+# For more information of @HmatLBMemoryHierarchy see
+# the chapter 5.2.27.4: Table 5-142: Field "Flags" of ACPI 6.3 spec.
+#
+# @memory: the structure represents the memory performance
+#
+# @last-level: last level memory of memory side cached memory
+#
+# @first-level: first level memory of memory side cached memory
+#
+# @second-level: second level memory of memory side cached memory
+#
+# @third-level: third level memory of memory side cached memory
+#
+# Since: 4.2
+##
+{ 'enum': 'HmatLBMemoryHierarchy',
+  'data': [ 'memory', 'last-level', 'first-level',
+            'second-level', 'third-level' ] }
+
+##
+# @HmatLBDataType:
+#
+# Data type in the System Locality Latency
+# and Bandwidth Information Structure of HMAT (Heterogeneous
+# Memory Attribute Table)
+#
+# For more information of @HmatLBDataType see
+# the chapter 5.2.27.4: Table 5-142:  Field "Data Type" of ACPI 6.3 spec.
+#
+# @access-latency: access latency (picoseconds)
+#
+# @read-latency: read latency (picoseconds)
+#
+# @write-latency: write latency (picoseconds)
+#
+# @access-bandwidth: access bandwidth (MB/s)
+#
+# @read-bandwidth: read bandwidth (MB/s)
+#
+# @write-bandwidth: write bandwidth (MB/s)
+#
+# Since: 4.2
+##
+{ 'enum': 'HmatLBDataType',
+  'data': [ 'access-latency', 'read-latency', 'write-latency',
+            'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] }
+
+##
+# @NumaHmatLBOptions:
+#
+# Set the system locality latency and bandwidth information
+# between Initiator and Target proximity Domains.
+#
+# For more information of @NumaHmatLBOptions see
+# the chapter 5.2.27.4: Table 5-142 of ACPI 6.3 spec.
+#
+# @initiator: the Initiator Proximity Domain.
+#
+# @target: the Target Proximity Domain.
+#
+# @hierarchy: the Memory Hierarchy. Indicates the performance
+#             of memory or side cache.
+#
+# @data-type: presents the type of data, access/read/write
+#             latency or hit latency.
+#
+# @base-lat: the base unit for latency in picoseconds.
+#
+# @base-bw: the base unit for bandwidth in megabytes per second(MB/s).
+#
+# @latency: the value of latency based on Base Unit from @initiator
+#           to @target proximity domain.
+#
+# @bandwidth: the value of bandwidth based on Base Unit between
+#             @initiator and @target proximity domain.
+#
+# Since: 4.2
+##
+{ 'struct': 'NumaHmatLBOptions',
+    'data': {
+    'initiator': 'uint16',
+    'target': 'uint16',
+    'hierarchy': 'HmatLBMemoryHierarchy',
+    'data-type': 'HmatLBDataType',
+    '*base-lat': 'uint64',
+    '*base-bw': 'uint64',
+    '*latency': 'uint16',
+    '*bandwidth': 'uint16' }}
+
 ##
 # @HostMemPolicy:
 #
diff --git a/qemu-options.hx b/qemu-options.hx
index c480781992..ae8d4c5c0e 100644
--- a/qemu-options.hx
+++ b/qemu-options.hx
@@ -164,16 +164,19 @@ DEF("numa", HAS_ARG, QEMU_OPTION_numa,
     "-numa 
node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=node]\n"
     "-numa 
node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=node]\n"
     "-numa dist,src=source,dst=destination,val=distance\n"
-    "-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]\n",
+    "-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]\n"
+    "-numa 
hmat-lb,initiator=node,target=node,hierarchy=memory|last-level|first-level|second-level|third-level,data-type=access-latency|read-latency|write-latency[,base-lat=blat][,base-bw=bbw][,latency=lat][,bandwidth=bw]\n",
     QEMU_ARCH_ALL)
 STEXI
 @item -numa 
node[,mem=@var{size}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}][,initiator=@var{initiator}]
 @itemx -numa 
node[,memdev=@var{id}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}][,initiator=@var{initiator}]
 @itemx -numa dist,src=@var{source},dst=@var{destination},val=@var{distance}
 @itemx -numa 
cpu,node-id=@var{node}[,socket-id=@var{x}][,core-id=@var{y}][,thread-id=@var{z}]
+@itemx -numa 
hmat-lb,initiator=@var{node},target=@var{node},hierarchy=@var{str},data-type=@var{str}[,base-lat=@var{blat}][,base-bw=@var{bbw}][,latency=@var{lat}][,bandwidth=@var{bw}]
 @findex -numa
 Define a NUMA node and assign RAM and VCPUs to it.
 Set the NUMA distance from a source node to a destination node.
+Set the ACPI Heterogeneous Memory Attributes for the given nodes.
 
 Legacy VCPU assignment uses @samp{cpus} option where
 @var{firstcpu} and @var{lastcpu} are CPU indexes. Each
@@ -250,6 +253,46 @@ specified resources, it just assigns existing resources to 
NUMA
 nodes. This means that one still has to use the @option{-m},
 @option{-smp} options to allocate RAM and VCPUs respectively.
 
+Use @samp{hmat-lb} to set System Locality Latency and Bandwidth Information
+between initiator and target NUMA nodes in ACPI Heterogeneous Attribute Memory 
Table (HMAT).
+Initiator NUMA node can create memory requests, usually including one or more 
processors.
+Target NUMA node contains addressable memory.
+[,base-lat=@var{blat}][,base-bw=@var{bbw}][,latency=@var{lat}][,bandwidth=@var{bw}]
+
+In @samp{hmat-lb} option, @var{node} are NUMA node IDs. @var{str} of 
'hierarchy'
+is the memory hierarchy of the target NUMA node: if @var{str} is 'memory', the 
structure
+represents the memory performance; if @var{str} is 
'last-level|first-level|second-level|third-level',
+this structure represents aggregated performance of memory side caches for 
each domain.
+@var{str} of 'data-type' is type of data represented by this structure 
instance:
+if 'hierarchy' is 'memory', 'data-type' is 'access|read|write' 
latency(picoseconds)
+or 'access|read|write' bandwidth(MB/s) of the target memory; if 'hierarchy' is
+'last-level|first-level|second-level|third-level', 'data-type' is 
'access|read|write' hit latency(picoseconds)
+or 'access|read|write' hit bandwidth of the target memory side cache. 
@var{blat}
+or @var{bbw} is Matrix Entry Values(latency or bandwidth) base unit used for 
normalizing
+the matrix entry values(which store the latency or bandwidth values). Base unit
+for latency in picoseconds. Base unit for bandwidth in megabytes per 
second(MB/s).
+Note: Due to the minimum matrix value entry value being 10, the base unit 
corresponds
+to a value of 10. And @var{blat} or @var{bbw} should be an integer. @var{lat} 
or
+@var{bw} is the latency/bandwidth value.
+
+For example, the following option assigns NUMA node 0 and 1. Node 0 has 2 cpus 
and
+a ram, node 1 has only a ram. The processors in node 0 access memory in node
+0 with access-latency 5 picoseconds(base latency is 10), access-bandwidth 5 
MB/s(base latency is 20);
+The processors in NUMA node 0 access memory in NUMA node 1 with access-latency 
10
+picoseconds(base latency is 10), access-bandwidth 10 MB/s(base latency is 20):
+@example
+-m 2G \
+-object memory-backend-ram,size=1024M,policy=bind,host-nodes=0,id=ram-node0 
-numa node,nodeid=0,memdev=ram-node0 \
+-object memory-backend-ram,size=1024M,policy=bind,host-nodes=1,id=ram-node1 
-numa node,nodeid=1,memdev=ram-node1 \
+-smp 2 \
+-numa cpu,node-id=0,socket-id=0 \
+-numa cpu,node-id=0,socket-id=1 \
+-numa 
hmat-lb,initiator=0,target=0,hierarchy=memory,data-type=access-latency,base-lat=10,latency=5
 \
+-numa 
hmat-lb,initiator=0,target=0,hierarchy=memory,data-type=access-bandwidth,base-bw=20,bandwidth=5
 \
+-numa 
hmat-lb,initiator=0,target=1,hierarchy=memory,data-type=access-latency,base-lat=10,latency=10
 \
+-numa 
hmat-lb,initiator=0,target=1,hierarchy=memory,data-type=access-bandwidth,base-bw=20,bandwidth=10
 \
+@end example
+
 ETEXI
 
 DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd,
-- 
2.20.1




reply via email to

[Prev in Thread] Current Thread [Next in Thread]