[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[Qemu-devel] [PATCH Risu v2 1/9] Create risugen_arm.pm module for risuge
From: |
Jose Ricardo Ziviani |
Subject: |
[Qemu-devel] [PATCH Risu v2 1/9] Create risugen_arm.pm module for risugen |
Date: |
Sun, 6 Nov 2016 15:15:20 -0200 |
risugen_arm is a module to handle ARM specific code, it gives the
opportunity to have risugen implementing generic code only and
making easier to implement risugen for other archs.
Signed-off-by: Jose Ricardo Ziviani <address@hidden>
---
risugen_arm.pm | 1086 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1 file changed, 1086 insertions(+)
create mode 100644 risugen_arm.pm
diff --git a/risugen_arm.pm b/risugen_arm.pm
new file mode 100644
index 0000000..332ed34
--- /dev/null
+++ b/risugen_arm.pm
@@ -0,0 +1,1086 @@
+#!/usr/bin/perl -w
+###############################################################################
+# Copyright (c) 2010 Linaro Limited
+# All rights reserved. This program and the accompanying materials
+# are made available under the terms of the Eclipse Public License v1.0
+# which accompanies this distribution, and is available at
+# http://www.eclipse.org/legal/epl-v10.html
+#
+# Contributors:
+# Peter Maydell (Linaro) - initial implementation
+# Claudio Fontana (Linaro) - initial aarch64 support
+# Jose Ricardo Ziviani (IBM) - modularize risugen
+###############################################################################
+
+# risugen -- generate a test binary file for use with risu
+# See 'risugen --help' for usage information.
+package risugen_arm;
+
+use strict;
+use warnings;
+
+require Exporter;
+
+our @ISA = qw(Exporter);
+our @EXPORT = qw(write_test_code);
+
+my $periodic_reg_random = 1;
+my $enable_aarch64_ld1 = 0;
+
+# Note that we always start in ARM mode even if the C code was compiled for
+# thumb because we are called by branch to a lsbit-clear pointer.
+# is_thumb tracks the mode we're actually currently in (ie should we emit
+# an arm or thumb insn?); test_thumb tells us which mode we need to switch
+# to to emit the insns under test.
+# Use .mode aarch64 to start in Aarch64 mode.
+
+my $is_aarch64 = 0; # are we in aarch64 mode?
+# For aarch64 it only makes sense to put the mode directive at the
+# beginning, and there is no switching away from aarch64 to arm/thumb.
+
+my $is_thumb = 0; # are we currently in Thumb mode?
+my $test_thumb = 0; # should test code be Thumb mode?
+
+my $bytecount;
+
+# Maximum alignment restriction permitted for a memory op.
+my $MAXALIGN = 64;
+
+# An instruction pattern as parsed from the config file turns into
+# a record like this:
+# name # name of the pattern
+# width # 16 or 32
+# fixedbits # values of the fixed bits
+# fixedbitmask # 1s indicate locations of the fixed bits
+# blocks # hash of blockname->contents (for constraints etc)
+# fields # array of arrays, each element is [ varname, bitpos,
bitmask ]
+#
+# We store these in the insn_details hash.
+
+# Valid block names (keys in blocks hash)
+my %valid_blockname = ( constraints => 1, memory => 1 );
+
+sub open_bin
+{
+ my ($fname) = @_;
+ open(BIN, ">", $fname) or die "can't open %fname: $!";
+ $bytecount = 0;
+}
+
+sub close_bin
+{
+ close(BIN) or die "can't close output file: $!";
+}
+
+sub insn32($)
+{
+ my ($insn) = @_;
+ print BIN pack("V", $insn);
+ $bytecount += 4;
+}
+
+sub insn16($)
+{
+ my ($insn) = @_;
+ print BIN pack("v", $insn);
+ $bytecount += 2;
+}
+
+# for thumb only
+sub thumb_align4()
+{
+ if ($bytecount & 3) {
+ insn16(0xbf00); # NOP
+ }
+}
+
+# used for aarch64 only for now
+sub data_barrier()
+{
+ if ($is_aarch64) {
+ insn32(0xd5033f9f); # DSB SYS
+ }
+}
+
+# The space 0xE7F___F_ is guaranteed to always UNDEF
+# and not to be allocated for insns in future architecture
+# revisions. So we use it for our 'do comparison' and
+# 'end of test' instructions.
+# We fill in the middle bit with a randomly selected
+# 'e5a' just in case the space is being used by somebody
+# else too.
+
+# For Thumb the equivalent space is 0xDExx
+# and we use 0xDEEx.
+
+# So the last nibble indicates the desired operation:
+my $OP_COMPARE = 0; # compare registers
+my $OP_TESTEND = 1; # end of test, stop
+my $OP_SETMEMBLOCK = 2; # r0 is address of memory block (8192 bytes)
+my $OP_GETMEMBLOCK = 3; # add the address of memory block to r0
+my $OP_COMPAREMEM = 4; # compare memory block
+
+sub write_thumb_risuop($)
+{
+ my ($op) = @_;
+ insn16(0xdee0 | $op);
+}
+
+sub write_arm_risuop($)
+{
+ my ($op) = @_;
+ insn32(0xe7fe5af0 | $op);
+}
+
+sub write_aarch64_risuop($)
+{
+ # instr with bits (28:27) == 0 0 are UNALLOCATED
+ my ($op) = @_;
+ insn32(0x00005af0 | $op);
+}
+
+sub write_risuop($)
+{
+ my ($op) = @_;
+ if ($is_thumb) {
+ write_thumb_risuop($op);
+ } elsif ($is_aarch64) {
+ write_aarch64_risuop($op);
+ } else {
+ write_arm_risuop($op);
+ }
+}
+
+sub write_switch_to_thumb()
+{
+ # Switch to thumb if we're not already there
+ if (!$is_thumb) {
+ # Note that we have to clean up r0 afterwards
+ # so it isn't tainted with a value which depends
+ # on PC (and which might differ between hw and
+ # qemu/valgrind/etc)
+ insn32(0xe28f0001); # add r0, pc, #1
+ insn32(0xe12fff10); # bx r0
+ insn16(0x4040); # eor r0,r0 (enc T1)
+ $is_thumb = 1;
+ }
+}
+
+sub write_switch_to_arm()
+{
+ # Switch to ARM mode if we are in thumb mode
+ if ($is_thumb) {
+ thumb_align4();
+ insn16(0x4778); # bx pc
+ insn16(0xbf00); # nop
+ $is_thumb = 0;
+ }
+}
+
+sub write_switch_to_test_mode()
+{
+ # Switch to whichever mode we need for test code
+ if ($is_aarch64) {
+ return; # nothing to do
+ }
+
+ if ($test_thumb) {
+ write_switch_to_thumb();
+ } else {
+ write_switch_to_arm();
+ }
+}
+
+# sign extend a 32bit reg into a 64bit reg
+sub write_sxt32($$)
+{
+ my ($rd, $rn) = @_;
+ die "write_sxt32: invalid operation for this arch.\n" if (!$is_aarch64);
+
+ insn32(0x93407c00 | $rn << 5 | $rd);
+}
+
+# sign-extract from a nbit optionally signed bitfield
+sub sextract($$)
+{
+ my ($field, $nbits) = @_;
+
+ my $sign = $field & (1 << ($nbits - 1));
+ return -$sign + ($field ^ $sign);
+}
+
+sub write_sub_rrr($$$)
+{
+ my ($rd, $rn, $rm) = @_;
+
+ if ($is_aarch64) {
+ insn32(0xcb000000 | ($rm << 16) | ($rn << 5) | $rd);
+
+ } elsif ($is_thumb) {
+ # enc T2
+ insn16(0xeba0 | $rn);
+ insn16(0x0000 | ($rd << 8) | $rm);
+ } else {
+ # enc A1
+ insn32(0xe0400000 | ($rn << 16) | ($rd << 12) | $rm);
+ }
+}
+
+# valid shift types
+my $SHIFT_LSL = 0;
+my $SHIFT_LSR = 1;
+my $SHIFT_ASR = 2;
+my $SHIFT_ROR = 3;
+
+sub write_sub_rrrs($$$$$)
+{
+ # sub rd, rn, rm, shifted
+ my ($rd, $rn, $rm, $type, $imm) = @_;
+ $type = $SHIFT_LSL if $imm == 0;
+ my $bits = $is_aarch64 ? 64 : 32;
+
+ if ($imm == $bits && ($type == $SHIFT_LSR || $type == $SHIFT_ASR)) {
+ $imm = 0;
+ }
+ die "write_sub_rrrs: bad shift immediate $imm\n" if $imm < 0 || $imm >
($bits - 1);
+
+ if ($is_aarch64) {
+ insn32(0xcb000000 | ($type << 22) | ($rm << 16) | ($imm << 10) | ($rn
<< 5) | $rd);
+
+ } elsif ($is_thumb) {
+ # enc T2
+ my ($imm3, $imm2) = ($imm >> 2, $imm & 3);
+ insn16(0xeba0 | $rn);
+ insn16(($imm3 << 12) | ($rd << 8) | ($imm2 << 6) | ($type << 4) | $rm);
+ } else {
+ # enc A1
+ insn32(0xe0400000 | ($rn << 16) | ($rd << 12) | ($imm << 7) | ($type
<< 5) | $rm);
+ }
+}
+
+sub write_mov_rr($$)
+{
+ my ($rd, $rm) = @_;
+
+ if ($is_aarch64) {
+ # using ADD 0x11000000 */
+ insn32(0x91000000 | ($rm << 5) | $rd);
+
+ } elsif ($is_thumb) {
+ # enc T3
+ insn16(0xea4f);
+ insn16(($rd << 8) | $rm);
+ } else {
+ # enc A1
+ insn32(0xe1a00000 | ($rd << 12) | $rm);
+ }
+}
+
+sub write_mov_ri16($$$)
+{
+ # Write 16 bits of immediate to register, using either MOVW or MOVT
+ my ($rd, $imm, $is_movt) = @_;
+ die "write_mov_ri16: immediate $imm out of range\n" if (($imm &
0xffff0000) != 0);
+
+ if ($is_aarch64) {
+ # Use MOVZ 0x52800000. is_movt means MOVK of high bits */
+ insn32(0xd2800000 | ($is_movt << 29) | ($is_movt ? 16 << 17 : 0) |
($imm << 5) | $rd);
+
+ } elsif ($is_thumb) {
+ # enc T3
+ my ($imm4, $i, $imm3, $imm8) = (($imm & 0xf000) >> 12,
+ ($imm & 0x0800) >> 11,
+ ($imm & 0x0700) >> 8,
+ ($imm & 0x00ff));
+ insn16(0xf240 | ($is_movt << 7) | ($i << 10) | $imm4);
+ insn16(($imm3 << 12) | ($rd << 8) | $imm8);
+ } else {
+ # enc A2
+ my ($imm4, $imm12) = (($imm & 0xf000) >> 12,
+ ($imm & 0x0fff));
+ insn32(0xe3000000 | ($is_movt << 22) | ($imm4 << 16) | ($rd << 12) |
$imm12);
+ }
+}
+
+sub write_mov_ri($$)
+{
+ # We always use a MOVW/MOVT pair, for simplicity.
+ # on aarch64, we use a MOVZ/MOVK pair.
+ my ($rd, $imm) = @_;
+ write_mov_ri16($rd, ($imm & 0xffff), 0);
+ my $highhalf = ($imm >> 16) & 0xffff;
+ write_mov_ri16($rd, $highhalf, 1) if $highhalf;
+
+ if ($is_aarch64 && $imm < 0) {
+ # sign extend to allow small negative imm constants
+ write_sxt32($rd, $rd);
+ }
+}
+
+# write random fp value of passed precision (1=single, 2=double, 4=quad)
+sub write_random_fpreg_var($)
+{
+ my ($precision) = @_;
+ my $randomize_low = 0;
+
+ if ($precision != 1 && $precision != 2 && $precision != 4) {
+ die "write_random_fpreg: invalid precision.\n";
+ }
+
+ my ($low, $high);
+ my $r = rand(100);
+ if ($r < 5) {
+ # +-0 (5%)
+ $low = $high = 0;
+ $high |= 0x80000000 if (rand() < 0.5);
+ } elsif ($r < 10) {
+ # NaN (5%)
+ # (plus a tiny chance of generating +-Inf)
+ $randomize_low = 1;
+ $high = rand(0xffffffff) | 0x7ff00000;
+ } elsif ($r < 15) {
+ # Infinity (5%)
+ $low = 0;
+ $high = 0x7ff00000;
+ $high |= 0x80000000 if (rand() < 0.5);
+ } elsif ($r < 30) {
+ # Denormalized number (15%)
+ # (plus tiny chance of +-0)
+ $randomize_low = 1;
+ $high = rand(0xffffffff) & ~0x7ff00000;
+ } else {
+ # Normalized number (70%)
+ # (plus a small chance of the other cases)
+ $randomize_low = 1;
+ $high = rand(0xffffffff);
+ }
+
+ for (my $i = 1; $i < $precision; $i++) {
+ if ($randomize_low) {
+ $low = rand(0xffffffff);
+ }
+ insn32($low);
+ }
+ insn32($high);
+}
+
+sub write_random_double_fpreg()
+{
+ my ($low, $high);
+ my $r = rand(100);
+ if ($r < 5) {
+ # +-0 (5%)
+ $low = $high = 0;
+ $high |= 0x80000000 if (rand() < 0.5);
+ } elsif ($r < 10) {
+ # NaN (5%)
+ # (plus a tiny chance of generating +-Inf)
+ $low = rand(0xffffffff);
+ $high = rand(0xffffffff) | 0x7ff00000;
+ } elsif ($r < 15) {
+ # Infinity (5%)
+ $low = 0;
+ $high = 0x7ff00000;
+ $high |= 0x80000000 if (rand() < 0.5);
+ } elsif ($r < 30) {
+ # Denormalized number (15%)
+ # (plus tiny chance of +-0)
+ $low = rand(0xffffffff);
+ $high = rand(0xffffffff) & ~0x7ff00000;
+ } else {
+ # Normalized number (70%)
+ # (plus a small chance of the other cases)
+ $low = rand(0xffffffff);
+ $high = rand(0xffffffff);
+ }
+ insn32($low);
+ insn32($high);
+}
+
+sub write_random_single_fpreg()
+{
+ my ($value);
+ my $r = rand(100);
+ if ($r < 5) {
+ # +-0 (5%)
+ $value = 0;
+ $value |= 0x80000000 if (rand() < 0.5);
+ } elsif ($r < 10) {
+ # NaN (5%)
+ # (plus a tiny chance of generating +-Inf)
+ $value = rand(0xffffffff) | 0x7f800000;
+ } elsif ($r < 15) {
+ # Infinity (5%)
+ $value = 0x7f800000;
+ $value |= 0x80000000 if (rand() < 0.5);
+ } elsif ($r < 30) {
+ # Denormalized number (15%)
+ # (plus tiny chance of +-0)
+ $value = rand(0xffffffff) & ~0x7f800000;
+ } else {
+ # Normalized number (70%)
+ # (plus a small chance of the other cases)
+ $value = rand(0xffffffff);
+ }
+ insn32($value);
+}
+
+sub write_random_arm_fpreg()
+{
+ # Write out 64 bits of random data intended to
+ # initialise an FP register.
+ # We tweak the "randomness" here to increase the
+ # chances of picking interesting values like
+ # NaN, -0.0, and so on, which would be unlikely
+ # to occur if we simply picked 64 random bits.
+ if (rand() < 0.5) {
+ write_random_fpreg_var(2); # double
+ } else {
+ write_random_fpreg_var(1); # single
+ write_random_fpreg_var(1); # single
+ }
+}
+
+sub write_random_arm_regdata($)
+{
+ my ($fp_enabled) = @_;
+ # TODO hardcoded, also no d16-d31 initialisation
+ my $vfp = $fp_enabled ? 2 : 0; # 0 : no vfp, 1 : vfpd16, 2 : vfpd32
+ write_switch_to_arm();
+
+ # initialise all registers
+ if ($vfp == 1) {
+ insn32(0xe28f0008); # add r0, pc, #8
+ insn32(0xecb00b20); # vldmia r0!, {d0-d15}
+ } elsif ($vfp == 2) {
+ insn32(0xe28f000c); # add r0, pc, #12
+ insn32(0xecb00b20); # vldmia r0!, {d0-d15}
+ insn32(0xecf00b20); # vldmia r0!, {d16-d31}
+ } else {
+ insn32(0xe28f0004); # add r0, pc, #4
+ }
+
+ insn32(0xe8905fff); # ldmia r0, {r0-r12,r14}
+ my $datalen = 14;
+ $datalen += (32 * $vfp);
+ insn32(0xea000000 + ($datalen-1)); # b next
+ for (0..(($vfp * 16) - 1)) { # NB: never done for $vfp == 0
+ write_random_arm_fpreg();
+ }
+ # .word [14 words of data for r0..r12,r14]
+ for (0..13) {
+ insn32(rand(0xffffffff));
+ }
+ # next:
+ # clear the flags (NZCVQ and GE): msr APSR_nzcvqg, #0
+ insn32(0xe32cf000);
+}
+
+sub write_random_aarch64_fpdata()
+{
+ # load floating point / SIMD registers
+ my $align = 16;
+ my $datalen = 32 * 16 + $align;
+ write_pc_adr(0, (3 * 4) + ($align - 1)); # insn 1
+ write_align_reg(0, $align); # insn 2
+ write_jump_fwd($datalen); # insn 3
+
+ # align safety
+ for (my $i = 0; $i < ($align / 4); $i++) {
+ insn32(rand(0xffffffff));
+ };
+
+ for (my $rt = 0; $rt <= 31; $rt++) {
+ write_random_fpreg_var(4); # quad
+ }
+
+ if ($enable_aarch64_ld1) {
+ # enable only when we have ld1
+ for (my $rt = 0; $rt <= 31; $rt += 4) {
+ insn32(0x4cdf2c00 | $rt); # ld1 {v0.2d-v3.2d}, [x0], #64
+ }
+ } else {
+ # temporarily use LDP instead
+ for (my $rt = 0; $rt <= 31; $rt += 2) {
+ insn32(0xacc10000 | ($rt + 1) << 10 | ($rt)); # ldp q0,q1,[x0],#32
+ }
+ }
+}
+
+sub write_random_aarch64_regdata($)
+{
+ my ($fp_enabled) = @_;
+ # clear flags
+ insn32(0xd51b421f); # msr nzcv, xzr
+
+ if ($fp_enabled) {
+ # load floating point / SIMD registers
+ write_random_aarch64_fpdata();
+ }
+
+ # general purpose registers
+ for (my $i = 0; $i <= 30; $i++) {
+ # TODO full 64 bit pattern instead of 32
+ write_mov_ri($i, rand(0xffffffff));
+ }
+}
+
+sub write_random_register_data($)
+{
+ my ($fp_enabled) = @_;
+
+ if ($is_aarch64) {
+ write_random_aarch64_regdata($fp_enabled);
+ } else {
+ write_random_arm_regdata($fp_enabled);
+ }
+
+ write_risuop($OP_COMPARE);
+}
+
+sub is_pow_of_2($)
+{
+ my ($x) = @_;
+ return ($x > 0) && (($x & ($x - 1)) == 0);
+}
+
+# put PC + offset into a register.
+# this must emit an instruction of 4 bytes.
+sub write_pc_adr($$)
+{
+ my ($rd, $imm) = @_;
+
+ if ($is_aarch64) {
+ # C2.3.5 PC-relative address calculation
+ # The ADR instruction adds a signed, 21-bit value of the pc that
fetched this instruction,
+ my ($immhi, $immlo) = ($imm >> 2, $imm & 0x3);
+ insn32(0x10000000 | $immlo << 29 | $immhi << 5 | $rd);
+ } else {
+ # A.2.3 ARM Core Registers:
+ # When executing an ARM instruction, PC reads as the address of the
current insn plus 8.
+ $imm -= 8;
+ insn32(0xe28f0000 | $rd << 12 | $imm);
+
+ }
+}
+
+sub ctz($)
+{
+ # Count trailing zeros, similar semantic to gcc builtin:
+ # undefined return value if input is zero.
+ my ($in) = @_;
+
+ # XXX should use log2, popcount, ...
+ my $imm = 0;
+ for (my $cnt = $in; $cnt > 1; $cnt >>= 1) {
+ $imm += 1;
+ }
+ return $imm;
+}
+
+# clear bits in register to satisfy alignment.
+# Must use exactly 4 instruction-bytes (one instruction on arm)
+sub write_align_reg($$)
+{
+ my ($rd, $align) = @_;
+ die "bad alignment!" if ($align < 2);
+
+ if ($is_aarch64) {
+ # and rd, rd, ~(align - 1) ; A64 BIC imm is an alias for AND
+
+ # Unfortunately we need to calculate the immr/imms/N values to get
+ # our desired immediate value. In this case we want to use an element
+ # size of 64, which means that N is 1, immS is the length of run of
+ # set bits in the mask, and immR is the rotation.
+ # N = 1, immR = 64 - ctz, imms = 63 - ctz
+ # (Note that an all bits-set mask is not encodable here, but
+ # the requirement for $align to be at least 2 avoids that.)
+ my $cnt = ctz($align);
+ insn32(0x92000000 | 1 << 22 | (64 - $cnt) << 16 | (63 - $cnt) << 10 |
$rd << 5 | $rd);
+ } else {
+ # bic rd, rd, (align - 1)
+ insn32(0xe3c00000 | $rd << 16 | $rd << 12 | ($align - 1));
+ }
+}
+
+# jump ahead of n bytes starting from next instruction
+sub write_jump_fwd($)
+{
+ my ($len) = @_;
+
+ if ($is_aarch64) {
+ # b pc + len
+ insn32(0x14000000 | (($len / 4) + 1));
+ } else {
+ # b pc + len
+ insn32(0xea000000 | (($len / 4) - 1));
+ }
+}
+
+sub write_memblock_setup()
+{
+ # Write code which sets up the memory block for loads and stores.
+ # We set r0 to point to a block of 8K length
+ # of random data, aligned to the maximum desired alignment.
+ write_switch_to_arm();
+
+ my $align = $MAXALIGN;
+ my $datalen = 8192 + $align;
+ if (($align > 255) || !is_pow_of_2($align) || $align < 4) {
+ die "bad alignment!";
+ }
+
+ # set r0 to (datablock + (align-1)) & ~(align-1)
+ # datablock is at PC + (4 * 4 instructions) = PC + 16
+ write_pc_adr(0, (4 * 4) + ($align - 1)); # insn 1
+ write_align_reg(0, $align); # insn 2
+ write_risuop($OP_SETMEMBLOCK); # insn 3
+ write_jump_fwd($datalen); # insn 4
+
+ for (my $i = 0; $i < $datalen / 4; $i++) {
+ insn32(rand(0xffffffff));
+ }
+ # next:
+
+}
+
+sub write_set_fpscr_arm($)
+{
+ my ($fpscr) = @_;
+ write_switch_to_arm();
+ # movw r0, imm16
+ insn32(0xe3000000 | ($fpscr & 0xfff) | (($fpscr & 0xf000) << 4));
+ # movt r0, imm16
+ insn32(0xe3400000 | (($fpscr & 0xf0000000) >> 12) | (($fpscr & 0x0fff0000)
>> 16));
+ # vmsr fpscr, r0
+ insn32(0xeee10a10);
+}
+
+sub write_set_fpscr_aarch64($)
+{
+ # on aarch64 we have split fpcr and fpsr registers.
+ # Status will be initialized to 0, while user param controls fpcr.
+ my ($fpcr) = @_;
+ write_mov_ri(0, 0);
+ insn32(0xd51b4420); # msr fpsr, x0
+ write_mov_ri(0, $fpcr);
+ insn32(0xd51b4400); # msr fpcr, x0
+}
+
+sub write_set_fpscr($)
+{
+ my ($fpscr) = @_;
+ if ($is_aarch64) {
+ write_set_fpscr_aarch64($fpscr);
+ } else {
+ write_set_fpscr_arm($fpscr);
+ }
+}
+
+sub dump_insn_details($$)
+{
+ # Dump the instruction details for one insn
+ my ($insn, $rec) = @_;
+ print "insn $insn: ";
+ my $insnwidth = $rec->{width};
+ my $fixedbits = $rec->{fixedbits};
+ my $fixedbitmask = $rec->{fixedbitmask};
+ my $constraint = $rec->{blocks}{"constraints"};
+ print sprintf(" insnwidth %d fixedbits %08x mask %08x ", $insnwidth,
$fixedbits, $fixedbitmask);
+ if (defined $constraint) {
+ print "constraint $constraint ";
+ }
+ for my $tuple (@{ $rec->{fields} }) {
+ my ($var, $pos, $mask) = @$tuple;
+ print "($var, $pos, " . sprintf("%08x", $mask) . ") ";
+ }
+ print "\n";
+}
+
+# Functions used in memory blocks to handle addressing modes.
+# These all have the same basic API: they get called with parameters
+# corresponding to the interesting fields of the instruction,
+# and should generate code to set up the base register to be
+# valid. They must return the register number of the base register.
+# The last (array) parameter lists the registers which are trashed
+# by the instruction (ie which are the targets of the load).
+# This is used to avoid problems when the base reg is a load target.
+
+# Global used to communicate between align(x) and reg() etc.
+my $alignment_restriction;
+
+sub align($)
+{
+ my ($a) = @_;
+ if (!is_pow_of_2($a) || ($a < 0) || ($a > $MAXALIGN)) {
+ die "bad align() value $a\n";
+ }
+ $alignment_restriction = $a;
+}
+
+# XXX claudio: this seems to get the full address, not the offset.
+sub write_get_offset()
+{
+ # Emit code to get a random offset within the memory block, of the
+ # right alignment, into r0
+ # We require the offset to not be within 256 bytes of either
+ # end, to (more than) allow for the worst case data transfer, which is
+ # 16 * 64 bit regs
+ my $offset = (rand(2048 - 512) + 256) & ~($alignment_restriction - 1);
+ write_mov_ri(0, $offset);
+ write_risuop($OP_GETMEMBLOCK);
+}
+
+sub reg($@)
+{
+ my ($base, @trashed) = @_;
+ write_get_offset();
+ # Now r0 is the address we want to do the access to,
+ # so just move it into the basereg
+ if ($base != 0) {
+ write_mov_rr($base, 0);
+ write_mov_ri(0, 0);
+ }
+ if (grep $_ == $base, @trashed) {
+ return -1;
+ }
+ return $base;
+}
+
+sub reg_plus_imm($$@)
+{
+ # Handle reg + immediate addressing mode
+ my ($base, $imm, @trashed) = @_;
+ if ($imm == 0) {
+ return reg($base, @trashed);
+ }
+
+ write_get_offset();
+ # Now r0 is the address we want to do the access to,
+ # so set the basereg by doing the inverse of the
+ # addressing mode calculation, ie base = r0 - imm
+ # We could do this more cleverly with a sub immediate.
+ if ($base != 0) {
+ write_mov_ri($base, $imm);
+ write_sub_rrr($base, 0, $base);
+ # Clear r0 to avoid register compare mismatches
+ # when the memory block location differs between machines.
+ write_mov_ri(0, 0);
+ } else {
+ # We borrow r1 as a temporary (not a problem
+ # as long as we don't leave anything in a register
+ # which depends on the location of the memory block)
+ write_mov_ri(1, $imm);
+ write_sub_rrr($base, 0, 1);
+ }
+ if (grep $_ == $base, @trashed) {
+ return -1;
+ }
+ return $base;
+}
+
+sub reg_minus_imm($$@)
+{
+ my ($base, $imm, @trashed) = @_;
+ return reg_plus_imm($base, -$imm, @trashed);
+}
+
+sub reg_plus_reg_shifted($$$@)
+{
+ # handle reg + reg LSL imm addressing mode
+ my ($base, $idx, $shift, @trashed) = @_;
+ if ($shift < 0 || $shift > 4 || (!$is_aarch64 && $shift == 4)) {
+
+ print ("\n(shift) $shift\n");
+ print ("\n(arch) $is_aarch64\n");
+ die "reg_plus_reg_shifted: bad shift size\n";
+ }
+ my $savedidx = 0;
+ if ($idx == 0) {
+ # save the index into some other register for the
+ # moment, because the risuop will trash r0
+ $idx = 1;
+ $idx++ if $idx == $base;
+ $savedidx = 1;
+ write_mov_rr($idx, 0);
+ }
+
+ # Get a random offset within the memory block, of the
+ # right alignment.
+ write_get_offset();
+ # Now r0 is the address we want to do the access to,
+ # so set the basereg by doing the inverse of the
+ # addressing mode calculation, ie base = r0 - idx LSL imm
+ # LSL x is shift type 0,
+ write_sub_rrrs($base, 0, $idx, $SHIFT_LSL, $shift);
+ if ($savedidx) {
+ # We can move this back to r0 now
+ write_mov_rr(0, $idx);
+ } elsif ($base != 0) {
+ write_mov_ri(0, 0);
+ }
+ if (grep $_ == $base, @trashed) {
+ return -1;
+ }
+ return $base;
+}
+
+sub reg_plus_reg($$@)
+{
+ my ($base, $idx, @trashed) = @_;
+ return reg_plus_reg_shifted($base, $idx, 0, @trashed);
+}
+
+sub eval_with_fields($$$$$) {
+ # Evaluate the given block in an environment with Perl variables
+ # set corresponding to the variable fields for the insn.
+ # Return the result of the eval; we die with a useful error
+ # message in case of syntax error.
+ my ($insnname, $insn, $rec, $blockname, $block) = @_;
+ my $evalstr = "{ ";
+ for my $tuple (@{ $rec->{fields} }) {
+ my ($var, $pos, $mask) = @$tuple;
+ my $val = ($insn >> $pos) & $mask;
+ $evalstr .= "my (\$$var) = $val; ";
+ }
+ $evalstr .= $block;
+ $evalstr .= "}";
+ my $v = eval $evalstr;
+ if ($@) {
+ print "Syntax error detected evaluating $insnname $blockname
string:\n$block\n$@";
+ exit(1);
+ }
+ return $v;
+}
+
+sub gen_one_insn($$)
+{
+ # Given an instruction-details array, generate an instruction
+ my $constraintfailures = 0;
+
+ INSN: while(1) {
+ my ($forcecond, $rec) = @_;
+ my $insn = int(rand(0xffffffff));
+ my $insnname = $rec->{name};
+ my $insnwidth = $rec->{width};
+ my $fixedbits = $rec->{fixedbits};
+ my $fixedbitmask = $rec->{fixedbitmask};
+ my $constraint = $rec->{blocks}{"constraints"};
+ my $memblock = $rec->{blocks}{"memory"};
+
+ $insn &= ~$fixedbitmask;
+ $insn |= $fixedbits;
+ for my $tuple (@{ $rec->{fields} }) {
+ my ($var, $pos, $mask) = @$tuple;
+ my $val = ($insn >> $pos) & $mask;
+ # XXX (claudio) ARM-specific - maybe move to arm.risu?
+ # Check constraints here:
+ # not allowed to use or modify sp or pc
+ if (!$is_aarch64) {
+ next INSN if ($var =~ /^r/ && (($val == 13) || ($val == 15)));
+ # Some very arm-specific code to force the condition field
+ # to 'always' if requested.
+ if ($forcecond) {
+ if ($var eq "cond") {
+ $insn &= ~ ($mask << $pos);
+ $insn |= (0xe << $pos);
+ }
+ }
+ }
+ }
+ if (defined $constraint) {
+ # user-specified constraint: evaluate in an environment
+ # with variables set corresponding to the variable fields.
+ my $v = eval_with_fields($insnname, $insn, $rec, "constraints",
$constraint);
+ if (!$v) {
+ $constraintfailures++;
+ if ($constraintfailures > 10000) {
+ print "10000 consecutive constraint failures for $insnname
constraints string:\n$constraint\n";
+ exit (1);
+ }
+ next INSN;
+ }
+ }
+
+ # OK, we got a good one
+ $constraintfailures = 0;
+
+ my $basereg;
+
+ if (defined $memblock) {
+ # This is a load or store. We simply evaluate the block,
+ # which is expected to be a call to a function which emits
+ # the code to set up the base register and returns the
+ # number of the base register.
+ # Default alignment requirement for ARM is 4 bytes,
+ # we use 16 for Aarch64, although often unnecessary and overkill.
+ if ($is_aarch64) {
+ align(16);
+ } else {
+ align(4);
+ }
+ $basereg = eval_with_fields($insnname, $insn, $rec, "memory",
$memblock);
+
+ if ($is_aarch64) {
+ data_barrier();
+ }
+ }
+
+ if ($is_thumb) {
+ # Since the encoding diagrams in the ARM ARM give 32 bit
+ # Thumb instructions as low half | high half, we
+ # flip the halves here so that the input format in
+ # the config file can be in the same order as the ARM.
+ # For a 16 bit Thumb instruction the generated insn is in
+ # the high halfword (because we didn't bother to readjust
+ # all the bit positions in parse_config_file() when we
+ # got to the end and found we only had 16 bits).
+ insn16($insn >> 16);
+ if ($insnwidth == 32) {
+ insn16($insn & 0xffff);
+ }
+ } else {
+ # ARM is simple, always a 32 bit word
+ insn32($insn);
+ }
+
+ if (defined $memblock) {
+ # Clean up following a memory access instruction:
+ # we need to turn the (possibly written-back) basereg
+ # into an offset from the base of the memory block,
+ # to avoid making register values depend on memory layout.
+ # $basereg -1 means the basereg was a target of a load
+ # (and so it doesn't contain a memory address after the op)
+
+ if ($is_aarch64) {
+ data_barrier();
+ }
+
+ if ($basereg != -1) {
+ write_mov_ri(0, 0);
+ write_risuop($OP_GETMEMBLOCK);
+ write_sub_rrr($basereg, $basereg, 0);
+ write_mov_ri(0, 0);
+ }
+ write_risuop($OP_COMPAREMEM);
+ }
+ return;
+ }
+}
+
+my $lastprog;
+my $proglen;
+my $progmax;
+
+sub progress_start($$)
+{
+ ($proglen, $progmax) = @_;
+ $proglen -= 2; # allow for [] chars
+ $| = 1; # disable buffering so we can see the meter...
+ print "[" . " " x $proglen . "]\r";
+ $lastprog = 0;
+}
+
+sub progress_update($)
+{
+ # update the progress bar with current progress
+ my ($done) = @_;
+ my $barlen = int($proglen * $done / $progmax);
+ if ($barlen != $lastprog) {
+ $lastprog = $barlen;
+ print "[" . "-" x $barlen . " " x ($proglen - $barlen) . "]\r";
+ }
+}
+
+sub progress_end()
+{
+ print "[" . "-" x $proglen . "]\n";
+ $| = 0;
+}
+
+sub write_test_code($$$$$$$$)
+{
+ my ($params) = @_;
+
+ my $arch = $params->{ 'arch' };
+ my $subarch = $params->{ 'subarch' };
+
+ if ($subarch && $subarch eq 'aarch64') {
+ $test_thumb = 0;
+ $is_aarch64 = 1;
+ } elsif ($subarch && $subarch eq 'thumb') {
+ $test_thumb = 1;
+ $is_aarch64 = 0;
+ } else {
+ $test_thumb = 0;
+ $is_aarch64 = 0;
+ }
+
+ my $condprob = $params->{ 'condprob' };
+ my $fpscr = $params->{ 'fpscr' };
+ my $numinsns = $params->{ 'numinsns' };
+ my $fp_enabled = $params->{ 'fp_enabled' };
+ my $outfile = $params->{ 'outfile' };
+
+ my @pattern_re = @{ $params->{ 'pattern_re' } };
+ my @not_pattern_re = @{ $params->{ 'not_pattern_re' } };
+ my %insn_details = %{ $params->{ 'details' } };
+
+ open_bin($outfile);
+
+ # convert from probability that insn will be conditional to
+ # probability of forcing insn to unconditional
+ $condprob = 1 - $condprob;
+
+ # TODO better random number generator?
+ srand(0);
+
+ # Get a list of the insn keys which are permitted by the re patterns
+ my @keys = keys %insn_details;
+ if (@pattern_re) {
+ my $re = '\b((' . join(')|(',@pattern_re) . '))\b';
+ @keys = grep /$re/, @keys;
+ }
+ # exclude any specifics
+ if (@not_pattern_re) {
+ my $re = '\b((' . join(')|(',@not_pattern_re) . '))\b';
+ @keys = grep !/$re/, @keys;
+ }
+ if (address@hidden) {
+ print STDERR "No instruction patterns available! (bad config file or
--pattern argument?)\n";
+ exit(1);
+ }
+ print "Generating code using patterns: @keys...\n";
+ progress_start(78, $numinsns);
+
+ if ($fp_enabled) {
+ write_set_fpscr($fpscr);
+ }
+
+ if (grep { defined($insn_details{$_}->{blocks}->{"memory"}) } @keys) {
+ write_memblock_setup();
+ }
+ # memblock setup doesn't clean its registers, so this must come afterwards.
+ write_random_register_data($fp_enabled);
+ write_switch_to_test_mode();
+
+ for my $i (1..$numinsns) {
+ my $insn_enc = $keys[int rand (@keys)];
+ #dump_insn_details($insn_enc, $insn_details{$insn_enc});
+ my $forcecond = (rand() < $condprob) ? 1 : 0;
+ gen_one_insn($forcecond, $insn_details{$insn_enc});
+ write_risuop($OP_COMPARE);
+ # Rewrite the registers periodically. This avoids the tendency
+ # for the VFP registers to decay to NaNs and zeroes.
+ if ($periodic_reg_random && ($i % 100) == 0) {
+ write_random_register_data($fp_enabled);
+ write_switch_to_test_mode();
+ }
+ progress_update($i);
+ }
+ write_risuop($OP_TESTEND);
+ progress_end();
+ close_bin();
+}
+
+1;
--
2.7.4
- [Qemu-devel] [PATCH Risu v2 0/9] Risu support for PPC64LE, Jose Ricardo Ziviani, 2016/11/06
- [Qemu-devel] [PATCH Risu v2 3/9] Change mode directive of ARM risu files, Jose Ricardo Ziviani, 2016/11/06
- [Qemu-devel] [PATCH Risu v2 1/9] Create risugen_arm.pm module for risugen,
Jose Ricardo Ziviani <=
- [Qemu-devel] [PATCH Risu v2 2/9] Refactor risugen to remove ARM specific code, Jose Ricardo Ziviani, 2016/11/06
- [Qemu-devel] [PATCH Risu v2 4/9] Implement lib to deal with PPC64 registers, Jose Ricardo Ziviani, 2016/11/06
- [Qemu-devel] [PATCH Risu v2 5/9] Implement basic test code for PPC64, Jose Ricardo Ziviani, 2016/11/06
- [Qemu-devel] [PATCH Risu v2 6/9] Implement initial support for PPC64, Jose Ricardo Ziviani, 2016/11/06
- [Qemu-devel] [PATCH Risu v2 8/9] Implement risugen module for PPC64, Jose Ricardo Ziviani, 2016/11/06
- [Qemu-devel] [PATCH Risu v2 7/9] Add PPC64 in risu build system, Jose Ricardo Ziviani, 2016/11/06
- [Qemu-devel] [PATCH Risu v2 9/9] Implement risufile with all PPC64 instructions, Jose Ricardo Ziviani, 2016/11/06
- Re: [Qemu-devel] [PATCH Risu v2 0/9] Risu support for PPC64LE, Peter Maydell, 2016/11/07