qemu-devel
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [Qemu-devel] [PATCH v4 04/10] block/pflash_cfi02: Implement interele


From: Philippe Mathieu-Daudé
Subject: Re: [Qemu-devel] [PATCH v4 04/10] block/pflash_cfi02: Implement intereleaved flash devices
Date: Sat, 22 Jun 2019 14:25:42 +0200
User-agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101 Thunderbird/60.6.1

Hi Stephen,

This series haven't fall through the cracks, however it is taking me
longer than expected to review it.

On 4/26/19 6:26 PM, Stephen Checkoway wrote:
> It's common for multiple narrow flash chips to be hooked up in parallel
> to support wider buses. For example, four 8-bit wide flash chips (x8)
> may be combined in parallel to produce a 32-bit wide device. Similarly,
> two 16-bit wide chips (x16) may be combined.
> 
> This commit introduces `device-width` and `max-device-width` properties,
> similar to pflash_cfi01, with the following meanings:
> - `width`: The width of the logical, qemu device (same as before);
> - `device-width`: The width of an individual flash chip, defaulting to
>   `width`; and
> - `max-device-width`: The maximum width of an individual flash chip,
>   defaulting to `device-width`.
> 
> Nothing needs to change to support reading such interleaved devices but
> commands (e.g., erase and programming) must be sent to all devices at
> the same time or else the various chips will be in different states.

After some thoughts on this, I'd rather we model how hardware manage
interleaved devices: do it at the bus level, and instanciate N devices
in an interleaved config.
I believe that would drastically reduce this device complexity, and we
would match the real internal state machine.
Also this could be reused by other parallel devices used in a such config.

> For example, a 4-byte wide logical device can be composed of four x8/x16
> devices in x8 mode. That is, each device supports both x8 or x16 and
> they're being used in the byte, rather than word, mode. This
> configuration would have `width=4`, `device-width=1`, and
> `max-device-width=2`.


I'm thinking of this draft:

FlashDevice # x8
  MemoryRegionOps
    .valid.max_access_size = 1

FlashDevice # x16
  MemoryRegionOps
    .valid.min_access_size = 2
    .valid.max_access_size = 2

FlashDevice # x8/x16
  MemoryRegionOps
    .valid.min_access_size = 1
    .valid.max_access_size = 2

We might use .impl.min_access_size = 2 and consider all NOR flash using
16-bit words internally.
    .impl.max_access_size = 2 is implicit.

So for you example we'd instanciate one:

InterleaverDevice
  Property
    .bus_width = 4 # 4-byte wide logical device, `width=4`
    .device_width = 1 # `device-width=1`
  MemoryRegionOps
    .valid.max_access_size = .bus_width # 4, set at realize()
    .impl.max_access_size = .device_width # 1, set at realize()

Then instanciate 4 pflash devices, and link them to the interleaver
using object_property_set_link().

typedef struct {
    SysBusDevice parent_obj;
    MemoryRegion iomem;
    char *name;
    /*
     * On a 64-bit wide bus we can have at most
     * 8 devices in 8-bit access mode.
     */
    MemoryRegion device[8];
    unsigned device_count;
    unsigned device_index_mask;
    /* Properties */
    unsigned bus_width;
    unsigned device_width;
} InterleaverDeviceState;

static Property interleaver_properties[] = {
    DEFINE_PROP_LINK("device[0]", InterleaverDeviceState,
                     device[0],
                     TYPE_MEMORY_REGION, MemoryRegion *),
    ...
    DEFINE_PROP_LINK("device[7]", InterleaverDeviceState,
                     device[7],
                     TYPE_MEMORY_REGION, MemoryRegion *),
    DEFINE_PROP_END_OF_LIST(),
};

Then previous to call InterleaverDevice.realize():

In the board realize():


    for (i = 0; i < interleaved_devices; i++) {
        pflash[i] = create_pflash(...);
        ...
    }

    ild = ... create InterleaverDevice ...
    for (i = 0; i < interleaved_devices; i++) {
        char *propname = g_strdup_printf("device[%u]", i);


        object_property_set_link(OBJECT(&ild->device[i]),
                                 OBJECT(pflash[i]),
                                 propname, &err);
        ...
    }

Finally,

static void interleaved_realize(DeviceState *dev, Error **errp)
{
    InterleaverDeviceState *s = INTERLEAVER_DEVICE(opaque);

    s->device_count = s->bus_width / s->device_width;
    s->device_index_mask = ~(s->device_count - 1);
    ...
}

static void interleaved_write(void *opaque, hwaddr offset,
                              uint64_t value, unsigned size)
{
    InterleaverDeviceState *s = INTERLEAVER_DEVICE(opaque);
    MemoryRegion *mr;

    /*
     * Since we set .impl.max_access_size = device_width,
     * access_with_adjusted_size() always call this with
     * size = device_width.
     *
     * Adjust the address (offset).
     */
    offset >>= size;
    /* Access the N interleaved device */
    mr = s->device[offset & s->device_index_mask];
    memory_region_dispatch_write(mr, offset, &value, size,
                                 MEMTXATTRS_UNSPECIFIED);
}

I'll try a PoC.

> In addition to commands being sent to all devices, guest firmware
> expects the status and CFI queries to be replicated for each device.
> (The one exception to the response replication is that each device gets
> to report its own status bit DQ7 while programming because its value
> depends on the value being programmed which will usually differ for each
> device.)
> 
> Testing is limited to 16-bit wide devices due to the current inability
> to override the properties set by `pflash_cfi02_register`, but multiple
> configurations are tested.
> 
> Stop using global_qtest. Instead, package the qtest variable inside the
> FlashConfig structure.
> 
> Signed-off-by: Stephen Checkoway <address@hidden>
> Acked-by: Thomas Huth <address@hidden>
> ---
>  hw/block/pflash_cfi02.c   | 270 +++++++++++++++------
>  tests/pflash-cfi02-test.c | 476 ++++++++++++++++++++++++++++++--------
>  2 files changed, 576 insertions(+), 170 deletions(-)
> 
> diff --git a/hw/block/pflash_cfi02.c b/hw/block/pflash_cfi02.c
> index e4bff0c8f8..101628b4ec 100644
> --- a/hw/block/pflash_cfi02.c
> +++ b/hw/block/pflash_cfi02.c
> @@ -28,7 +28,6 @@
>   * - unlock bypass command
>   * - CFI queries
>   *
> - * It does not support flash interleaving.
>   * It does not implement boot blocs with reduced size
>   * It does not implement software data protection as found in many real chips
>   * It does not implement erase suspend/resume commands
> @@ -67,15 +66,19 @@ struct PFlashCFI02 {
>      BlockBackend *blk;
>      uint32_t sector_len;
>      uint32_t nb_blocs;
> -    uint32_t chip_len;
> +    uint64_t total_len;
> +    uint64_t interleave_multiplier;
>      uint8_t mappings;
> -    uint8_t width;
> +    uint8_t bank_width; /* Width of the QEMU device in bytes. */
> +    uint8_t device_width; /* Width of individual pflash chip. */
> +    uint8_t max_device_width; /* Maximum width of individual pflash chip. */
>      uint8_t be;
> +    int device_shift; /* Amount to shift an offset to get a device address. 
> */
>      int wcycle; /* if 0, the flash is read normally */
>      int bypass;
>      int ro;
>      uint8_t cmd;
> -    uint8_t status;
> +    uint64_t status;
>      /* FIXME: implement array device properties */
>      uint16_t ident0;
>      uint16_t ident1;
> @@ -103,16 +106,17 @@ struct PFlashCFI02 {
>   */
>  static inline void toggle_dq7(PFlashCFI02 *pfl)
>  {
> -    pfl->status ^= 0x80;
> +    pfl->status ^= pfl->interleave_multiplier * 0x80;
>  }
>  
>  /*
>   * Set status bit DQ7 to bit 7 of value.
>   */
> -static inline void set_dq7(PFlashCFI02 *pfl, uint8_t value)
> +static inline void set_dq7(PFlashCFI02 *pfl, uint64_t value)
>  {
> -    pfl->status &= 0x7F;
> -    pfl->status |= value & 0x80;
> +    uint64_t mask = pfl->interleave_multiplier * 0x80;
> +    pfl->status &= ~mask;
> +    pfl->status |= value & mask;
>  }
>  
>  /*
> @@ -120,7 +124,7 @@ static inline void set_dq7(PFlashCFI02 *pfl, uint8_t 
> value)
>   */
>  static inline void toggle_dq6(PFlashCFI02 *pfl)
>  {
> -    pfl->status ^= 0x40;
> +    pfl->status ^= pfl->interleave_multiplier * 0x40;
>  }
>  
>  /*
> @@ -188,7 +192,6 @@ static uint64_t pflash_data_read(PFlashCFI02 *pfl, hwaddr 
> offset,
>  static uint64_t pflash_read(void *opaque, hwaddr offset, unsigned int width)
>  {
>      PFlashCFI02 *pfl = opaque;
> -    hwaddr boff;
>      uint64_t ret;
>  
>      ret = -1;
> @@ -198,12 +201,10 @@ static uint64_t pflash_read(void *opaque, hwaddr 
> offset, unsigned int width)
>          ++pfl->read_counter > PFLASH_LAZY_ROMD_THRESHOLD) {
>          pflash_register_memory(pfl, 1);
>      }
> -    offset &= pfl->chip_len - 1;
> -    boff = offset & 0xFF;
> -    if (pfl->width == 2)
> -        boff = boff >> 1;
> -    else if (pfl->width == 4)
> -        boff = boff >> 2;
> +    /* Mask by the total length of the chip to account for alias mappings. */
> +    offset &= pfl->total_len - 1;
> +    hwaddr device_addr = offset >> pfl->device_shift;
> +
>      switch (pfl->cmd) {
>      default:
>          /* This should never happen : reset state & treat it as a read*/
> @@ -215,29 +216,32 @@ static uint64_t pflash_read(void *opaque, hwaddr 
> offset, unsigned int width)
>          /* We accept reads during second unlock sequence... */
>      case 0x00:
>          /* Flash area read */
> -        ret = pflash_data_read(pfl, offset, width);
> -        break;
> +        return pflash_data_read(pfl, offset, width);
>      case 0x90:
>          /* flash ID read */
> -        switch (boff) {
> +        switch (device_addr & 0xFF) {
>          case 0x00:
> +            ret = pfl->ident0;
> +            break;
>          case 0x01:
> -            ret = boff & 0x01 ? pfl->ident1 : pfl->ident0;
> +            ret = pfl->ident1;
>              break;
>          case 0x02:
>              ret = 0x00; /* Pretend all sectors are unprotected */
>              break;
>          case 0x0E:
>          case 0x0F:
> -            ret = boff & 0x01 ? pfl->ident3 : pfl->ident2;
> +            ret = device_addr & 0x01 ? pfl->ident3 : pfl->ident2;
>              if (ret != (uint8_t)-1) {
>                  break;
>              }
>              /* Fall through to data read. */
>          default:
> -            ret = pflash_data_read(pfl, offset, width);
> +            return pflash_data_read(pfl, offset, width);
>          }
> -        DPRINTF("%s: ID " TARGET_FMT_plx " %" PRIx64 "\n", __func__, boff, 
> ret);
> +        ret *= pfl->interleave_multiplier;
> +        DPRINTF("%s: ID " TARGET_FMT_plx " %" PRIx64 "\n",
> +                __func__, device_addr & 0xFF, ret);
>          break;
>      case 0xA0:
>      case 0x10:
> @@ -250,8 +254,8 @@ static uint64_t pflash_read(void *opaque, hwaddr offset, 
> unsigned int width)
>          break;
>      case 0x98:
>          /* CFI query mode */
> -        if (boff < sizeof(pfl->cfi_table)) {
> -            ret = pfl->cfi_table[boff];
> +        if (device_addr < sizeof(pfl->cfi_table)) {
> +            ret = pfl->interleave_multiplier * pfl->cfi_table[device_addr];
>          } else {
>              ret = 0;
>          }
> @@ -279,30 +283,36 @@ static void pflash_write(void *opaque, hwaddr offset, 
> uint64_t value,
>                           unsigned int width)
>  {
>      PFlashCFI02 *pfl = opaque;
> -    hwaddr boff;
>      uint8_t *p;
>      uint8_t cmd;
>  
>      cmd = value;
> -    if (pfl->cmd != 0xA0 && cmd == 0xF0) {
> -#if 0
> -        DPRINTF("%s: flash reset asked (%02x %02x)\n",
> -                __func__, pfl->cmd, cmd);
> -#endif
> -        goto reset_flash;
> +    if (pfl->cmd != 0xA0) {
> +        if (value != pfl->interleave_multiplier * cmd) {
> +            DPRINTF("%s: cmd 0x%02x not sent to all devices: expected="
> +                    "0x%0*" PRIx64 " actual=0x%0*" PRIx64 "\n",
> +                    __func__, cmd,
> +                    pfl->bank_width * 2, pfl->interleave_multiplier * cmd,
> +                    pfl->bank_width * 2, value);
> +        }
> +
> +        if (cmd == 0xF0) {
> +            goto reset_flash;
> +        }
>      }
> +
>      trace_pflash_write(offset, value, width, pfl->wcycle);
> -    offset &= pfl->chip_len - 1;
> -
> -    DPRINTF("%s: offset " TARGET_FMT_plx " %08" PRIx64 " %d\n", __func__,
> -            offset, value, width);
> -    boff = offset;
> -    if (pfl->width == 2)
> -        boff = boff >> 1;
> -    else if (pfl->width == 4)
> -        boff = boff >> 2;
> -    /* Only the least-significant 11 bits are used in most cases. */
> -    boff &= 0x7FF;
> +
> +    /* Mask by the total length of the chip to account for alias mappings. */
> +    offset &= pfl->total_len - 1;
> +
> +    DPRINTF("%s: offset " TARGET_FMT_plx " 0x%0*" PRIx64 "\n",
> +            __func__, offset, width * 2, value);
> +
> +    hwaddr device_addr = (offset >> pfl->device_shift);
> +    /* Address bits A11 and greater are don't cares for most commands. */
> +    unsigned int masked_addr = device_addr & 0x7FF;
> +
>      switch (pfl->wcycle) {
>      case 0:
>          /* Set the device in I/O access mode if required */
> @@ -311,16 +321,16 @@ static void pflash_write(void *opaque, hwaddr offset, 
> uint64_t value,
>          pfl->read_counter = 0;
>          /* We're in read mode */
>      check_unlock0:
> -        if (boff == 0x55 && cmd == 0x98) {
> +        if (masked_addr == 0x55 && cmd == 0x98) {
>          enter_CFI_mode:
>              /* Enter CFI query mode */
>              pfl->wcycle = WCYCLE_CFI;
>              pfl->cmd = 0x98;
>              return;
>          }
> -        if (boff != pfl->unlock_addr0 || cmd != 0xAA) {
> -            DPRINTF("%s: unlock0 failed " TARGET_FMT_plx " %02x %04x\n",
> -                    __func__, boff, cmd, pfl->unlock_addr0);
> +        if (masked_addr != pfl->unlock_addr0 || cmd != 0xAA) {
> +            DPRINTF("%s: unlock0 failed %04x %02x %04x\n",
> +                    __func__, masked_addr, cmd, pfl->unlock_addr0);
>              goto reset_flash;
>          }
>          DPRINTF("%s: unlock sequence started\n", __func__);
> @@ -328,18 +338,18 @@ static void pflash_write(void *opaque, hwaddr offset, 
> uint64_t value,
>      case 1:
>          /* We started an unlock sequence */
>      check_unlock1:
> -        if (boff != pfl->unlock_addr1 || cmd != 0x55) {
> -            DPRINTF("%s: unlock1 failed " TARGET_FMT_plx " %02x\n", __func__,
> -                    boff, cmd);
> +        if (masked_addr != pfl->unlock_addr1 || cmd != 0x55) {
> +            DPRINTF("%s: unlock1 failed %03x %02x\n", __func__,
> +                    masked_addr, cmd);
>              goto reset_flash;
>          }
>          DPRINTF("%s: unlock sequence done\n", __func__);
>          break;
>      case 2:
>          /* We finished an unlock sequence */
> -        if (!pfl->bypass && boff != pfl->unlock_addr0) {
> -            DPRINTF("%s: command failed " TARGET_FMT_plx " %02x\n", __func__,
> -                    boff, cmd);
> +        if (!pfl->bypass && masked_addr != pfl->unlock_addr0) {
> +            DPRINTF("%s: command failed %03x %02x\n", __func__,
> +                    masked_addr, cmd);
>              goto reset_flash;
>          }
>          switch (cmd) {
> @@ -390,8 +400,9 @@ static void pflash_write(void *opaque, hwaddr offset, 
> uint64_t value,
>                  goto reset_flash;
>              }
>              /* We can enter CFI query mode from autoselect mode */
> -            if (boff == 0x55 && cmd == 0x98)
> +            if (masked_addr == 0x55 && cmd == 0x98) {
>                  goto enter_CFI_mode;
> +            }
>              /* No break here */
>          default:
>              DPRINTF("%s: invalid write for command %02x\n",
> @@ -416,7 +427,7 @@ static void pflash_write(void *opaque, hwaddr offset, 
> uint64_t value,
>      case 5:
>          switch (cmd) {
>          case 0x10:
> -            if (boff != pfl->unlock_addr0) {
> +            if (masked_addr != pfl->unlock_addr0) {
>                  DPRINTF("%s: chip erase: invalid address " TARGET_FMT_plx 
> "\n",
>                          __func__, offset);
>                  goto reset_flash;
> @@ -424,8 +435,8 @@ static void pflash_write(void *opaque, hwaddr offset, 
> uint64_t value,
>              /* Chip erase */
>              DPRINTF("%s: start chip erase\n", __func__);
>              if (!pfl->ro) {
> -                memset(pfl->storage, 0xFF, pfl->chip_len);
> -                pflash_update(pfl, 0, pfl->chip_len);
> +                memset(pfl->storage, 0xFF, pfl->total_len);
> +                pflash_update(pfl, 0, pfl->total_len);
>              }
>              set_dq7(pfl, 0x00);
>              /* Let's wait 5 seconds before chip erase is done */
> @@ -521,22 +532,132 @@ static void pflash_cfi02_realize(DeviceState *dev, 
> Error **errp)
>          return;
>      }
>  
> +    if (pfl->bank_width == 0) {
> +        error_setg(errp, "attribute \"width\" not specified or zero.");
> +        return;
> +    }
> +
> +    /*
> +     * device-width defaults to width and max-device-width defaults to
> +     * device-width. Check that the device-width and max-device-width
> +     * configurations are supported.
> +     */
> +    if (pfl->device_width == 0) {
> +        pfl->device_width = pfl->bank_width;
> +    }
> +    if (pfl->max_device_width == 0) {
> +        pfl->max_device_width = pfl->device_width;
> +    }
> +    if (pfl->bank_width % pfl->device_width != 0) {
> +        error_setg(errp,
> +                   "attribute \"width\" (%u) not a multiple of attribute "
> +                   "\"device-width\" (%u).",
> +                   pfl->bank_width, pfl->device_width);
> +        return;
> +    }
> +
> +    /*
> +     * Writing commands to the flash device and reading CFI responses or
> +     * status values requires transforming a QEMU device offset into a
> +     * flash device address given in terms of the device's maximum width. We
> +     * can do this by shifting a QEMU device offset right a constant number 
> of
> +     * bits depending on the bank_width, device_width, and max_device_width.
> +     *
> +     * num_devices = bank_width / device_width is the number of interleaved
> +     * flash devices. To compute a device byte address, we need to divide
> +     * offset by num_devices (equivalently shift right by log2(num_devices)).
> +     * To turn a device byte address into a device word address, we need to
> +     * divide by max_device_width (equivalently shift right by
> +     * log2(max_device_width)).
> +     *
> +     * In tabular form.
> +     * ==================================================================
> +     * bank_width   device_width    max_device_width    num_devices shift
> +     * ------------------------------------------------------------------
> +     * 1            1               1                   1           0
> +     * 1            1               2                   1           1
> +     * 2            1               1                   2           1
> +     * 2            1               2                   2           2
> +     * 2            2               2                   1           1
> +     * 4            1               1                   4           2
> +     * 4            1               2                   4           3
> +     * 4            1               4                   4           4
> +     * 4            2               2                   2           2
> +     * 4            2               4                   2           3
> +     * 4            4               4                   1           2
> +     * ==================================================================
> +     */
> +    pfl->device_shift = ctz32(pfl->bank_width) - ctz32(pfl->device_width) +
> +                        ctz32(pfl->max_device_width);
> +    pfl->interleave_multiplier = 0;
> +    for (unsigned int shift = 0; shift < pfl->bank_width;
> +         shift += pfl->device_width) {
> +        pfl->interleave_multiplier |= 1 << (shift * 8);
> +    }
> +
> +    uint16_t device_interface_code;
> +    if (pfl->max_device_width == 1 && pfl->device_width == 1) {
> +        device_interface_code = 0; /* x8 only. */
> +    } else if (pfl->max_device_width == 2 &&
> +               (pfl->device_width == 1 || pfl->device_width == 2)) {
> +        /* XXX: Some devices only support x16, this code doesn't model them. 
> */
> +        device_interface_code = 2; /* Supports x8 or x16. */
> +    } else if (pfl->max_device_width == 4 && pfl->device_width == 1) {
> +        /*
> +         * XXX: this is x32-only. The standards I've seen don't specify a 
> value
> +         * for x8/x32 but do mention them.
> +         */
> +        device_interface_code = 3; /* x32 only. */
> +    } else if (pfl->max_device_width == 4 &&
> +               (pfl->device_width == 2 || pfl->device_width == 4)) {
> +        device_interface_code = 4; /* Supports x16 or x32. */
> +    } else {
> +        error_setg(errp,
> +                   "unsupported configuration: \"device-width\"=%u "
> +                   "\"max-device-width\"=%u.",
> +                   pfl->device_width, pfl->max_device_width);
> +        return;
> +    }
> +
> +    pfl->total_len = pfl->sector_len * pfl->nb_blocs;
> +
> +    /*
> +     * If the flash is not a power of 2, then the code for handling multiple
> +     * mappings will not work correctly.
> +     */
> +    if (!is_power_of_2(pfl->total_len)) {
> +        error_setg(errp, "total pflash length (%" PRIx64 ") not a power of 
> 2.",
> +                   pfl->total_len);
> +        return;
> +    }
> +
> +    int num_devices = pfl->bank_width / pfl->device_width;
> +    uint64_t sector_len_per_device = pfl->sector_len / num_devices;
> +    uint64_t device_len = sector_len_per_device * pfl->nb_blocs;
> +
> +    if (sector_len_per_device & 0xff || sector_len_per_device >= (1 << 24)) {
> +        error_setg(errp,
> +                   "unsupported configuration: sector length per device = "
> +                   "%" PRIx64 ".",
> +                   sector_len_per_device);
> +        return;
> +    }
> +
> +    memory_region_init_rom_device(&pfl->orig_mem, OBJECT(pfl),
> +                                  &pflash_cfi02_ops, pfl, pfl->name,
> +                                  pfl->total_len, &local_err);
>      /* Only 11 bits are used in the comparison. */
>      pfl->unlock_addr0 &= 0x7FF;
>      pfl->unlock_addr1 &= 0x7FF;
>  
>      chip_len = pfl->sector_len * pfl->nb_blocs;
>  
> -    memory_region_init_rom_device(&pfl->orig_mem, OBJECT(pfl),
> -                                  &pflash_cfi02_ops, pfl, pfl->name,
> -                                  chip_len, &local_err);
>      if (local_err) {
>          error_propagate(errp, local_err);
>          return;
>      }
>  
>      pfl->storage = memory_region_get_ram_ptr(&pfl->orig_mem);
> -    pfl->chip_len = chip_len;
>  
>      if (pfl->blk) {
>          uint64_t perm;
> @@ -566,6 +687,7 @@ static void pflash_cfi02_realize(DeviceState *dev, Error 
> **errp)
>      pfl->wcycle = 0;
>      pfl->cmd = 0;
>      pfl->status = 0;
> +
>      /* Hardcoded CFI table (mostly from SG29 Spansion flash) */
>      /* Standard "QRY" string */
>      pfl->cfi_table[0x10] = 'Q';
> @@ -591,8 +713,8 @@ static void pflash_cfi02_realize(DeviceState *dev, Error 
> **errp)
>      pfl->cfi_table[0x1D] = 0x00;
>      /* Vpp max (no Vpp pin) */
>      pfl->cfi_table[0x1E] = 0x00;
> -    /* Reserved */
> -    pfl->cfi_table[0x1F] = 0x07;
> +    /* Timeout per single byte/word write (16 us) */
> +    pfl->cfi_table[0x1F] = 0x04;
>      /* Timeout for min size buffer write (NA) */
>      pfl->cfi_table[0x20] = 0x00;
>      /* Typical timeout for block erase (512 ms) */
> @@ -608,13 +730,13 @@ static void pflash_cfi02_realize(DeviceState *dev, 
> Error **errp)
>      /* Max timeout for chip erase */
>      pfl->cfi_table[0x26] = 0x0D;
>      /* Device size */
> -    pfl->cfi_table[0x27] = ctz32(chip_len);
> -    /* Flash device interface (8 & 16 bits) */
> -    pfl->cfi_table[0x28] = 0x02;
> -    pfl->cfi_table[0x29] = 0x00;
> +    pfl->cfi_table[0x27] = ctz32(device_len);
> +    /* Flash device interface  */
> +    pfl->cfi_table[0x28] = device_interface_code;
> +    pfl->cfi_table[0x29] = device_interface_code >> 8;
>      /* Max number of bytes in multi-bytes write */
>      /* XXX: disable buffered write as it's not supported */
> -    //    pfl->cfi_table[0x2A] = 0x05;
> +    /*    pfl->cfi_table[0x2A] = 0x05; */
>      pfl->cfi_table[0x2A] = 0x00;
>      pfl->cfi_table[0x2B] = 0x00;
>      /* Number of erase block regions (uniform) */
> @@ -622,8 +744,8 @@ static void pflash_cfi02_realize(DeviceState *dev, Error 
> **errp)
>      /* Erase block region 1 */
>      pfl->cfi_table[0x2D] = pfl->nb_blocs - 1;
>      pfl->cfi_table[0x2E] = (pfl->nb_blocs - 1) >> 8;
> -    pfl->cfi_table[0x2F] = pfl->sector_len >> 8;
> -    pfl->cfi_table[0x30] = pfl->sector_len >> 16;
> +    pfl->cfi_table[0x2F] = sector_len_per_device >> 8;
> +    pfl->cfi_table[0x30] = sector_len_per_device >> 16;
>  
>      /* Extended */
>      pfl->cfi_table[0x31] = 'P';
> @@ -648,7 +770,9 @@ static Property pflash_cfi02_properties[] = {
>      DEFINE_PROP_DRIVE("drive", PFlashCFI02, blk),
>      DEFINE_PROP_UINT32("num-blocks", PFlashCFI02, nb_blocs, 0),
>      DEFINE_PROP_UINT32("sector-length", PFlashCFI02, sector_len, 0),
> -    DEFINE_PROP_UINT8("width", PFlashCFI02, width, 0),
> +    DEFINE_PROP_UINT8("width", PFlashCFI02, bank_width, 0),
> +    DEFINE_PROP_UINT8("device-width", PFlashCFI02, device_width, 0),
> +    DEFINE_PROP_UINT8("max-device-width", PFlashCFI02, max_device_width, 0),
>      DEFINE_PROP_UINT8("mappings", PFlashCFI02, mappings, 0),
>      DEFINE_PROP_UINT8("big-endian", PFlashCFI02, be, 0),
>      DEFINE_PROP_UINT16("id0", PFlashCFI02, ident0, 0),
> @@ -696,7 +820,7 @@ PFlashCFI02 *pflash_cfi02_register(hwaddr base,
>                                     hwaddr size,
>                                     BlockBackend *blk,
>                                     uint32_t sector_len,
> -                                   int nb_mappings, int width,
> +                                   int nb_mappings, int bank_width,
>                                     uint16_t id0, uint16_t id1,
>                                     uint16_t id2, uint16_t id3,
>                                     uint16_t unlock_addr0,
> @@ -711,7 +835,7 @@ PFlashCFI02 *pflash_cfi02_register(hwaddr base,
>      assert(size % sector_len == 0);
>      qdev_prop_set_uint32(dev, "num-blocks", size / sector_len);
>      qdev_prop_set_uint32(dev, "sector-length", sector_len);
> -    qdev_prop_set_uint8(dev, "width", width);
> +    qdev_prop_set_uint8(dev, "width", bank_width);
>      qdev_prop_set_uint8(dev, "mappings", nb_mappings);
>      qdev_prop_set_uint8(dev, "big-endian", !!be);
>      qdev_prop_set_uint16(dev, "id0", id0);
> diff --git a/tests/pflash-cfi02-test.c b/tests/pflash-cfi02-test.c
> index ea5f8b2648..a1be26da73 100644
> --- a/tests/pflash-cfi02-test.c
> +++ b/tests/pflash-cfi02-test.c
> @@ -17,12 +17,18 @@
>   */
>  
>  #define MP_FLASH_SIZE_MAX (32 * 1024 * 1024)
> +#define FLASH_SIZE (8 * 1024 * 1024)
>  #define BASE_ADDR (0x100000000ULL - MP_FLASH_SIZE_MAX)
>  
> -#define FLASH_WIDTH 2
> -#define CFI_ADDR (FLASH_WIDTH * 0x55)
> -#define UNLOCK0_ADDR (FLASH_WIDTH * 0x555)
> -#define UNLOCK1_ADDR (FLASH_WIDTH * 0x2AA)
> +/* Use a newtype to keep flash addresses separate from byte addresses. */
> +typedef struct {
> +    uint64_t addr;
> +} faddr;
> +#define FLASH_ADDR(x) ((faddr) { .addr = (x) })
> +
> +#define CFI_ADDR FLASH_ADDR(0x55)
> +#define UNLOCK0_ADDR FLASH_ADDR(0x555)
> +#define UNLOCK1_ADDR FLASH_ADDR(0x2AA)
>  
>  #define CFI_CMD 0x98
>  #define UNLOCK0_CMD 0xAA
> @@ -35,170 +41,381 @@
>  #define UNLOCK_BYPASS_CMD 0x20
>  #define UNLOCK_BYPASS_RESET_CMD 0x00
>  
> +typedef struct {
> +    int bank_width;
> +    int device_width;
> +    int max_device_width;
> +
> +    QTestState *qtest;
> +} FlashConfig;
> +
>  static char image_path[] = "/tmp/qtest.XXXXXX";
>  
> -static inline void flash_write(uint64_t byte_addr, uint16_t data)
> +/*
> + * The pflash implementation allows some parameters to be unspecified. We 
> want
> + * to test those configurations but we also need to know the real values in
> + * our testing code. So after we launch qemu, we'll need a new FlashConfig
> + * with the correct values filled in.
> + */
> +static FlashConfig expand_config_defaults(const FlashConfig *c)
>  {
> -    qtest_writew(global_qtest, BASE_ADDR + byte_addr, data);
> +    FlashConfig ret = *c;
> +
> +    if (ret.device_width == 0) {
> +        ret.device_width = ret.bank_width;
> +    }
> +    if (ret.max_device_width == 0) {
> +        ret.max_device_width = ret.device_width;
> +    }
> +    return ret;
> +}
> +
> +/*
> + * Return a bit mask suitable for extracting the least significant
> + * status/query response from an interleaved response.
> + */
> +static inline uint64_t device_mask(const FlashConfig *c)
> +{
> +    if (c->device_width == 8) {
> +        return (uint64_t)-1;
> +    }
> +    return (1ULL << (c->device_width * 8)) - 1ULL;
> +}
> +
> +/*
> + * Return a bit mask exactly as long as the bank_width.
> + */
> +static inline uint64_t bank_mask(const FlashConfig *c)
> +{
> +    if (c->bank_width == 8) {
> +        return (uint64_t)-1;
> +    }
> +    return (1ULL << (c->bank_width * 8)) - 1ULL;
> +}
> +
> +static inline void flash_write(const FlashConfig *c, uint64_t byte_addr,
> +                               uint64_t data)
> +{
> +    /* Sanity check our tests. */
> +    assert((data & ~bank_mask(c)) == 0);
> +    uint64_t addr = BASE_ADDR + byte_addr;
> +    switch (c->bank_width) {
> +    case 1:
> +        qtest_writeb(c->qtest, addr, data);
> +        break;
> +    case 2:
> +        qtest_writew(c->qtest, addr, data);
> +        break;
> +    case 4:
> +        qtest_writel(c->qtest, addr, data);
> +        break;
> +    case 8:
> +        qtest_writeq(c->qtest, addr, data);
> +        break;
> +    default:
> +        abort();
> +    }
> +}
> +
> +static inline uint64_t flash_read(const FlashConfig *c, uint64_t byte_addr)
> +{
> +    uint64_t addr = BASE_ADDR + byte_addr;
> +    switch (c->bank_width) {
> +    case 1:
> +        return qtest_readb(c->qtest, addr);
> +    case 2:
> +        return qtest_readw(c->qtest, addr);
> +    case 4:
> +        return qtest_readl(c->qtest, addr);
> +    case 8:
> +        return qtest_readq(c->qtest, addr);
> +    default:
> +        abort();
> +    }
> +}
> +
> +/*
> + * Convert a flash address expressed in the maximum width of the device as a
> + * byte address.
> + */
> +static inline uint64_t as_byte_addr(const FlashConfig *c, faddr flash_addr)
> +{
> +    /*
> +     * Command addresses are always given as addresses in the maximum
> +     * supported bus size for the flash chip. So an x8/x16 chip in x8 mode
> +     * uses addresses 0xAAA and 0x555 to unlock because the least significant
> +     * bit is ignored. (0x555 rather than 0x554 is traditional.)
> +     *
> +     * Interleaving flash chips use the least significant bits of a byte
> +     * address to refer to data from the individual chips. Two interleaved x8
> +     * devices would use command addresses 0xAAA and 0x554. Two interleaved
> +     * x16 devices would use 0x1554 and 0xAA8.
> +     *
> +     * More exotic configurations are possible. Two interleaved x8/x16 
> devices
> +     * in x8 mode would also use 0x1554 and 0xAA8.
> +     *
> +     * In general we need to multiply an address by the number of devices,
> +     * which is bank_width / device_width, and multiply that by the maximum
> +     * device width.
> +     */
> +    int num_devices = c->bank_width / c->device_width;
> +    return flash_addr.addr * (num_devices * c->max_device_width);
> +}
> +
> +/*
> + * Return the command value or expected status replicated across all devices.
> + */
> +static inline uint64_t replicate(const FlashConfig *c, uint64_t data)
> +{
> +    /* Sanity check our tests. */
> +    assert((data & ~device_mask(c)) == 0);
> +    for (int i = c->device_width; i < c->bank_width; i += c->device_width) {
> +        data |= data << (c->device_width * 8);
> +    }
> +    return data;
> +}
> +
> +static inline void flash_cmd(const FlashConfig *c, faddr cmd_addr,
> +                             uint8_t cmd)
> +{
> +    flash_write(c, as_byte_addr(c, cmd_addr), replicate(c, cmd));
> +}
> +
> +static inline uint64_t flash_query(const FlashConfig *c, faddr query_addr)
> +{
> +    return flash_read(c, as_byte_addr(c, query_addr));
>  }
>  
> -static inline uint16_t flash_read(uint64_t byte_addr)
> +static inline uint64_t flash_query_1(const FlashConfig *c, faddr query_addr)
>  {
> -    return qtest_readw(global_qtest, BASE_ADDR + byte_addr);
> +    return flash_query(c, query_addr) & device_mask(c);
>  }
>  
> -static void unlock(void)
> +static void unlock(const FlashConfig *c)
>  {
> -    flash_write(UNLOCK0_ADDR, UNLOCK0_CMD);
> -    flash_write(UNLOCK1_ADDR, UNLOCK1_CMD);
> +    flash_cmd(c, UNLOCK0_ADDR, UNLOCK0_CMD);
> +    flash_cmd(c, UNLOCK1_ADDR, UNLOCK1_CMD);
>  }
>  
> -static void reset(void)
> +static void reset(const FlashConfig *c)
>  {
> -    flash_write(0, RESET_CMD);
> +    flash_cmd(c, FLASH_ADDR(0), RESET_CMD);
>  }
>  
> -static void sector_erase(uint64_t byte_addr)
> +static void sector_erase(const FlashConfig *c, uint64_t byte_addr)
>  {
> -    unlock();
> -    flash_write(UNLOCK0_ADDR, 0x80);
> -    unlock();
> -    flash_write(byte_addr, SECTOR_ERASE_CMD);
> +    unlock(c);
> +    flash_cmd(c, UNLOCK0_ADDR, 0x80);
> +    unlock(c);
> +    flash_write(c, byte_addr, replicate(c, SECTOR_ERASE_CMD));
>  }
>  
> -static void wait_for_completion(uint64_t byte_addr)
> +static void wait_for_completion(const FlashConfig *c, uint64_t byte_addr)
>  {
>      /* If DQ6 is toggling, step the clock and ensure the toggle stops. */
> -    if ((flash_read(byte_addr) & 0x40) ^ (flash_read(byte_addr) & 0x40)) {
> +    const uint64_t dq6 = replicate(c, 0x40);
> +    if ((flash_read(c, byte_addr) & dq6) ^ (flash_read(c, byte_addr) & dq6)) 
> {
>          /* Wait for erase or program to finish. */
> -        clock_step_next();
> +        qtest_clock_step_next(c->qtest);
>          /* Ensure that DQ6 has stopped toggling. */
> -        g_assert_cmpint(flash_read(byte_addr), ==, flash_read(byte_addr));
> +        g_assert_cmpint(flash_read(c, byte_addr), ==, flash_read(c, 
> byte_addr));
>      }
>  }
>  
> -static void bypass_program(uint64_t byte_addr, uint16_t data)
> +static void bypass_program(const FlashConfig *c, uint64_t byte_addr,
> +                           uint16_t data)
>  {
> -    flash_write(UNLOCK0_ADDR, PROGRAM_CMD);
> -    flash_write(byte_addr, data);
> +    flash_cmd(c, UNLOCK0_ADDR, PROGRAM_CMD);
> +    flash_write(c, byte_addr, data);
>      /*
>       * Data isn't valid until DQ6 stops toggling. We don't model this as
>       * writes are immediate, but if this changes in the future, we can wait
>       * until the program is complete.
>       */
> -    wait_for_completion(byte_addr);
> +    wait_for_completion(c, byte_addr);
>  }
>  
> -static void program(uint64_t byte_addr, uint16_t data)
> +static void program(const FlashConfig *c, uint64_t byte_addr, uint16_t data)
>  {
> -    unlock();
> -    bypass_program(byte_addr, data);
> +    unlock(c);
> +    bypass_program(c, byte_addr, data);
>  }
>  
> -static void chip_erase(void)
> +static void chip_erase(const FlashConfig *c)
>  {
> -    unlock();
> -    flash_write(UNLOCK0_ADDR, 0x80);
> -    unlock();
> -    flash_write(UNLOCK0_ADDR, SECTOR_ERASE_CMD);
> +    unlock(c);
> +    flash_cmd(c, UNLOCK0_ADDR, 0x80);
> +    unlock(c);
> +    flash_cmd(c, UNLOCK0_ADDR, CHIP_ERASE_CMD);
>  }
>  
> -static void test_flash(void)
> +/*
> + * Check that the device interface code dic is appropriate for the given
> + * width.
> + *
> + * Device interface codes are specified in JEP173.
> + */
> +static bool device_supports_width(uint16_t dic, int width)
>  {
> -    global_qtest = qtest_initf("-M musicpal,accel=qtest "
> -                               "-drive 
> if=pflash,file=%s,format=raw,copy-on-read",
> -                               image_path);
> +    switch (width) {
> +    case 1:
> +        /*
> +         * x8-only, x8/x16, or x32
> +         * XXX: Currently we use dic = 3 for an x8/x32 device even though
> +         * that's only for x32. If there's a more appropriate value, both 
> this
> +         * test and pflash-cfi02.c should be modified.
> +         */
> +        return dic == 0 || dic == 2 || dic == 3;
> +    case 2:
> +        /* x16-only, x8/x16, or x16/x32. */
> +        return dic == 1 || dic == 2 || dic == 4;
> +    case 4:
> +        /* x32-only or x16/x32. */
> +        return dic == 3 || dic == 4;
> +    }
> +    g_test_incomplete("Device width test not supported");
> +    return true;
> +}
> +
> +static void test_flash(const void *opaque)
> +{
> +    const FlashConfig *config = opaque;
> +    QTestState *qtest;
> +    qtest = qtest_initf("-M musicpal,accel=qtest"
> +                        " -drive if=pflash,file=%s,format=raw,copy-on-read"
> +                        " -global driver=cfi.pflash02,"
> +                        "property=device-width,value=%d"
> +                        " -global driver=cfi.pflash02,"
> +                        "property=max-device-width,value=%d",
> +                        image_path,
> +                        config->device_width,
> +                        config->max_device_width);
> +    FlashConfig explicit_config = expand_config_defaults(config);
> +    explicit_config.qtest = qtest;
> +    const FlashConfig *c = &explicit_config;
> +
>      /* Check the IDs. */
> -    unlock();
> -    flash_write(UNLOCK0_ADDR, AUTOSELECT_CMD);
> -    g_assert_cmpint(flash_read(FLASH_WIDTH * 0x0000), ==, 0x00BF);
> -    g_assert_cmpint(flash_read(FLASH_WIDTH * 0x0001), ==, 0x236D);
> -    reset();
> +    unlock(c);
> +    flash_cmd(c, UNLOCK0_ADDR, AUTOSELECT_CMD);
> +    g_assert_cmpint(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF));
> +    if (c->device_width >= 2) {
> +        /*
> +         * XXX: The ID returned by the musicpal flash chip is 16 bits which
> +         * wouldn't happen with an 8-bit device. It would probably be best to
> +         * prohibit addresses larger than the device width in pflash_cfi02.c,
> +         * but then we couldn't test smaller device widths at all.
> +         */
> +        g_assert_cmpint(flash_query(c, FLASH_ADDR(1)), ==,
> +                        replicate(c, 0x236D));
> +    }
> +    reset(c);
>  
>      /* Check the erase blocks. */
> -    flash_write(CFI_ADDR, CFI_CMD);
> -    g_assert_cmpint(flash_read(FLASH_WIDTH * 0x10), ==, 'Q');
> -    g_assert_cmpint(flash_read(FLASH_WIDTH * 0x11), ==, 'R');
> -    g_assert_cmpint(flash_read(FLASH_WIDTH * 0x12), ==, 'Y');
> +    flash_cmd(c, CFI_ADDR, CFI_CMD);
> +    g_assert_cmpint(flash_query(c, FLASH_ADDR(0x10)), ==, replicate(c, 'Q'));
> +    g_assert_cmpint(flash_query(c, FLASH_ADDR(0x11)), ==, replicate(c, 'R'));
> +    g_assert_cmpint(flash_query(c, FLASH_ADDR(0x12)), ==, replicate(c, 'Y'));
> +
>      /* Num erase regions. */
> -    g_assert_cmpint(flash_read(FLASH_WIDTH * 0x2C), >=, 1);
> -    uint32_t nb_sectors = flash_read(FLASH_WIDTH * 0x2D) +
> -                          (flash_read(FLASH_WIDTH * 0x2E) << 8) + 1;
> -    uint32_t sector_len = (flash_read(FLASH_WIDTH * 0x2F) << 8) +
> -                          (flash_read(FLASH_WIDTH * 0x30) << 16);
> -    reset();
> +    g_assert_cmpint(flash_query_1(c, FLASH_ADDR(0x2C)), >=, 1);
>  
> +    /* Check device length. */
> +    uint32_t device_len = 1 << flash_query_1(c, FLASH_ADDR(0x27));
> +    g_assert_cmpint(device_len * (c->bank_width / c->device_width), ==,
> +                    FLASH_SIZE);
> +
> +    /* Check nb_sectors * sector_len is device_len. */
> +    uint32_t nb_sectors = flash_query_1(c, FLASH_ADDR(0x2D)) +
> +                          (flash_query_1(c, FLASH_ADDR(0x2E)) << 8) + 1;
> +    uint32_t sector_len = (flash_query_1(c, FLASH_ADDR(0x2F)) << 8) +
> +                          (flash_query_1(c, FLASH_ADDR(0x30)) << 16);
> +    g_assert_cmpint(nb_sectors * sector_len, ==, device_len);
> +
> +    /* Check the device interface code supports the width and max width. */
> +    uint16_t device_interface_code = flash_query_1(c, FLASH_ADDR(0x28)) +
> +                                     (flash_query_1(c, FLASH_ADDR(0x29)) << 
> 8);
> +    g_assert_true(device_supports_width(device_interface_code,
> +                                        c->device_width));
> +    g_assert_true(device_supports_width(device_interface_code,
> +                                        c->max_device_width));
> +    reset(c);
> +
> +    const uint64_t dq7 = replicate(c, 0x80);
> +    const uint64_t dq6 = replicate(c, 0x40);
>      /* Erase and program sector. */
>      for (uint32_t i = 0; i < nb_sectors; ++i) {
>          uint64_t byte_addr = i * sector_len;
> -        sector_erase(byte_addr);
> +        sector_erase(c, byte_addr);
>          /* Read toggle. */
> -        uint16_t status0 = flash_read(byte_addr);
> +        uint64_t status0 = flash_read(c, byte_addr);
>          /* DQ7 is 0 during an erase. */
> -        g_assert_cmpint(status0 & 0x80, ==, 0);
> -        uint16_t status1 = flash_read(byte_addr);
> +        g_assert_cmpint(status0 & dq7, ==, 0);
> +        uint64_t status1 = flash_read(c, byte_addr);
>          /* DQ6 toggles during an erase. */
> -        g_assert_cmpint(status0 & 0x40, !=, status1 & 0x40);
> +        g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
>          /* Wait for erase to complete. */
> -        clock_step_next();
> +        qtest_clock_step_next(c->qtest);
>          /* Ensure DQ6 has stopped toggling. */
> -        g_assert_cmpint(flash_read(byte_addr), ==, flash_read(byte_addr));
> +        g_assert_cmpint(flash_read(c, byte_addr), ==, flash_read(c, 
> byte_addr));
>          /* Now the data should be valid. */
> -        g_assert_cmpint(flash_read(byte_addr), ==, 0xFFFF);
> +        g_assert_cmpint(flash_read(c, byte_addr), ==, bank_mask(c));
>  
>          /* Program a bit pattern. */
> -        program(byte_addr, 0x5555);
> -        g_assert_cmpint(flash_read(byte_addr), ==, 0x5555);
> -        program(byte_addr, 0xAA55);
> -        g_assert_cmpint(flash_read(byte_addr), ==, 0x0055);
> +        program(c, byte_addr, 0x55);
> +        g_assert_cmpint(flash_read(c, byte_addr) & 0xFF, ==, 0x55);
> +        program(c, byte_addr, 0xA5);
> +        g_assert_cmpint(flash_read(c, byte_addr) & 0xFF, ==, 0x05);
>      }
>  
>      /* Erase the chip. */
> -    chip_erase();
> +    chip_erase(c);
>      /* Read toggle. */
> -    uint16_t status0 = flash_read(0);
> +    uint64_t status0 = flash_read(c, 0);
>      /* DQ7 is 0 during an erase. */
> -    g_assert_cmpint(status0 & 0x80, ==, 0);
> -    uint16_t status1 = flash_read(0);
> +    g_assert_cmpint(status0 & dq7, ==, 0);
> +    uint64_t status1 = flash_read(c, 0);
>      /* DQ6 toggles during an erase. */
> -    g_assert_cmpint(status0 & 0x40, !=, status1 & 0x40);
> +    g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
>      /* Wait for erase to complete. */
> -    clock_step_next();
> +    qtest_clock_step_next(c->qtest);
>      /* Ensure DQ6 has stopped toggling. */
> -    g_assert_cmpint(flash_read(0), ==, flash_read(0));
> +    g_assert_cmpint(flash_read(c, 0), ==, flash_read(c, 0));
>      /* Now the data should be valid. */
> -    g_assert_cmpint(flash_read(0), ==, 0xFFFF);
> +
> +    for (uint32_t i = 0; i < nb_sectors; ++i) {
> +        uint64_t byte_addr = i * sector_len;
> +        g_assert_cmpint(flash_read(c, byte_addr), ==, bank_mask(c));
> +    }
>  
>      /* Unlock bypass */
> -    unlock();
> -    flash_write(UNLOCK0_ADDR, UNLOCK_BYPASS_CMD);
> -    bypass_program(0, 0x0123);
> -    bypass_program(2, 0x4567);
> -    bypass_program(4, 0x89AB);
> +    unlock(c);
> +    flash_cmd(c, UNLOCK0_ADDR, UNLOCK_BYPASS_CMD);
> +    bypass_program(c, 0 * c->bank_width, 0x01);
> +    bypass_program(c, 1 * c->bank_width, 0x23);
> +    bypass_program(c, 2 * c->bank_width, 0x45);
>      /*
>       * Test that bypass programming, unlike normal programming can use any
>       * address for the PROGRAM_CMD.
>       */
> -    flash_write(6, PROGRAM_CMD);
> -    flash_write(6, 0xCDEF);
> -    wait_for_completion(6);
> -    flash_write(0, UNLOCK_BYPASS_RESET_CMD);
> -    bypass_program(8, 0x55AA); /* Should fail. */
> -    g_assert_cmpint(flash_read(0), ==, 0x0123);
> -    g_assert_cmpint(flash_read(2), ==, 0x4567);
> -    g_assert_cmpint(flash_read(4), ==, 0x89AB);
> -    g_assert_cmpint(flash_read(6), ==, 0xCDEF);
> -    g_assert_cmpint(flash_read(8), ==, 0xFFFF);
> +    flash_cmd(c, FLASH_ADDR(3 * c->bank_width), PROGRAM_CMD);
> +    flash_write(c, 3 * c->bank_width, 0x67);
> +    wait_for_completion(c, 3 * c->bank_width);
> +    flash_cmd(c, FLASH_ADDR(0), UNLOCK_BYPASS_RESET_CMD);
> +    bypass_program(c, 4 * c->bank_width, 0x89); /* Should fail. */
> +    g_assert_cmpint(flash_read(c, 0 * c->bank_width), ==, 0x01);
> +    g_assert_cmpint(flash_read(c, 1 * c->bank_width), ==, 0x23);
> +    g_assert_cmpint(flash_read(c, 2 * c->bank_width), ==, 0x45);
> +    g_assert_cmpint(flash_read(c, 3 * c->bank_width), ==, 0x67);
> +    g_assert_cmpint(flash_read(c, 4 * c->bank_width), ==, bank_mask(c));
>  
>      /* Test ignored high order bits of address. */
> -    flash_write(FLASH_WIDTH * 0x5555, UNLOCK0_CMD);
> -    flash_write(FLASH_WIDTH * 0x2AAA, UNLOCK1_CMD);
> -    flash_write(FLASH_WIDTH * 0x5555, AUTOSELECT_CMD);
> -    g_assert_cmpint(flash_read(FLASH_WIDTH * 0x0000), ==, 0x00BF);
> -    g_assert_cmpint(flash_read(FLASH_WIDTH * 0x0001), ==, 0x236D);
> -    reset();
> +    flash_cmd(c, FLASH_ADDR(0x5555), UNLOCK0_CMD);
> +    flash_cmd(c, FLASH_ADDR(0x2AAA), UNLOCK1_CMD);
> +    flash_cmd(c, FLASH_ADDR(0x5555), AUTOSELECT_CMD);
> +    g_assert_cmpint(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF));
> +    reset(c);
>  
> -    qtest_quit(global_qtest);
> +    qtest_quit(qtest);
>  }
>  
>  static void cleanup(void *opaque)
> @@ -206,6 +423,61 @@ static void cleanup(void *opaque)
>      unlink(image_path);
>  }
>  
> +/*
> + * XXX: Tests are limited to bank_width = 2 for now because that's what
> + * hw/arm/musicpal.c has.
> + */
> +static const FlashConfig configuration[] = {
> +    /* One x16 device. */
> +    {
> +        .bank_width = 2,
> +        .device_width = 2,
> +        .max_device_width = 2,
> +    },
> +    /* Implicitly one x16 device. */
> +    {
> +        .bank_width = 2,
> +        .device_width = 0,
> +        .max_device_width = 0,
> +    },
> +    /* Implicitly one x16 device. */
> +    {
> +        .bank_width = 2,
> +        .device_width = 2,
> +        .max_device_width = 0,
> +    },
> +    /* Interleave two x8 devices. */
> +    {
> +        .bank_width = 2,
> +        .device_width = 1,
> +        .max_device_width = 1,
> +    },
> +    /* Interleave two implicit x8 devices. */
> +    {
> +        .bank_width = 2,
> +        .device_width = 1,
> +        .max_device_width = 0,
> +    },
> +    /* Interleave two x8/x16 devices in x8 mode. */
> +    {
> +        .bank_width = 2,
> +        .device_width = 1,
> +        .max_device_width = 2,
> +    },
> +    /* One x16/x32 device in x16 mode. */
> +    {
> +        .bank_width = 2,
> +        .device_width = 2,
> +        .max_device_width = 4,
> +    },
> +    /* Two x8/x32 devices in x8 mode; I am not sure if such devices exist. */
> +    {
> +        .bank_width = 2,
> +        .device_width = 1,
> +        .max_device_width = 4,
> +    },
> +};
> +
>  int main(int argc, char **argv)
>  {
>      int fd = mkstemp(image_path);
> @@ -214,7 +486,7 @@ int main(int argc, char **argv)
>                     strerror(errno));
>          exit(EXIT_FAILURE);
>      }
> -    if (ftruncate(fd, 8 * 1024 * 1024) < 0) {
> +    if (ftruncate(fd, FLASH_SIZE) < 0) {
>          int error_code = errno;
>          close(fd);
>          unlink(image_path);
> @@ -226,7 +498,17 @@ int main(int argc, char **argv)
>  
>      qtest_add_abrt_handler(cleanup, NULL);
>      g_test_init(&argc, &argv, NULL);
> -    qtest_add_func("pflash-cfi02", test_flash);
> +
> +    size_t nb_configurations = sizeof configuration / sizeof 
> configuration[0];
> +    for (size_t i = 0; i < nb_configurations; ++i) {
> +        const FlashConfig *config = &configuration[i];
> +        char *path = g_strdup_printf("pflash-cfi02/%d-%d-%d",
> +                                     config->bank_width,
> +                                     config->device_width,
> +                                     config->max_device_width);
> +        qtest_add_data_func(path, config, test_flash);
> +        g_free(path);
> +    }
>      int result = g_test_run();
>      cleanup(NULL);
>      return result;
> 



reply via email to

[Prev in Thread] Current Thread [Next in Thread]