qemu-devel
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [Qemu-devel] [Qemu-ppc] [PATCH] docs: provide documentation on the P


From: Satheesh Rajendran
Subject: Re: [Qemu-devel] [Qemu-ppc] [PATCH] docs: provide documentation on the POWER9 XIVE interrupt controller
Date: Tue, 14 May 2019 13:03:24 +0530
User-agent: Mutt/1.11.4 (2019-03-13)

On Tue, May 14, 2019 at 08:46:27AM +0200, Cédric Le Goater wrote:
> This documents the overall XIVE architecture and gives an overview of
> the QEMU models. It also provides documentation on the 'info pic'
> command.
> 
> Signed-off-by: Cédric Le Goater <address@hidden>
> ---
>  docs/index.rst     |   1 +
>  docs/ppc/index.rst |  13 ++
>  docs/ppc/xive.rst  | 344 +++++++++++++++++++++++++++++++++++++++++++++
>  MAINTAINERS        |   1 +
>  4 files changed, 359 insertions(+)
>  create mode 100644 docs/ppc/index.rst
>  create mode 100644 docs/ppc/xive.rst

Overall doc, looks great, have few minor suggestions below.
> 
> diff --git a/docs/index.rst b/docs/index.rst
> index 3690955dd1f5..557fe86233e3 100644
> --- a/docs/index.rst
> +++ b/docs/index.rst
> @@ -12,4 +12,5 @@ Welcome to QEMU's documentation!
>  
>     interop/index
>     devel/index
> +   ppc/index
>  
> diff --git a/docs/ppc/index.rst b/docs/ppc/index.rst
> new file mode 100644
> index 000000000000..146f416ea3a0
> --- /dev/null
> +++ b/docs/ppc/index.rst
> @@ -0,0 +1,13 @@
> +.. This is the top level page for the 'ppc' manual
> +
> +
> +QEMU PowerPC Machine and Controller Guide
> +=========================================
> +
> +
> +Contents:
> +
> +.. toctree::
> +   :maxdepth: 2
> +
> +   xive
> diff --git a/docs/ppc/xive.rst b/docs/ppc/xive.rst
> new file mode 100644
> index 000000000000..90ddde6bf39f
> --- /dev/null
> +++ b/docs/ppc/xive.rst
> @@ -0,0 +1,344 @@
> +================================
> +POWER9 XIVE interrupt controller
> +================================
> +
> +The POWER9 processor comes with a new interrupt controller
> +architecture, called XIVE as "eXternal Interrupt Virtualization
> +Engine".
> +
> +Compared to the previous architecture, the main characteristics of
> +XIVE are to support a larger number of interrupt sources and to
> +deliver interrupts directly to virtual processors without hypervisor
> +assistance. This removes the context switches required for the
> +delivery process.
> +
> +
> +Overall architecture
> +====================
> +
> +The XIVE IC is composed of three sub-engines, each taking care of a
> +processing layer of external interrupts:
> +
> +- Interrupt Virtualization Source Engine (IVSE), or Source Controller
> +  (SC). These are found in PCI PHBs, in the PSI host bridge
> +  controller, but also inside the main controller for the core IPIs
> +  and other sub-chips (NX, CAP, NPU) of the chip/processor. They are
> +  configured to feed the IVRE with events.
> +- Interrupt Virtualization Routing Engine (IVRE) or Virtualization
> +  Controller (VC). It handles event coalescing and perform interrupt
> +  routing by matching an event source number with an Event
> +  Notification Descriptor (END).
> +- Interrupt Virtualization Presentation Engine (IVPE) or Presentation
> +  Controller (PC). It maintains the interrupt context state of each
> +  thread and handles the delivery of the external interrupt to the
> +  thread.
> +
> +::
> +
> +                XIVE Interrupt Controller
> +                +------------------------------------+      IPIs
> +                | +---------+ +---------+ +--------+ |    +-------+
> +                | |IVRE     | |Common Q | |IVPE    |----> | CORES |
> +                | |     esb | |         | |        |----> |       |
> +                | |     eas | |  Bridge | |   tctx |----> |       |
> +                | |SC   end | |         | |    nvt | |    |       |
> +    +------+    | +---------+ +----+----+ +--------+ |    +-+-+-+-+
> +    | RAM  |    +------------------|-----------------+      | | |
> +    |      |                       |                        | | |
> +    |      |                       |                        | | |
> +    |      |  +--------------------v------------------------v-v-v--+    other
> +    |      <--+                     Power Bus                      +--> chips
> +    |  esb |  +---------+-----------------------+------------------+
> +    |  eas |            |                       |
> +    |  end |         +--|------+                |
> +    |  nvt |       +----+----+ |           +----+----+
> +    +------+       |IVSE     | |           |IVSE     |
> +                   |         | |           |         |
> +                   | PQ-bits | |           | PQ-bits |
> +                   | local   |-+           |  in VC  |
> +                   +---------+             +---------+
> +                      PCIe                 NX,NPU,CAPI
> +
> +
> +    PQ-bits: 2 bits source state machine (P:pending Q:queued)
> +    esb: Event State Buffer (Array of PQ bits in an IVSE)
> +    eas: Event Assignment Structure
> +    end: Event Notification Descriptor
> +    nvt: Notification Virtual Target
> +    tctx: Thread interrupt Context registers
> +
> +
> +
> +XIVE internal tables
> +--------------------
> +
> +Each of the sub-engines uses a set of tables to redirect interrupts
> +from event sources to CPU threads.
> +
> +::
> +
> +                                            +-------+
> +    User or O/S                             |  EQ   |
> +        or                          +------>|entries|
> +    Hypervisor                      |       |  ..   |
> +      Memory                        |       +-------+
> +                                    |           ^
> +                                    |           |
> +               +-------------------------------------------------+
> +                                    |           |
> +    Hypervisor      +------+    +---+--+    +---+--+   +------+
> +      Memory        | ESB  |    | EAT  |    | ENDT |   | NVTT |
> +     (skiboot)      +----+-+    +----+-+    +----+-+   +------+
> +                      ^  |        ^  |        ^  |       ^
> +                      |  |        |  |        |  |       |
> +               +-------------------------------------------------+
> +                      |  |        |  |        |  |       |
> +                      |  |        |  |        |  |       |
> +                 +----|--|--------|--|--------|--|-+   +-|-----+    +------+
> +                 |    |  |        |  |        |  | |   | | tctx|    |Thread|
> +     IPI or   ---+    +  v        +  v        +  v |---| +  .. |----->     |
> +    HW events    |                                 |   |       |    |      |
> +                 |             IVRE                |   | IVPE  |    +------+
> +                 +---------------------------------+   +-------+
> +
> +
> +The IVSE have a 2-bits state machine, P for pending and Q for queued,
> +for each source that allows events to be triggered. They are stored in
> +an Event State Buffer (ESB) array and can be controlled by MMIOs.
> +
> +If the event is let through, the IVRE looks up in the Event Assignment
> +Structure (EAS) table for an Event Notification Descriptor (END)
> +configured for the source. Each Event Notification Descriptor defines
> +a notification path to a CPU and an in-memory Event Queue, in which
> +will be enqueued an EQ data for the O/S to pull.
> +
> +The IVPE determines if a Notification Virtual Target (NVT) can handle
> +the event by scanning the thread contexts of the VCPUs dispatched on
> +the processor HW threads. It maintains the interrupt context state of
> +each thread in a NVT table.
> +
> +XIVE thread interrupt context
> +-----------------------------
> +
> +The XIVE presenter can generate four different exceptions to its
> +HW threads:
> +
> +- hypervisor exception
> +- O/S exception
> +- Event-Based Branch (user level)
> +- msgsnd (doorbell)
> +
> +Each exception has a state independent from the others called a Thread
> +Interrupt Management context. This context is a set of registers which
> +lets the thread handle priority management and interrupt
> +acknowledgment among other things. The most important ones being :
> +
> +- Interrupt Priority Register  (PIPR)
> +- Interrupt Pending Buffer     (IPB)
> +- Current Processor Priority   (CPPR)
> +- Notification Source Register (NSR)
> +
> +TIMA
> +~~~~
> +
> +The Thread Interrupt Management registers are accessible through a
> +specific MMIO region, called the Thread Interrupt Management Area
> +(TIMA), four aligned pages, each exposing a different view of the
> +registers. First page (page address ending in ``0b00``) gives access
> +to the entire context and is reserved for the ring 0 view for the
> +physical thread context. The second (page address ending in ``0b01``)
> +is for the hypervisor, ring 1 view. The third (page address ending in
> +``0b10``) is for the operating system, ring 2 view. The fourth (page
> +address ending in ``0b11``) is for user level, ring 3 view.
> +
> +Interrupt flow from an O/S perspective
> +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
> +
> +After an event data has been enqueued in the O/S Event Queue, the IVPE
> +raises the bit corresponding to the priority of the pending interrupt
> +in the register IBP (Interrupt Pending Buffer) to indicate that an
> +event is pending in one of the 8 priority queues. The Pending
> +Interrupt Priority Register (PIPR) is also updated using the IPB. This
> +register represent the priority of the most favored pending
> +notification.
> +
> +The PIPR is then compared to the the Current Processor Priority
> +Register (CPPR). If it is more favored (numerically less than), the
> +CPU interrupt line is raised and the EO bit of the Notification Source
> +Register (NSR) is updated to notify the presence of an exception for
> +the O/S. The O/S acknowledges the interrupt with a special load in the
> +Thread Interrupt Management Area.
> +
> +The O/S handles the interrupt and when done, performs an EOI using a
> +MMIO operation on the ESB management page of the associate source.
> +
> +
> +Overview of the QEMU models for XIVE
> +====================================
> +
> +The XiveSource models the IVSE in general, internal and external. It
> +handles the source ESBs and the MMIO interface to control them.
> +
> +The XiveNotifier is a small helper interface interconnecting the
> +XiveSource to the XiveRouter.
> +
> +The XiveRouter is an abstract model acting as a combined IVRE and
> +IVPE. It routes event notifications using the EAS and END tables to
> +the IVPE sub-engine which does a CAM scan to find a CPU to deliver the
> +exception. Storage should be provided by the inheriting classes.
> +
> +XiveEnDSource is a special source object. It exposes the END ESB MMIOs
> +of the Event Queues which are used for coalescing event notifications
> +and for escalation. Not used on the field, only to sync the EQ cache
> +in OPAL.
> +
> +Finally, the XiveTCTX contains the interrupt state context of a thread,
> +four sets of registers, one for each exception that can be delivered
> +to a CPU. These contexts are scanned by the IVPE to find a matching VP
> +when a notification is triggered. It also models the Thread Interrupt
> +Management Area (TIMA), which exposes the thread context registers to
> +the CPU for interrupt management.
> +
> +
> +XIVE for sPAPR (pseries machines)
> +=================================
> +
> +SpaprXive models the XIVE interrupt controller of a ``pseries``
> +machine. It inherits from the XiveRouter and provisions storage for
> +the EAS and END tables. The NVT table does not need a backend in
> +sPAPR. It owns a XiveSource object for the IPIs and the virtual device
> +interrupts, a memory region for the TIMA and a XiveENDSource object to
> +manage the END ESBs (not used by Linux).
> +
> +These choices were made to have a sPAPR interrupt controller consistent
> +with the one found on baremetal and to facilitate KVM support, the
> +main difficulty being the host memory regions exposed to the guest.
> +
> +CAS Negotiation
> +---------------
> +
> +The interrupt mode advertised by the ``pseries`` machine in the CAS
> +negotiation process depends on the CPU type (XIVE requires POWER9) but
> +also on the machine property ``ic-mode`` which can take the following
> +values: ``xics``, ``xive`` and ``dual``. ``xics`` is currently the
> +default mode but it should change in the future.
> +
> +The choosen interrupt mode is activated after a reconfiguration done
> +in a machine reset.
> +
can this be included?
guest uses this device-tree entry(ibm,arch-vec-5-platform-support) to decide on 
xive vs xics if dual set for ic-mode

> +KVM support
> +-----------
> +
> +Two host memory regions are exposed to the guest and require special
> +attention at initialization :
> +
> +- ESB MMIOs
> +- Thread Interrupt Management Area (TIMA)
> +
> +When using the KVM device, these are `ram device` memory mappings,
> +similarly to VFIO, exposed to the guest and the associated VMAs on the
> +host are populated dynamically with the appropriate pages using a
> +fault handler.
> +
> +The models uses KVM accessors to synchronize the QEMU state with KVM :
> +
> +- the source configuration (EAT)
> +- the END configuration (ENDT)
> +- the O/S EQ state (toggle bit and index)
> +- the thread interrupt context registers.
> +
> +Hybrid guest using KVM and an emulated irqchip ``kernel_irqchip=off``

Some more explanations ``kernel_irqchip=off`` vs ``kernel_irqchip=on``(default 
for full xive support) would help?
kernel-irqchip=on - in-kernel accelerated one - more performance
kernel-irqchip=off - fully emulated XIVE in QEMU - less performace


> +is supported.
> +
> +Monitoring XIVE
> +---------------
> +
> +The state of the XIVE interrupt controller can be queried through the
> +monitor commands ``info pic``. The output comes in two parts.
> +
> +First, the state of the thread interrupt context registers is dumped
> +for each CPU :
> +
> +::
> +
> +   (qemu) info pic
> +   CPU[0000]:   QW   NSR CPPR IPB LSMFB ACK# INC AGE PIPR  W2
> +   CPU[0000]: USER    00   00  00    00   00  00  00   00  00000000
> +   CPU[0000]:   OS    00   ff  00    00   ff  00  ff   ff  80000400
> +   CPU[0000]: POOL    00   00  00    00   00  00  00   00  00000000
> +   CPU[0000]: PHYS    00   00  00    00   00  00  00   ff  00000000
> +   ...
> +
> +In the case of a ``pseries`` machine, QEMU acts as the hypervisor and only
> +the O/S and USER register rings make sense. ``W2`` contains the vCPU CAM
> +line which is set to the VP identifier.
> +
> +Then comes the routing information which aggregates the EAS and the
> +END configuration:
> +
> +::
> +
> +   ...
> +   LISN         PQ    EISN     CPU/PRIO EQ
> +   00000000 MSI --    00000010   0/6    380/16384 @1fe3e0000 ^1 [ 80000010 
> ... ]
> +   00000001 MSI --    00000010   1/6    305/16384 @1fc230000 ^1 [ 80000010 
> ... ]
> +   00000002 MSI --    00000010   2/6    220/16384 @1fc2f0000 ^1 [ 80000010 
> ... ]
> +   00000003 MSI --    00000010   3/6    201/16384 @1fc390000 ^1 [ 80000010 
> ... ]
> +   00000004 MSI -Q  M 00000000
> +   00000005 MSI -Q  M 00000000
> +   00000006 MSI -Q  M 00000000
> +   00000007 MSI -Q  M 00000000
> +   00001000 MSI --    00000012   0/6    380/16384 @1fe3e0000 ^1 [ 80000010 
> ... ]
> +   00001001 MSI --    00000013   0/6    380/16384 @1fe3e0000 ^1 [ 80000010 
> ... ]
> +   00001100 MSI --    00000100   1/6    305/16384 @1fc230000 ^1 [ 80000010 
> ... ]
> +   00001101 MSI -Q  M 00000000
> +   00001200 LSI -Q  M 00000000
> +   00001201 LSI -Q  M 00000000
> +   00001202 LSI -Q  M 00000000
> +   00001203 LSI -Q  M 00000000
> +   00001300 MSI --    00000102   1/6    305/16384 @1fc230000 ^1 [ 80000010 
> ... ]
> +   00001301 MSI --    00000103   2/6    220/16384 @1fc2f0000 ^1 [ 80000010 
> ... ]
> +   00001302 MSI --    00000104   3/6    201/16384 @1fc390000 ^1 [ 80000010 
> ... ]
> +
> +The source information and configuration:
> +
> +- The ``LISN`` column outputs the interrupt number of the source in

Explanation on different ranges of ``LISN`` corresponds to 
different type of interrupt sources,if applicable would help..

> +  range ``[ 0x0 ... 0x1FFF ]`` and its type : ``MSI`` or ``LSI``

Small explanation about `MSI` and `LSI` type interrupts and 
example sources for each would help...

> +- The ``PQ`` column reflects the state of the PQ bits of the source :
> +
> +  - ``--`` source is ready to take events
> +  - ``P-`` an event was sent and an EOI is PENDING
> +  - ``PQ`` an event was QUEUED
> +  - ``-Q`` source is OFF
> +
> +  a ``M`` indicates that source is *MASKED* at the EAS level,
> +
> +The targeting configuration :
> +
> +- The ``EISN`` column is the event data what will be queued in the event
> +  queue of the O/S.
> +- The ``CPU/PRIO`` column is the tuple defining the CPU number and
> +  priority queue serving the source.
> +- The ``EQ`` column outputs :
> +
> +  - the current index of the event queue/ the max number of entries
> +  - the O/S event queue address
> +  - the toggle bit
> +  - the last entries that were pushed in the event queue.
> +
> +
> +
> +XIVE for PowerNV
> +================
> +
> +The PnvXIVE model uses the XiveRouter abstract model just like
> +sPAPRXive. It provides accessors to the EAS, END and NVT tables which
> +are stored in the QEMU PowerNV machine and not in QEMU anymore. It
> +owns a set of memory regions for the IC registers, the ESBs, the END
> +ESBs, the TIMA, the notification MMIO.
> +
> +Multichip is supported and the available IVSEs are the internal one
> +for the IPIS, the PSI host bridge controller and PHB4.
> +
> +The next interesting step would be to add escalation events and model
> +the VCPU dispatching to support emulated KVM guests.
> diff --git a/MAINTAINERS b/MAINTAINERS
> index 66ddbda9c958..a896c7407294 100644
> --- a/MAINTAINERS
> +++ b/MAINTAINERS
> @@ -1697,6 +1697,7 @@ L: address@hidden
>  S: Supported
>  F: hw/*/*xive*
>  F: include/hw/*/*xive*
> +F: docs/ppc/xive.rst
>  
>  Subsystems
>  ----------
> -- 
> 2.20.1
> 
>

Regards,
-Satheesh 




reply via email to

[Prev in Thread] Current Thread [Next in Thread]