qemu-devel
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[Qemu-devel] [PULL 01/17] disas/libvixl: Update to libvixl 1.4


From: Peter Maydell
Subject: [Qemu-devel] [PULL 01/17] disas/libvixl: Update to libvixl 1.4
Date: Tue, 13 May 2014 16:31:23 +0100

Update our copy of libvixl to upstream's 1.4 release.
Note that we no longer need any local fixes for compilation
on 32 bit hosts -- they have all been integrated upstream.

Signed-off-by: Peter Maydell <address@hidden>
Message-id: address@hidden
Acked-by: Richard Henderson <address@hidden>
---
 disas/libvixl/a64/assembler-a64.h     | 451 +++++++++++++++++++++-------------
 disas/libvixl/a64/constants-a64.h     |  36 ++-
 disas/libvixl/a64/decoder-a64.cc      |  36 +--
 disas/libvixl/a64/disasm-a64.cc       | 189 ++++++++------
 disas/libvixl/a64/disasm-a64.h        |   1 +
 disas/libvixl/a64/instructions-a64.cc |  32 +--
 disas/libvixl/a64/instructions-a64.h  |  56 +++--
 disas/libvixl/globals.h               |  42 +++-
 disas/libvixl/platform.h              |   4 +-
 disas/libvixl/utils.cc                |  37 +--
 disas/libvixl/utils.h                 |  86 ++++++-
 11 files changed, 628 insertions(+), 342 deletions(-)

diff --git a/disas/libvixl/a64/assembler-a64.h 
b/disas/libvixl/a64/assembler-a64.h
index 93b3011..1e2947b 100644
--- a/disas/libvixl/a64/assembler-a64.h
+++ b/disas/libvixl/a64/assembler-a64.h
@@ -38,6 +38,7 @@ namespace vixl {
 typedef uint64_t RegList;
 static const int kRegListSizeInBits = sizeof(RegList) * 8;
 
+
 // Registers.
 
 // Some CPURegister methods can return Register and FPRegister types, so we
@@ -58,62 +59,62 @@ class CPURegister {
   };
 
   CPURegister() : code_(0), size_(0), type_(kNoRegister) {
-    ASSERT(!IsValid());
-    ASSERT(IsNone());
+    VIXL_ASSERT(!IsValid());
+    VIXL_ASSERT(IsNone());
   }
 
   CPURegister(unsigned code, unsigned size, RegisterType type)
       : code_(code), size_(size), type_(type) {
-    ASSERT(IsValidOrNone());
+    VIXL_ASSERT(IsValidOrNone());
   }
 
   unsigned code() const {
-    ASSERT(IsValid());
+    VIXL_ASSERT(IsValid());
     return code_;
   }
 
   RegisterType type() const {
-    ASSERT(IsValidOrNone());
+    VIXL_ASSERT(IsValidOrNone());
     return type_;
   }
 
   RegList Bit() const {
-    ASSERT(code_ < (sizeof(RegList) * 8));
+    VIXL_ASSERT(code_ < (sizeof(RegList) * 8));
     return IsValid() ? (static_cast<RegList>(1) << code_) : 0;
   }
 
   unsigned size() const {
-    ASSERT(IsValid());
+    VIXL_ASSERT(IsValid());
     return size_;
   }
 
   int SizeInBytes() const {
-    ASSERT(IsValid());
-    ASSERT(size() % 8 == 0);
+    VIXL_ASSERT(IsValid());
+    VIXL_ASSERT(size() % 8 == 0);
     return size_ / 8;
   }
 
   int SizeInBits() const {
-    ASSERT(IsValid());
+    VIXL_ASSERT(IsValid());
     return size_;
   }
 
   bool Is32Bits() const {
-    ASSERT(IsValid());
+    VIXL_ASSERT(IsValid());
     return size_ == 32;
   }
 
   bool Is64Bits() const {
-    ASSERT(IsValid());
+    VIXL_ASSERT(IsValid());
     return size_ == 64;
   }
 
   bool IsValid() const {
     if (IsValidRegister() || IsValidFPRegister()) {
-      ASSERT(!IsNone());
+      VIXL_ASSERT(!IsNone());
       return true;
     } else {
-      ASSERT(IsNone());
+      VIXL_ASSERT(IsNone());
       return false;
     }
   }
@@ -132,25 +133,29 @@ class CPURegister {
 
   bool IsNone() const {
     // kNoRegister types should always have size 0 and code 0.
-    ASSERT((type_ != kNoRegister) || (code_ == 0));
-    ASSERT((type_ != kNoRegister) || (size_ == 0));
+    VIXL_ASSERT((type_ != kNoRegister) || (code_ == 0));
+    VIXL_ASSERT((type_ != kNoRegister) || (size_ == 0));
 
     return type_ == kNoRegister;
   }
 
+  bool Aliases(const CPURegister& other) const {
+    VIXL_ASSERT(IsValidOrNone() && other.IsValidOrNone());
+    return (code_ == other.code_) && (type_ == other.type_);
+  }
+
   bool Is(const CPURegister& other) const {
-    ASSERT(IsValidOrNone() && other.IsValidOrNone());
-    return (code_ == other.code_) && (size_ == other.size_) &&
-           (type_ == other.type_);
+    VIXL_ASSERT(IsValidOrNone() && other.IsValidOrNone());
+    return Aliases(other) && (size_ == other.size_);
   }
 
   inline bool IsZero() const {
-    ASSERT(IsValid());
+    VIXL_ASSERT(IsValid());
     return IsRegister() && (code_ == kZeroRegCode);
   }
 
   inline bool IsSP() const {
-    ASSERT(IsValid());
+    VIXL_ASSERT(IsValid());
     return IsRegister() && (code_ == kSPRegInternalCode);
   }
 
@@ -188,13 +193,13 @@ class Register : public CPURegister {
   explicit Register() : CPURegister() {}
   inline explicit Register(const CPURegister& other)
       : CPURegister(other.code(), other.size(), other.type()) {
-    ASSERT(IsValidRegister());
+    VIXL_ASSERT(IsValidRegister());
   }
   explicit Register(unsigned code, unsigned size)
       : CPURegister(code, size, kRegister) {}
 
   bool IsValid() const {
-    ASSERT(IsRegister() || IsNone());
+    VIXL_ASSERT(IsRegister() || IsNone());
     return IsValidRegister();
   }
 
@@ -216,13 +221,13 @@ class FPRegister : public CPURegister {
   inline FPRegister() : CPURegister() {}
   inline explicit FPRegister(const CPURegister& other)
       : CPURegister(other.code(), other.size(), other.type()) {
-    ASSERT(IsValidFPRegister());
+    VIXL_ASSERT(IsValidFPRegister());
   }
   inline FPRegister(unsigned code, unsigned size)
       : CPURegister(code, size, kFPRegister) {}
 
   bool IsValid() const {
-    ASSERT(IsFPRegister() || IsNone());
+    VIXL_ASSERT(IsFPRegister() || IsNone());
     return IsValidFPRegister();
   }
 
@@ -306,30 +311,30 @@ class CPURegList {
                              CPURegister reg4 = NoCPUReg)
       : list_(reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit()),
         size_(reg1.size()), type_(reg1.type()) {
-    ASSERT(AreSameSizeAndType(reg1, reg2, reg3, reg4));
-    ASSERT(IsValid());
+    VIXL_ASSERT(AreSameSizeAndType(reg1, reg2, reg3, reg4));
+    VIXL_ASSERT(IsValid());
   }
 
   inline CPURegList(CPURegister::RegisterType type, unsigned size, RegList 
list)
       : list_(list), size_(size), type_(type) {
-    ASSERT(IsValid());
+    VIXL_ASSERT(IsValid());
   }
 
   inline CPURegList(CPURegister::RegisterType type, unsigned size,
                     unsigned first_reg, unsigned last_reg)
       : size_(size), type_(type) {
-    ASSERT(((type == CPURegister::kRegister) &&
-            (last_reg < kNumberOfRegisters)) ||
-           ((type == CPURegister::kFPRegister) &&
-            (last_reg < kNumberOfFPRegisters)));
-    ASSERT(last_reg >= first_reg);
-    list_ = (1UL << (last_reg + 1)) - 1;
-    list_ &= ~((1UL << first_reg) - 1);
-    ASSERT(IsValid());
+    VIXL_ASSERT(((type == CPURegister::kRegister) &&
+                 (last_reg < kNumberOfRegisters)) ||
+                ((type == CPURegister::kFPRegister) &&
+                 (last_reg < kNumberOfFPRegisters)));
+    VIXL_ASSERT(last_reg >= first_reg);
+    list_ = (UINT64_C(1) << (last_reg + 1)) - 1;
+    list_ &= ~((UINT64_C(1) << first_reg) - 1);
+    VIXL_ASSERT(IsValid());
   }
 
   inline CPURegister::RegisterType type() const {
-    ASSERT(IsValid());
+    VIXL_ASSERT(IsValid());
     return type_;
   }
 
@@ -337,9 +342,9 @@ class CPURegList {
   // this list are left unchanged. The type and size of the registers in the
   // 'other' list must match those in this list.
   void Combine(const CPURegList& other) {
-    ASSERT(IsValid());
-    ASSERT(other.type() == type_);
-    ASSERT(other.RegisterSizeInBits() == size_);
+    VIXL_ASSERT(IsValid());
+    VIXL_ASSERT(other.type() == type_);
+    VIXL_ASSERT(other.RegisterSizeInBits() == size_);
     list_ |= other.list();
   }
 
@@ -347,44 +352,49 @@ class CPURegList {
   // do not exist in this list are ignored. The type and size of the registers
   // in the 'other' list must match those in this list.
   void Remove(const CPURegList& other) {
-    ASSERT(IsValid());
-    ASSERT(other.type() == type_);
-    ASSERT(other.RegisterSizeInBits() == size_);
+    VIXL_ASSERT(IsValid());
+    VIXL_ASSERT(other.type() == type_);
+    VIXL_ASSERT(other.RegisterSizeInBits() == size_);
     list_ &= ~other.list();
   }
 
   // Variants of Combine and Remove which take a single register.
   inline void Combine(const CPURegister& other) {
-    ASSERT(other.type() == type_);
-    ASSERT(other.size() == size_);
+    VIXL_ASSERT(other.type() == type_);
+    VIXL_ASSERT(other.size() == size_);
     Combine(other.code());
   }
 
   inline void Remove(const CPURegister& other) {
-    ASSERT(other.type() == type_);
-    ASSERT(other.size() == size_);
+    VIXL_ASSERT(other.type() == type_);
+    VIXL_ASSERT(other.size() == size_);
     Remove(other.code());
   }
 
   // Variants of Combine and Remove which take a single register by its code;
   // the type and size of the register is inferred from this list.
   inline void Combine(int code) {
-    ASSERT(IsValid());
-    ASSERT(CPURegister(code, size_, type_).IsValid());
-    list_ |= (1UL << code);
+    VIXL_ASSERT(IsValid());
+    VIXL_ASSERT(CPURegister(code, size_, type_).IsValid());
+    list_ |= (UINT64_C(1) << code);
   }
 
   inline void Remove(int code) {
-    ASSERT(IsValid());
-    ASSERT(CPURegister(code, size_, type_).IsValid());
-    list_ &= ~(1UL << code);
+    VIXL_ASSERT(IsValid());
+    VIXL_ASSERT(CPURegister(code, size_, type_).IsValid());
+    list_ &= ~(UINT64_C(1) << code);
   }
 
   inline RegList list() const {
-    ASSERT(IsValid());
+    VIXL_ASSERT(IsValid());
     return list_;
   }
 
+  inline void set_list(RegList new_list) {
+    VIXL_ASSERT(IsValid());
+    list_ = new_list;
+  }
+
   // Remove all callee-saved registers from the list. This can be useful when
   // preparing registers for an AAPCS64 function call, for example.
   void RemoveCalleeSaved();
@@ -401,31 +411,41 @@ class CPURegList {
   static CPURegList GetCallerSavedFP(unsigned size = kDRegSize);
 
   inline bool IsEmpty() const {
-    ASSERT(IsValid());
+    VIXL_ASSERT(IsValid());
     return list_ == 0;
   }
 
   inline bool IncludesAliasOf(const CPURegister& other) const {
-    ASSERT(IsValid());
-    return (type_ == other.type()) && (other.Bit() & list_);
+    VIXL_ASSERT(IsValid());
+    return (type_ == other.type()) && ((other.Bit() & list_) != 0);
+  }
+
+  inline bool IncludesAliasOf(int code) const {
+    VIXL_ASSERT(IsValid());
+    return ((code & list_) != 0);
   }
 
   inline int Count() const {
-    ASSERT(IsValid());
+    VIXL_ASSERT(IsValid());
     return CountSetBits(list_, kRegListSizeInBits);
   }
 
   inline unsigned RegisterSizeInBits() const {
-    ASSERT(IsValid());
+    VIXL_ASSERT(IsValid());
     return size_;
   }
 
   inline unsigned RegisterSizeInBytes() const {
     int size_in_bits = RegisterSizeInBits();
-    ASSERT((size_in_bits % 8) == 0);
+    VIXL_ASSERT((size_in_bits % 8) == 0);
     return size_in_bits / 8;
   }
 
+  inline unsigned TotalSizeInBytes() const {
+    VIXL_ASSERT(IsValid());
+    return RegisterSizeInBytes() * Count();
+  }
+
  private:
   RegList list_;
   unsigned size_;
@@ -471,33 +491,34 @@ class Operand {
   bool IsImmediate() const;
   bool IsShiftedRegister() const;
   bool IsExtendedRegister() const;
+  bool IsZero() const;
 
   // This returns an LSL shift (<= 4) operand as an equivalent extend operand,
   // which helps in the encoding of instructions that use the stack pointer.
   Operand ToExtendedRegister() const;
 
   int64_t immediate() const {
-    ASSERT(IsImmediate());
+    VIXL_ASSERT(IsImmediate());
     return immediate_;
   }
 
   Register reg() const {
-    ASSERT(IsShiftedRegister() || IsExtendedRegister());
+    VIXL_ASSERT(IsShiftedRegister() || IsExtendedRegister());
     return reg_;
   }
 
   Shift shift() const {
-    ASSERT(IsShiftedRegister());
+    VIXL_ASSERT(IsShiftedRegister());
     return shift_;
   }
 
   Extend extend() const {
-    ASSERT(IsExtendedRegister());
+    VIXL_ASSERT(IsExtendedRegister());
     return extend_;
   }
 
   unsigned shift_amount() const {
-    ASSERT(IsShiftedRegister() || IsExtendedRegister());
+    VIXL_ASSERT(IsShiftedRegister() || IsExtendedRegister());
     return shift_amount_;
   }
 
@@ -556,7 +577,7 @@ class Label {
   Label() : is_bound_(false), link_(NULL), target_(NULL) {}
   ~Label() {
     // If the label has been linked to, it needs to be bound to a target.
-    ASSERT(!IsLinked() || IsBound());
+    VIXL_ASSERT(!IsLinked() || IsBound());
   }
 
   inline Instruction* link() const { return link_; }
@@ -643,7 +664,7 @@ class Assembler {
   void bind(Label* label);
   int UpdateAndGetByteOffsetTo(Label* label);
   inline int UpdateAndGetInstructionOffsetTo(Label* label) {
-    ASSERT(Label::kEndOfChain == 0);
+    VIXL_ASSERT(Label::kEndOfChain == 0);
     return UpdateAndGetByteOffsetTo(label) >> kInstructionSizeLog2;
   }
 
@@ -716,8 +737,12 @@ class Assembler {
   // Add.
   void add(const Register& rd,
            const Register& rn,
-           const Operand& operand,
-           FlagsUpdate S = LeaveFlags);
+           const Operand& operand);
+
+  // Add and update status flags.
+  void adds(const Register& rd,
+            const Register& rn,
+            const Operand& operand);
 
   // Compare negative.
   void cmn(const Register& rn, const Operand& operand);
@@ -725,40 +750,62 @@ class Assembler {
   // Subtract.
   void sub(const Register& rd,
            const Register& rn,
-           const Operand& operand,
-           FlagsUpdate S = LeaveFlags);
+           const Operand& operand);
+
+  // Subtract and update status flags.
+  void subs(const Register& rd,
+            const Register& rn,
+            const Operand& operand);
 
   // Compare.
   void cmp(const Register& rn, const Operand& operand);
 
   // Negate.
   void neg(const Register& rd,
-           const Operand& operand,
-           FlagsUpdate S = LeaveFlags);
+           const Operand& operand);
+
+  // Negate and update status flags.
+  void negs(const Register& rd,
+            const Operand& operand);
 
   // Add with carry bit.
   void adc(const Register& rd,
            const Register& rn,
-           const Operand& operand,
-           FlagsUpdate S = LeaveFlags);
+           const Operand& operand);
+
+  // Add with carry bit and update status flags.
+  void adcs(const Register& rd,
+            const Register& rn,
+            const Operand& operand);
 
   // Subtract with carry bit.
   void sbc(const Register& rd,
            const Register& rn,
-           const Operand& operand,
-           FlagsUpdate S = LeaveFlags);
+           const Operand& operand);
+
+  // Subtract with carry bit and update status flags.
+  void sbcs(const Register& rd,
+            const Register& rn,
+            const Operand& operand);
 
   // Negate with carry bit.
   void ngc(const Register& rd,
-           const Operand& operand,
-           FlagsUpdate S = LeaveFlags);
+           const Operand& operand);
+
+  // Negate with carry bit and update status flags.
+  void ngcs(const Register& rd,
+            const Operand& operand);
 
   // Logical instructions.
   // Bitwise and (A & B).
   void and_(const Register& rd,
             const Register& rn,
-            const Operand& operand,
-            FlagsUpdate S = LeaveFlags);
+            const Operand& operand);
+
+  // Bitwise and (A & B) and update status flags.
+  void ands(const Register& rd,
+            const Register& rn,
+            const Operand& operand);
 
   // Bit test and set flags.
   void tst(const Register& rn, const Operand& operand);
@@ -766,8 +813,12 @@ class Assembler {
   // Bit clear (A & ~B).
   void bic(const Register& rd,
            const Register& rn,
-           const Operand& operand,
-           FlagsUpdate S = LeaveFlags);
+           const Operand& operand);
+
+  // Bit clear (A & ~B) and update status flags.
+  void bics(const Register& rd,
+            const Register& rn,
+            const Operand& operand);
 
   // Bitwise or (A | B).
   void orr(const Register& rd, const Register& rn, const Operand& operand);
@@ -818,8 +869,8 @@ class Assembler {
                   const Register& rn,
                   unsigned lsb,
                   unsigned width) {
-    ASSERT(width >= 1);
-    ASSERT(lsb + width <= rn.size());
+    VIXL_ASSERT(width >= 1);
+    VIXL_ASSERT(lsb + width <= rn.size());
     bfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
   }
 
@@ -828,15 +879,15 @@ class Assembler {
                     const Register& rn,
                     unsigned lsb,
                     unsigned width) {
-    ASSERT(width >= 1);
-    ASSERT(lsb + width <= rn.size());
+    VIXL_ASSERT(width >= 1);
+    VIXL_ASSERT(lsb + width <= rn.size());
     bfm(rd, rn, lsb, lsb + width - 1);
   }
 
   // Sbfm aliases.
   // Arithmetic shift right.
   inline void asr(const Register& rd, const Register& rn, unsigned shift) {
-    ASSERT(shift < rd.size());
+    VIXL_ASSERT(shift < rd.size());
     sbfm(rd, rn, shift, rd.size() - 1);
   }
 
@@ -845,8 +896,8 @@ class Assembler {
                     const Register& rn,
                     unsigned lsb,
                     unsigned width) {
-    ASSERT(width >= 1);
-    ASSERT(lsb + width <= rn.size());
+    VIXL_ASSERT(width >= 1);
+    VIXL_ASSERT(lsb + width <= rn.size());
     sbfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
   }
 
@@ -855,8 +906,8 @@ class Assembler {
                    const Register& rn,
                    unsigned lsb,
                    unsigned width) {
-    ASSERT(width >= 1);
-    ASSERT(lsb + width <= rn.size());
+    VIXL_ASSERT(width >= 1);
+    VIXL_ASSERT(lsb + width <= rn.size());
     sbfm(rd, rn, lsb, lsb + width - 1);
   }
 
@@ -879,13 +930,13 @@ class Assembler {
   // Logical shift left.
   inline void lsl(const Register& rd, const Register& rn, unsigned shift) {
     unsigned reg_size = rd.size();
-    ASSERT(shift < reg_size);
+    VIXL_ASSERT(shift < reg_size);
     ubfm(rd, rn, (reg_size - shift) % reg_size, reg_size - shift - 1);
   }
 
   // Logical shift right.
   inline void lsr(const Register& rd, const Register& rn, unsigned shift) {
-    ASSERT(shift < rd.size());
+    VIXL_ASSERT(shift < rd.size());
     ubfm(rd, rn, shift, rd.size() - 1);
   }
 
@@ -894,8 +945,8 @@ class Assembler {
                     const Register& rn,
                     unsigned lsb,
                     unsigned width) {
-    ASSERT(width >= 1);
-    ASSERT(lsb + width <= rn.size());
+    VIXL_ASSERT(width >= 1);
+    VIXL_ASSERT(lsb + width <= rn.size());
     ubfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
   }
 
@@ -904,8 +955,8 @@ class Assembler {
                    const Register& rn,
                    unsigned lsb,
                    unsigned width) {
-    ASSERT(width >= 1);
-    ASSERT(lsb + width <= rn.size());
+    VIXL_ASSERT(width >= 1);
+    VIXL_ASSERT(lsb + width <= rn.size());
     ubfm(rd, rn, lsb, lsb + width - 1);
   }
 
@@ -1109,9 +1160,12 @@ class Assembler {
   // Load literal to register.
   void ldr(const Register& rt, uint64_t imm);
 
-  // Load literal to FP register.
+  // Load double precision floating point literal to FP register.
   void ldr(const FPRegister& ft, double imm);
 
+  // Load single precision floating point literal to FP register.
+  void ldr(const FPRegister& ft, float imm);
+
   // Move instructions. The default shift of -1 indicates that the move
   // instruction will calculate an appropriate 16-bit immediate and left shift
   // that is equal to the 64-bit immediate argument. If an explicit left shift
@@ -1160,6 +1214,15 @@ class Assembler {
   // System hint.
   void hint(SystemHint code);
 
+  // Data memory barrier.
+  void dmb(BarrierDomain domain, BarrierType type);
+
+  // Data synchronization barrier.
+  void dsb(BarrierDomain domain, BarrierType type);
+
+  // Instruction synchronization barrier.
+  void isb();
+
   // Alias for system instructions.
   // No-op.
   void nop() {
@@ -1167,17 +1230,20 @@ class Assembler {
   }
 
   // FP instructions.
-  // Move immediate to FP register.
-  void fmov(FPRegister fd, double imm);
+  // Move double precision immediate to FP register.
+  void fmov(const FPRegister& fd, double imm);
+
+  // Move single precision immediate to FP register.
+  void fmov(const FPRegister& fd, float imm);
 
   // Move FP register to register.
-  void fmov(Register rd, FPRegister fn);
+  void fmov(const Register& rd, const FPRegister& fn);
 
   // Move register to FP register.
-  void fmov(FPRegister fd, Register rn);
+  void fmov(const FPRegister& fd, const Register& rn);
 
   // Move FP register to FP register.
-  void fmov(FPRegister fd, FPRegister fn);
+  void fmov(const FPRegister& fd, const FPRegister& fn);
 
   // FP add.
   void fadd(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
@@ -1188,12 +1254,30 @@ class Assembler {
   // FP multiply.
   void fmul(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
 
-  // FP multiply and subtract.
+  // FP fused multiply and add.
+  void fmadd(const FPRegister& fd,
+             const FPRegister& fn,
+             const FPRegister& fm,
+             const FPRegister& fa);
+
+  // FP fused multiply and subtract.
   void fmsub(const FPRegister& fd,
              const FPRegister& fn,
              const FPRegister& fm,
              const FPRegister& fa);
 
+  // FP fused multiply, add and negate.
+  void fnmadd(const FPRegister& fd,
+              const FPRegister& fn,
+              const FPRegister& fm,
+              const FPRegister& fa);
+
+  // FP fused multiply, subtract and negate.
+  void fnmsub(const FPRegister& fd,
+              const FPRegister& fn,
+              const FPRegister& fm,
+              const FPRegister& fa);
+
   // FP divide.
   void fdiv(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
 
@@ -1203,6 +1287,12 @@ class Assembler {
   // FP minimum.
   void fmin(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
 
+  // FP maximum number.
+  void fmaxnm(const FPRegister& fd, const FPRegister& fn, const FPRegister& 
fm);
+
+  // FP minimum number.
+  void fminnm(const FPRegister& fd, const FPRegister& fn, const FPRegister& 
fm);
+
   // FP absolute.
   void fabs(const FPRegister& fd, const FPRegister& fn);
 
@@ -1212,6 +1302,12 @@ class Assembler {
   // FP square root.
   void fsqrt(const FPRegister& fd, const FPRegister& fn);
 
+  // FP round to integer (nearest with ties to away).
+  void frinta(const FPRegister& fd, const FPRegister& fn);
+
+  // FP round to integer (toward minus infinity).
+  void frintm(const FPRegister& fd, const FPRegister& fn);
+
   // FP round to integer (nearest with ties to even).
   void frintn(const FPRegister& fd, const FPRegister& fn);
 
@@ -1244,24 +1340,30 @@ class Assembler {
   // FP convert between single and double precision.
   void fcvt(const FPRegister& fd, const FPRegister& fn);
 
-  // Convert FP to unsigned integer (round towards -infinity).
-  void fcvtmu(const Register& rd, const FPRegister& fn);
+  // Convert FP to signed integer (nearest with ties to away).
+  void fcvtas(const Register& rd, const FPRegister& fn);
+
+  // Convert FP to unsigned integer (nearest with ties to away).
+  void fcvtau(const Register& rd, const FPRegister& fn);
 
   // Convert FP to signed integer (round towards -infinity).
   void fcvtms(const Register& rd, const FPRegister& fn);
 
-  // Convert FP to unsigned integer (nearest with ties to even).
-  void fcvtnu(const Register& rd, const FPRegister& fn);
+  // Convert FP to unsigned integer (round towards -infinity).
+  void fcvtmu(const Register& rd, const FPRegister& fn);
 
   // Convert FP to signed integer (nearest with ties to even).
   void fcvtns(const Register& rd, const FPRegister& fn);
 
-  // Convert FP to unsigned integer (round towards zero).
-  void fcvtzu(const Register& rd, const FPRegister& fn);
+  // Convert FP to unsigned integer (nearest with ties to even).
+  void fcvtnu(const Register& rd, const FPRegister& fn);
 
   // Convert FP to signed integer (round towards zero).
   void fcvtzs(const Register& rd, const FPRegister& fn);
 
+  // Convert FP to unsigned integer (round towards zero).
+  void fcvtzu(const Register& rd, const FPRegister& fn);
+
   // Convert signed integer or fixed point to FP.
   void scvtf(const FPRegister& fd, const Register& rn, unsigned fbits = 0);
 
@@ -1282,14 +1384,14 @@ class Assembler {
   // character. The instruction pointer (pc_) is then aligned correctly for
   // subsequent instructions.
   void EmitStringData(const char * string) {
-    ASSERT(string != NULL);
+    VIXL_ASSERT(string != NULL);
 
     size_t len = strlen(string) + 1;
     EmitData(string, len);
 
     // Pad with NULL characters until pc_ is aligned.
     const char pad[] = {'\0', '\0', '\0', '\0'};
-    ASSERT(sizeof(pad) == kInstructionSize);
+    VIXL_STATIC_ASSERT(sizeof(pad) == kInstructionSize);
     Instruction* next_pc = AlignUp(pc_, kInstructionSize);
     EmitData(&pad, next_pc - pc_);
   }
@@ -1298,44 +1400,44 @@ class Assembler {
 
   // Register encoding.
   static Instr Rd(CPURegister rd) {
-    ASSERT(rd.code() != kSPRegInternalCode);
+    VIXL_ASSERT(rd.code() != kSPRegInternalCode);
     return rd.code() << Rd_offset;
   }
 
   static Instr Rn(CPURegister rn) {
-    ASSERT(rn.code() != kSPRegInternalCode);
+    VIXL_ASSERT(rn.code() != kSPRegInternalCode);
     return rn.code() << Rn_offset;
   }
 
   static Instr Rm(CPURegister rm) {
-    ASSERT(rm.code() != kSPRegInternalCode);
+    VIXL_ASSERT(rm.code() != kSPRegInternalCode);
     return rm.code() << Rm_offset;
   }
 
   static Instr Ra(CPURegister ra) {
-    ASSERT(ra.code() != kSPRegInternalCode);
+    VIXL_ASSERT(ra.code() != kSPRegInternalCode);
     return ra.code() << Ra_offset;
   }
 
   static Instr Rt(CPURegister rt) {
-    ASSERT(rt.code() != kSPRegInternalCode);
+    VIXL_ASSERT(rt.code() != kSPRegInternalCode);
     return rt.code() << Rt_offset;
   }
 
   static Instr Rt2(CPURegister rt2) {
-    ASSERT(rt2.code() != kSPRegInternalCode);
+    VIXL_ASSERT(rt2.code() != kSPRegInternalCode);
     return rt2.code() << Rt2_offset;
   }
 
   // These encoding functions allow the stack pointer to be encoded, and
   // disallow the zero register.
   static Instr RdSP(Register rd) {
-    ASSERT(!rd.IsZero());
+    VIXL_ASSERT(!rd.IsZero());
     return (rd.code() & kRegCodeMask) << Rd_offset;
   }
 
   static Instr RnSP(Register rn) {
-    ASSERT(!rn.IsZero());
+    VIXL_ASSERT(!rn.IsZero());
     return (rn.code() & kRegCodeMask) << Rn_offset;
   }
 
@@ -1346,7 +1448,7 @@ class Assembler {
     } else if (S == LeaveFlags) {
       return 0 << FlagsUpdate_offset;
     }
-    UNREACHABLE();
+    VIXL_UNREACHABLE();
     return 0;
   }
 
@@ -1356,7 +1458,7 @@ class Assembler {
 
   // PC-relative address encoding.
   static Instr ImmPCRelAddress(int imm21) {
-    ASSERT(is_int21(imm21));
+    VIXL_ASSERT(is_int21(imm21));
     Instr imm = static_cast<Instr>(truncate_to_int21(imm21));
     Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset;
     Instr immlo = imm << ImmPCRelLo_offset;
@@ -1365,27 +1467,27 @@ class Assembler {
 
   // Branch encoding.
   static Instr ImmUncondBranch(int imm26) {
-    ASSERT(is_int26(imm26));
+    VIXL_ASSERT(is_int26(imm26));
     return truncate_to_int26(imm26) << ImmUncondBranch_offset;
   }
 
   static Instr ImmCondBranch(int imm19) {
-    ASSERT(is_int19(imm19));
+    VIXL_ASSERT(is_int19(imm19));
     return truncate_to_int19(imm19) << ImmCondBranch_offset;
   }
 
   static Instr ImmCmpBranch(int imm19) {
-    ASSERT(is_int19(imm19));
+    VIXL_ASSERT(is_int19(imm19));
     return truncate_to_int19(imm19) << ImmCmpBranch_offset;
   }
 
   static Instr ImmTestBranch(int imm14) {
-    ASSERT(is_int14(imm14));
+    VIXL_ASSERT(is_int14(imm14));
     return truncate_to_int14(imm14) << ImmTestBranch_offset;
   }
 
   static Instr ImmTestBranchBit(unsigned bit_pos) {
-    ASSERT(is_uint6(bit_pos));
+    VIXL_ASSERT(is_uint6(bit_pos));
     // Subtract five from the shift offset, as we need bit 5 from bit_pos.
     unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5);
     unsigned b40 = bit_pos << ImmTestBranchBit40_offset;
@@ -1400,7 +1502,7 @@ class Assembler {
   }
 
   static Instr ImmAddSub(int64_t imm) {
-    ASSERT(IsImmAddSub(imm));
+    VIXL_ASSERT(IsImmAddSub(imm));
     if (is_uint12(imm)) {  // No shift required.
       return imm << ImmAddSub_offset;
     } else {
@@ -1409,55 +1511,55 @@ class Assembler {
   }
 
   static inline Instr ImmS(unsigned imms, unsigned reg_size) {
-    ASSERT(((reg_size == kXRegSize) && is_uint6(imms)) ||
+    VIXL_ASSERT(((reg_size == kXRegSize) && is_uint6(imms)) ||
            ((reg_size == kWRegSize) && is_uint5(imms)));
     USE(reg_size);
     return imms << ImmS_offset;
   }
 
   static inline Instr ImmR(unsigned immr, unsigned reg_size) {
-    ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
+    VIXL_ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
            ((reg_size == kWRegSize) && is_uint5(immr)));
     USE(reg_size);
-    ASSERT(is_uint6(immr));
+    VIXL_ASSERT(is_uint6(immr));
     return immr << ImmR_offset;
   }
 
   static inline Instr ImmSetBits(unsigned imms, unsigned reg_size) {
-    ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
-    ASSERT(is_uint6(imms));
-    ASSERT((reg_size == kXRegSize) || is_uint6(imms + 3));
+    VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+    VIXL_ASSERT(is_uint6(imms));
+    VIXL_ASSERT((reg_size == kXRegSize) || is_uint6(imms + 3));
     USE(reg_size);
     return imms << ImmSetBits_offset;
   }
 
   static inline Instr ImmRotate(unsigned immr, unsigned reg_size) {
-    ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
-    ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
+    VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+    VIXL_ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
            ((reg_size == kWRegSize) && is_uint5(immr)));
     USE(reg_size);
     return immr << ImmRotate_offset;
   }
 
   static inline Instr ImmLLiteral(int imm19) {
-    ASSERT(is_int19(imm19));
+    VIXL_ASSERT(is_int19(imm19));
     return truncate_to_int19(imm19) << ImmLLiteral_offset;
   }
 
   static inline Instr BitN(unsigned bitn, unsigned reg_size) {
-    ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
-    ASSERT((reg_size == kXRegSize) || (bitn == 0));
+    VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+    VIXL_ASSERT((reg_size == kXRegSize) || (bitn == 0));
     USE(reg_size);
     return bitn << BitN_offset;
   }
 
   static Instr ShiftDP(Shift shift) {
-    ASSERT(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
+    VIXL_ASSERT(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
     return shift << ShiftDP_offset;
   }
 
   static Instr ImmDPShift(unsigned amount) {
-    ASSERT(is_uint6(amount));
+    VIXL_ASSERT(is_uint6(amount));
     return amount << ImmDPShift_offset;
   }
 
@@ -1466,12 +1568,12 @@ class Assembler {
   }
 
   static Instr ImmExtendShift(unsigned left_shift) {
-    ASSERT(left_shift <= 4);
+    VIXL_ASSERT(left_shift <= 4);
     return left_shift << ImmExtendShift_offset;
   }
 
   static Instr ImmCondCmp(unsigned imm) {
-    ASSERT(is_uint5(imm));
+    VIXL_ASSERT(is_uint5(imm));
     return imm << ImmCondCmp_offset;
   }
 
@@ -1481,55 +1583,65 @@ class Assembler {
 
   // MemOperand offset encoding.
   static Instr ImmLSUnsigned(int imm12) {
-    ASSERT(is_uint12(imm12));
+    VIXL_ASSERT(is_uint12(imm12));
     return imm12 << ImmLSUnsigned_offset;
   }
 
   static Instr ImmLS(int imm9) {
-    ASSERT(is_int9(imm9));
+    VIXL_ASSERT(is_int9(imm9));
     return truncate_to_int9(imm9) << ImmLS_offset;
   }
 
   static Instr ImmLSPair(int imm7, LSDataSize size) {
-    ASSERT(((imm7 >> size) << size) == imm7);
+    VIXL_ASSERT(((imm7 >> size) << size) == imm7);
     int scaled_imm7 = imm7 >> size;
-    ASSERT(is_int7(scaled_imm7));
+    VIXL_ASSERT(is_int7(scaled_imm7));
     return truncate_to_int7(scaled_imm7) << ImmLSPair_offset;
   }
 
   static Instr ImmShiftLS(unsigned shift_amount) {
-    ASSERT(is_uint1(shift_amount));
+    VIXL_ASSERT(is_uint1(shift_amount));
     return shift_amount << ImmShiftLS_offset;
   }
 
   static Instr ImmException(int imm16) {
-    ASSERT(is_uint16(imm16));
+    VIXL_ASSERT(is_uint16(imm16));
     return imm16 << ImmException_offset;
   }
 
   static Instr ImmSystemRegister(int imm15) {
-    ASSERT(is_uint15(imm15));
+    VIXL_ASSERT(is_uint15(imm15));
     return imm15 << ImmSystemRegister_offset;
   }
 
   static Instr ImmHint(int imm7) {
-    ASSERT(is_uint7(imm7));
+    VIXL_ASSERT(is_uint7(imm7));
     return imm7 << ImmHint_offset;
   }
 
+  static Instr ImmBarrierDomain(int imm2) {
+    VIXL_ASSERT(is_uint2(imm2));
+    return imm2 << ImmBarrierDomain_offset;
+  }
+
+  static Instr ImmBarrierType(int imm2) {
+    VIXL_ASSERT(is_uint2(imm2));
+    return imm2 << ImmBarrierType_offset;
+  }
+
   static LSDataSize CalcLSDataSize(LoadStoreOp op) {
-    ASSERT((SizeLS_offset + SizeLS_width) == (kInstructionSize * 8));
+    VIXL_ASSERT((SizeLS_offset + SizeLS_width) == (kInstructionSize * 8));
     return static_cast<LSDataSize>(op >> SizeLS_offset);
   }
 
   // Move immediates encoding.
   static Instr ImmMoveWide(uint64_t imm) {
-    ASSERT(is_uint16(imm));
+    VIXL_ASSERT(is_uint16(imm));
     return imm << ImmMoveWide_offset;
   }
 
   static Instr ShiftMoveWide(int64_t shift) {
-    ASSERT(is_uint2(shift));
+    VIXL_ASSERT(is_uint2(shift));
     return shift << ShiftMoveWide_offset;
   }
 
@@ -1543,20 +1655,20 @@ class Assembler {
   }
 
   static Instr FPScale(unsigned scale) {
-    ASSERT(is_uint6(scale));
+    VIXL_ASSERT(is_uint6(scale));
     return scale << FPScale_offset;
   }
 
   // Size of the code generated in bytes
   uint64_t SizeOfCodeGenerated() const {
-    ASSERT((pc_ >= buffer_) && (pc_ < (buffer_ + buffer_size_)));
+    VIXL_ASSERT((pc_ >= buffer_) && (pc_ < (buffer_ + buffer_size_)));
     return pc_ - buffer_;
   }
 
   // Size of the code generated since label to the current position.
   uint64_t SizeOfCodeGeneratedSince(Label* label) const {
-    ASSERT(label->IsBound());
-    ASSERT((pc_ >= label->target()) && (pc_ < (buffer_ + buffer_size_)));
+    VIXL_ASSERT(label->IsBound());
+    VIXL_ASSERT((pc_ >= label->target()) && (pc_ < (buffer_ + buffer_size_)));
     return pc_ - label->target();
   }
 
@@ -1568,7 +1680,7 @@ class Assembler {
   inline void ReleaseLiteralPool() {
     if (--literal_pool_monitor_ == 0) {
       // Has the literal pool been blocked for too long?
-      ASSERT(literals_.empty() ||
+      VIXL_ASSERT(literals_.empty() ||
              (pc_ < (literals_.back()->pc_ + kMaxLoadLiteralRange)));
     }
   }
@@ -1622,6 +1734,9 @@ class Assembler {
                        FlagsUpdate S,
                        AddSubWithCarryOp op);
 
+  static bool IsImmFP32(float imm);
+  static bool IsImmFP64(double imm);
+
   // Functions for emulating operands not directly supported by the instruction
   // set.
   void EmitShift(const Register& rd,
@@ -1706,17 +1821,13 @@ class Assembler {
                                const FPRegister& fa,
                                FPDataProcessing3SourceOp op);
 
-  // Encoding helpers.
-  static bool IsImmFP32(float imm);
-  static bool IsImmFP64(double imm);
-
   void RecordLiteral(int64_t imm, unsigned size);
 
   // Emit the instruction at pc_.
   void Emit(Instr instruction) {
-    ASSERT(sizeof(*pc_) == 1);
-    ASSERT(sizeof(instruction) == kInstructionSize);
-    ASSERT((pc_ + sizeof(instruction)) <= (buffer_ + buffer_size_));
+    VIXL_STATIC_ASSERT(sizeof(*pc_) == 1);
+    VIXL_STATIC_ASSERT(sizeof(instruction) == kInstructionSize);
+    VIXL_ASSERT((pc_ + sizeof(instruction)) <= (buffer_ + buffer_size_));
 
 #ifdef DEBUG
     finalized_ = false;
@@ -1729,8 +1840,8 @@ class Assembler {
 
   // Emit data inline in the instruction stream.
   void EmitData(void const * data, unsigned size) {
-    ASSERT(sizeof(*pc_) == 1);
-    ASSERT((pc_ + size) <= (buffer_ + buffer_size_));
+    VIXL_STATIC_ASSERT(sizeof(*pc_) == 1);
+    VIXL_ASSERT((pc_ + size) <= (buffer_ + buffer_size_));
 
 #ifdef DEBUG
     finalized_ = false;
@@ -1744,7 +1855,7 @@ class Assembler {
   }
 
   inline void CheckBufferSpace() {
-    ASSERT(pc_ < (buffer_ + buffer_size_));
+    VIXL_ASSERT(pc_ < (buffer_ + buffer_size_));
     if (pc_ > next_literal_pool_check_) {
       CheckLiteralPool();
     }
diff --git a/disas/libvixl/a64/constants-a64.h 
b/disas/libvixl/a64/constants-a64.h
index 2e0336d..99677c1 100644
--- a/disas/libvixl/a64/constants-a64.h
+++ b/disas/libvixl/a64/constants-a64.h
@@ -116,6 +116,8 @@ V_(ImmCmpBranch, 23, 5, SignedBits)                         
                   \
 V_(ImmLLiteral, 23, 5, SignedBits)                                             
\
 V_(ImmException, 20, 5, Bits)                                                  
\
 V_(ImmHint, 11, 5, Bits)                                                       
\
+V_(ImmBarrierDomain, 11, 10, Bits)                                             
\
+V_(ImmBarrierType, 9, 8, Bits)                                                 
\
                                                                                
\
 /* System (MRS, MSR) */                                                        
\
 V_(ImmSystemRegister, 19, 5, Bits)                                             
\
@@ -181,7 +183,7 @@ enum Condition {
 inline Condition InvertCondition(Condition cond) {
   // Conditions al and nv behave identically, as "always true". They can't be
   // inverted, because there is no "always false" condition.
-  ASSERT((cond != al) && (cond != nv));
+  VIXL_ASSERT((cond != al) && (cond != nv));
   return static_cast<Condition>(cond ^ 1);
 }
 
@@ -246,6 +248,20 @@ enum SystemHint {
   SEVL  = 5
 };
 
+enum BarrierDomain {
+  OuterShareable = 0,
+  NonShareable   = 1,
+  InnerShareable = 2,
+  FullSystem     = 3
+};
+
+enum BarrierType {
+  BarrierOther  = 0,
+  BarrierReads  = 1,
+  BarrierWrites = 2,
+  BarrierAll    = 3
+};
+
 // System/special register names.
 // This information is not encoded as one field but as the concatenation of
 // multiple fields (Op0<0>, Op1, Crn, Crm, Op2).
@@ -274,7 +290,7 @@ enum SystemRegister {
 //
 // The enumerations can be used like this:
 //
-// ASSERT(instr->Mask(PCRelAddressingFMask) == PCRelAddressingFixed);
+// VIXL_ASSERT(instr->Mask(PCRelAddressingFMask) == PCRelAddressingFixed);
 // switch(instr->Mask(PCRelAddressingMask)) {
 //   case ADR:  Format("adr 'Xd, 'AddrPCRelByte"); break;
 //   case ADRP: Format("adrp 'Xd, 'AddrPCRelPage"); break;
@@ -560,6 +576,15 @@ enum ExceptionOp {
   DCPS3          = ExceptionFixed | 0x00A00003
 };
 
+enum MemBarrierOp {
+  MemBarrierFixed = 0xD503309F,
+  MemBarrierFMask = 0xFFFFF09F,
+  MemBarrierMask  = 0xFFFFF0FF,
+  DSB             = MemBarrierFixed | 0x00000000,
+  DMB             = MemBarrierFixed | 0x00000020,
+  ISB             = MemBarrierFixed | 0x00000040
+};
+
 // Any load or store.
 enum LoadStoreAnyOp {
   LoadStoreAnyFMask = 0x0a000000,
@@ -927,17 +952,22 @@ enum FPDataProcessing1SourceOp {
   FRINTN   = FRINTN_s,
   FRINTP_s = FPDataProcessing1SourceFixed | 0x00048000,
   FRINTP_d = FPDataProcessing1SourceFixed | FP64 | 0x00048000,
+  FRINTP   = FRINTP_s,
   FRINTM_s = FPDataProcessing1SourceFixed | 0x00050000,
   FRINTM_d = FPDataProcessing1SourceFixed | FP64 | 0x00050000,
+  FRINTM   = FRINTM_s,
   FRINTZ_s = FPDataProcessing1SourceFixed | 0x00058000,
   FRINTZ_d = FPDataProcessing1SourceFixed | FP64 | 0x00058000,
   FRINTZ   = FRINTZ_s,
   FRINTA_s = FPDataProcessing1SourceFixed | 0x00060000,
   FRINTA_d = FPDataProcessing1SourceFixed | FP64 | 0x00060000,
+  FRINTA   = FRINTA_s,
   FRINTX_s = FPDataProcessing1SourceFixed | 0x00070000,
   FRINTX_d = FPDataProcessing1SourceFixed | FP64 | 0x00070000,
+  FRINTX   = FRINTX_s,
   FRINTI_s = FPDataProcessing1SourceFixed | 0x00078000,
-  FRINTI_d = FPDataProcessing1SourceFixed | FP64 | 0x00078000
+  FRINTI_d = FPDataProcessing1SourceFixed | FP64 | 0x00078000,
+  FRINTI   = FRINTI_s
 };
 
 // Floating point data processing 2 source.
diff --git a/disas/libvixl/a64/decoder-a64.cc b/disas/libvixl/a64/decoder-a64.cc
index 9e9033c..8450eb3 100644
--- a/disas/libvixl/a64/decoder-a64.cc
+++ b/disas/libvixl/a64/decoder-a64.cc
@@ -132,7 +132,7 @@ void Decoder::InsertVisitorBefore(DecoderVisitor* 
new_visitor,
   }
   // We reached the end of the list. The last element must be
   // registered_visitor.
-  ASSERT(*it == registered_visitor);
+  VIXL_ASSERT(*it == registered_visitor);
   visitors_.insert(it, new_visitor);
 }
 
@@ -150,7 +150,7 @@ void Decoder::InsertVisitorAfter(DecoderVisitor* 
new_visitor,
   }
   // We reached the end of the list. The last element must be
   // registered_visitor.
-  ASSERT(*it == registered_visitor);
+  VIXL_ASSERT(*it == registered_visitor);
   visitors_.push_back(new_visitor);
 }
 
@@ -161,16 +161,16 @@ void Decoder::RemoveVisitor(DecoderVisitor* visitor) {
 
 
 void Decoder::DecodePCRelAddressing(Instruction* instr) {
-  ASSERT(instr->Bits(27, 24) == 0x0);
+  VIXL_ASSERT(instr->Bits(27, 24) == 0x0);
   // We know bit 28 is set, as <b28:b27> = 0 is filtered out at the top level
   // decode.
-  ASSERT(instr->Bit(28) == 0x1);
+  VIXL_ASSERT(instr->Bit(28) == 0x1);
   VisitPCRelAddressing(instr);
 }
 
 
 void Decoder::DecodeBranchSystemException(Instruction* instr) {
-  ASSERT((instr->Bits(27, 24) == 0x4) ||
+  VIXL_ASSERT((instr->Bits(27, 24) == 0x4) ||
          (instr->Bits(27, 24) == 0x5) ||
          (instr->Bits(27, 24) == 0x6) ||
          (instr->Bits(27, 24) == 0x7) );
@@ -271,7 +271,7 @@ void Decoder::DecodeBranchSystemException(Instruction* 
instr) {
 
 
 void Decoder::DecodeLoadStore(Instruction* instr) {
-  ASSERT((instr->Bits(27, 24) == 0x8) ||
+  VIXL_ASSERT((instr->Bits(27, 24) == 0x8) ||
          (instr->Bits(27, 24) == 0x9) ||
          (instr->Bits(27, 24) == 0xC) ||
          (instr->Bits(27, 24) == 0xD) );
@@ -390,7 +390,7 @@ void Decoder::DecodeLoadStore(Instruction* instr) {
 
 
 void Decoder::DecodeLogical(Instruction* instr) {
-  ASSERT(instr->Bits(27, 24) == 0x2);
+  VIXL_ASSERT(instr->Bits(27, 24) == 0x2);
 
   if (instr->Mask(0x80400000) == 0x00400000) {
     VisitUnallocated(instr);
@@ -409,7 +409,7 @@ void Decoder::DecodeLogical(Instruction* instr) {
 
 
 void Decoder::DecodeBitfieldExtract(Instruction* instr) {
-  ASSERT(instr->Bits(27, 24) == 0x3);
+  VIXL_ASSERT(instr->Bits(27, 24) == 0x3);
 
   if ((instr->Mask(0x80400000) == 0x80000000) ||
       (instr->Mask(0x80400000) == 0x00400000) ||
@@ -434,7 +434,7 @@ void Decoder::DecodeBitfieldExtract(Instruction* instr) {
 
 
 void Decoder::DecodeAddSubImmediate(Instruction* instr) {
-  ASSERT(instr->Bits(27, 24) == 0x1);
+  VIXL_ASSERT(instr->Bits(27, 24) == 0x1);
   if (instr->Bit(23) == 1) {
     VisitUnallocated(instr);
   } else {
@@ -444,8 +444,8 @@ void Decoder::DecodeAddSubImmediate(Instruction* instr) {
 
 
 void Decoder::DecodeDataProcessing(Instruction* instr) {
-  ASSERT((instr->Bits(27, 24) == 0xA) ||
-         (instr->Bits(27, 24) == 0xB) );
+  VIXL_ASSERT((instr->Bits(27, 24) == 0xA) ||
+              (instr->Bits(27, 24) == 0xB));
 
   if (instr->Bit(24) == 0) {
     if (instr->Bit(28) == 0) {
@@ -559,8 +559,8 @@ void Decoder::DecodeDataProcessing(Instruction* instr) {
 
 
 void Decoder::DecodeFP(Instruction* instr) {
-  ASSERT((instr->Bits(27, 24) == 0xE) ||
-         (instr->Bits(27, 24) == 0xF) );
+  VIXL_ASSERT((instr->Bits(27, 24) == 0xE) ||
+              (instr->Bits(27, 24) == 0xF));
 
   if (instr->Bit(28) == 0) {
     DecodeAdvSIMDDataProcessing(instr);
@@ -665,14 +665,14 @@ void Decoder::DecodeFP(Instruction* instr) {
                     VisitFPConditionalSelect(instr);
                     break;
                   }
-                  default: UNREACHABLE();
+                  default: VIXL_UNREACHABLE();
                 }
               }
             }
           }
         } else {
           // Bit 30 == 1 has been handled earlier.
-          ASSERT(instr->Bit(30) == 0);
+          VIXL_ASSERT(instr->Bit(30) == 0);
           if (instr->Mask(0xA0800000) != 0) {
             VisitUnallocated(instr);
           } else {
@@ -687,21 +687,21 @@ void Decoder::DecodeFP(Instruction* instr) {
 
 void Decoder::DecodeAdvSIMDLoadStore(Instruction* instr) {
   // TODO: Implement Advanced SIMD load/store instruction decode.
-  ASSERT(instr->Bits(29, 25) == 0x6);
+  VIXL_ASSERT(instr->Bits(29, 25) == 0x6);
   VisitUnimplemented(instr);
 }
 
 
 void Decoder::DecodeAdvSIMDDataProcessing(Instruction* instr) {
   // TODO: Implement Advanced SIMD data processing instruction decode.
-  ASSERT(instr->Bits(27, 25) == 0x7);
+  VIXL_ASSERT(instr->Bits(27, 25) == 0x7);
   VisitUnimplemented(instr);
 }
 
 
 #define DEFINE_VISITOR_CALLERS(A)                                              
\
   void Decoder::Visit##A(Instruction *instr) {                                 
\
-    ASSERT(instr->Mask(A##FMask) == A##Fixed);                                 
\
+    VIXL_ASSERT(instr->Mask(A##FMask) == A##Fixed);                            
\
     std::list<DecoderVisitor*>::iterator it;                                   
\
     for (it = visitors_.begin(); it != visitors_.end(); it++) {                
\
       (*it)->Visit##A(instr);                                                  
\
diff --git a/disas/libvixl/a64/disasm-a64.cc b/disas/libvixl/a64/disasm-a64.cc
index 5f172da..aa133a9 100644
--- a/disas/libvixl/a64/disasm-a64.cc
+++ b/disas/libvixl/a64/disasm-a64.cc
@@ -95,7 +95,7 @@ void Disassembler::VisitAddSubImmediate(Instruction* instr) {
       }
       break;
     }
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -142,7 +142,7 @@ void Disassembler::VisitAddSubShifted(Instruction* instr) {
       }
       break;
     }
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -180,7 +180,7 @@ void Disassembler::VisitAddSubExtended(Instruction* instr) {
       }
       break;
     }
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -215,7 +215,7 @@ void Disassembler::VisitAddSubWithCarry(Instruction* instr) 
{
       }
       break;
     }
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -258,30 +258,30 @@ void Disassembler::VisitLogicalImmediate(Instruction* 
instr) {
       }
       break;
     }
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
 
 
 bool Disassembler::IsMovzMovnImm(unsigned reg_size, uint64_t value) {
-  ASSERT((reg_size == kXRegSize) ||
-         ((reg_size == kWRegSize) && (value <= 0xffffffff)));
+  VIXL_ASSERT((reg_size == kXRegSize) ||
+              ((reg_size == kWRegSize) && (value <= 0xffffffff)));
 
   // Test for movz: 16 bits set at positions 0, 16, 32 or 48.
-  if (((value & 0xffffffffffff0000ULL) == 0ULL) ||
-      ((value & 0xffffffff0000ffffULL) == 0ULL) ||
-      ((value & 0xffff0000ffffffffULL) == 0ULL) ||
-      ((value & 0x0000ffffffffffffULL) == 0ULL)) {
+  if (((value & UINT64_C(0xffffffffffff0000)) == 0) ||
+      ((value & UINT64_C(0xffffffff0000ffff)) == 0) ||
+      ((value & UINT64_C(0xffff0000ffffffff)) == 0) ||
+      ((value & UINT64_C(0x0000ffffffffffff)) == 0)) {
     return true;
   }
 
   // Test for movn: NOT(16 bits set at positions 0, 16, 32 or 48).
   if ((reg_size == kXRegSize) &&
-      (((value & 0xffffffffffff0000ULL) == 0xffffffffffff0000ULL) ||
-       ((value & 0xffffffff0000ffffULL) == 0xffffffff0000ffffULL) ||
-       ((value & 0xffff0000ffffffffULL) == 0xffff0000ffffffffULL) ||
-       ((value & 0x0000ffffffffffffULL) == 0x0000ffffffffffffULL))) {
+      (((~value & UINT64_C(0xffffffffffff0000)) == 0) ||
+       ((~value & UINT64_C(0xffffffff0000ffff)) == 0) ||
+       ((~value & UINT64_C(0xffff0000ffffffff)) == 0) ||
+       ((~value & UINT64_C(0x0000ffffffffffff)) == 0))) {
     return true;
   }
   if ((reg_size == kWRegSize) &&
@@ -337,7 +337,7 @@ void Disassembler::VisitLogicalShifted(Instruction* instr) {
       }
       break;
     }
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
 
   Format(instr, mnemonic, form);
@@ -353,7 +353,7 @@ void 
Disassembler::VisitConditionalCompareRegister(Instruction* instr) {
     case CCMN_x: mnemonic = "ccmn"; break;
     case CCMP_w:
     case CCMP_x: mnemonic = "ccmp"; break;
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -368,7 +368,7 @@ void 
Disassembler::VisitConditionalCompareImmediate(Instruction* instr) {
     case CCMN_x_imm: mnemonic = "ccmn"; break;
     case CCMP_w_imm:
     case CCMP_x_imm: mnemonic = "ccmp"; break;
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -421,7 +421,7 @@ void Disassembler::VisitConditionalSelect(Instruction* 
instr) {
       }
       break;
     }
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -520,7 +520,7 @@ void Disassembler::VisitExtract(Instruction* instr) {
       }
       break;
     }
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -538,7 +538,7 @@ void Disassembler::VisitPCRelAddressing(Instruction* instr) 
{
 void Disassembler::VisitConditionalBranch(Instruction* instr) {
   switch (instr->Mask(ConditionalBranchMask)) {
     case B_cond: Format(instr, "b.'CBrn", "'BImmCond"); break;
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
 }
 
@@ -570,7 +570,7 @@ void Disassembler::VisitUnconditionalBranch(Instruction* 
instr) {
   switch (instr->Mask(UnconditionalBranchMask)) {
     case B: mnemonic = "b"; break;
     case BL: mnemonic = "bl"; break;
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -591,7 +591,7 @@ void Disassembler::VisitDataProcessing1Source(Instruction* 
instr) {
     FORMAT(CLS, "cls");
     #undef FORMAT
     case REV32_x: mnemonic = "rev32"; break;
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -690,7 +690,7 @@ void Disassembler::VisitDataProcessing3Source(Instruction* 
instr) {
       form = form_xxx;
       break;
     }
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -705,7 +705,7 @@ void Disassembler::VisitCompareBranch(Instruction* instr) {
     case CBZ_x: mnemonic = "cbz"; break;
     case CBNZ_w:
     case CBNZ_x: mnemonic = "cbnz"; break;
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -722,7 +722,7 @@ void Disassembler::VisitTestBranch(Instruction* instr) {
   switch (instr->Mask(TestBranchMask)) {
     case TBZ: mnemonic = "tbz"; break;
     case TBNZ: mnemonic = "tbnz"; break;
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -742,7 +742,7 @@ void Disassembler::VisitMoveWideImmediate(Instruction* 
instr) {
     case MOVZ_x: mnemonic = "movz"; break;
     case MOVK_w:
     case MOVK_x: mnemonic = "movk"; form = "'Rd, 'IMoveLSL"; break;
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -981,7 +981,7 @@ void Disassembler::VisitFPConditionalSelect(Instruction* 
instr) {
   switch (instr->Mask(FPConditionalSelectMask)) {
     case FCSEL_s:
     case FCSEL_d: mnemonic = "fcsel"; break;
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -1033,7 +1033,7 @@ void 
Disassembler::VisitFPDataProcessing2Source(Instruction* instr) {
     FORMAT(FMINNM, "fminnm");
     FORMAT(FNMUL, "fnmul");
     #undef FORMAT
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -1052,7 +1052,7 @@ void 
Disassembler::VisitFPDataProcessing3Source(Instruction* instr) {
     FORMAT(FNMADD, "fnmadd");
     FORMAT(FNMSUB, "fnmsub");
     #undef FORMAT
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -1065,7 +1065,7 @@ void Disassembler::VisitFPImmediate(Instruction* instr) {
   switch (instr->Mask(FPImmediateMask)) {
     case FMOV_s_imm: mnemonic = "fmov"; form = "'Sd, 'IFPSingle"; break;
     case FMOV_d_imm: mnemonic = "fmov"; form = "'Dd, 'IFPDouble"; break;
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -1082,6 +1082,14 @@ void Disassembler::VisitFPIntegerConvert(Instruction* 
instr) {
     case FMOV_xd: mnemonic = "fmov"; form = form_rf; break;
     case FMOV_sw:
     case FMOV_dx: mnemonic = "fmov"; form = form_fr; break;
+    case FCVTAS_ws:
+    case FCVTAS_xs:
+    case FCVTAS_wd:
+    case FCVTAS_xd: mnemonic = "fcvtas"; form = form_rf; break;
+    case FCVTAU_ws:
+    case FCVTAU_xs:
+    case FCVTAU_wd:
+    case FCVTAU_xd: mnemonic = "fcvtau"; form = form_rf; break;
     case FCVTMS_ws:
     case FCVTMS_xs:
     case FCVTMS_wd:
@@ -1141,7 +1149,7 @@ void Disassembler::VisitFPFixedPointConvert(Instruction* 
instr) {
     case UCVTF_sx_fixed:
     case UCVTF_dw_fixed:
     case UCVTF_dx_fixed: mnemonic = "ucvtf"; form = form_fr; break;
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -1176,7 +1184,7 @@ void Disassembler::VisitSystem(Instruction* instr) {
       }
     }
   } else if (instr->Mask(SystemHintFMask) == SystemHintFixed) {
-    ASSERT(instr->Mask(SystemHintMask) == HINT);
+    VIXL_ASSERT(instr->Mask(SystemHintMask) == HINT);
     switch (instr->ImmHint()) {
       case NOP: {
         mnemonic = "nop";
@@ -1184,6 +1192,24 @@ void Disassembler::VisitSystem(Instruction* instr) {
         break;
       }
     }
+  } else if (instr->Mask(MemBarrierFMask) == MemBarrierFixed) {
+    switch (instr->Mask(MemBarrierMask)) {
+      case DMB: {
+        mnemonic = "dmb";
+        form = "'M";
+        break;
+      }
+      case DSB: {
+        mnemonic = "dsb";
+        form = "'M";
+        break;
+      }
+      case ISB: {
+        mnemonic = "isb";
+        form = NULL;
+        break;
+      }
+    }
   }
 
   Format(instr, mnemonic, form);
@@ -1226,7 +1252,7 @@ void Disassembler::ProcessOutput(Instruction* /*instr*/) {
 
 void Disassembler::Format(Instruction* instr, const char* mnemonic,
                           const char* format) {
-  ASSERT(mnemonic != NULL);
+  VIXL_ASSERT(mnemonic != NULL);
   ResetOutput();
   Substitute(instr, mnemonic);
   if (format != NULL) {
@@ -1268,8 +1294,9 @@ int Disassembler::SubstituteField(Instruction* instr, 
const char* format) {
     case 'A': return SubstitutePCRelAddressField(instr, format);
     case 'B': return SubstituteBranchTargetField(instr, format);
     case 'O': return SubstituteLSRegOffsetField(instr, format);
+    case 'M': return SubstituteBarrierField(instr, format);
     default: {
-      UNREACHABLE();
+      VIXL_UNREACHABLE();
       return 1;
     }
   }
@@ -1294,7 +1321,7 @@ int Disassembler::SubstituteRegisterField(Instruction* 
instr,
       }
       break;
     }
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
 
   // Increase field length for registers tagged as stack.
@@ -1331,7 +1358,7 @@ int Disassembler::SubstituteRegisterField(Instruction* 
instr,
 
 int Disassembler::SubstituteImmediateField(Instruction* instr,
                                            const char* format) {
-  ASSERT(format[0] == 'I');
+  VIXL_ASSERT(format[0] == 'I');
 
   switch (format[1]) {
     case 'M': {  // IMoveImm or IMoveLSL.
@@ -1339,10 +1366,10 @@ int Disassembler::SubstituteImmediateField(Instruction* 
instr,
         uint64_t imm = instr->ImmMoveWide() << (16 * instr->ShiftMoveWide());
         AppendToOutput("#0x%" PRIx64, imm);
       } else {
-        ASSERT(format[5] == 'L');
+        VIXL_ASSERT(format[5] == 'L');
         AppendToOutput("#0x%" PRIx64, instr->ImmMoveWide());
         if (instr->ShiftMoveWide() > 0) {
-          AppendToOutput(", lsl #%" PRId64, 16 * instr->ShiftMoveWide());
+          AppendToOutput(", lsl #%d", 16 * instr->ShiftMoveWide());
         }
       }
       return 8;
@@ -1384,14 +1411,14 @@ int Disassembler::SubstituteImmediateField(Instruction* 
instr,
       return 6;
     }
     case 'A': {  // IAddSub.
-      ASSERT(instr->ShiftAddSub() <= 1);
+      VIXL_ASSERT(instr->ShiftAddSub() <= 1);
       int64_t imm = instr->ImmAddSub() << (12 * instr->ShiftAddSub());
       AppendToOutput("#0x%" PRIx64 " (%" PRId64 ")", imm, imm);
       return 7;
     }
     case 'F': {  // IFPSingle, IFPDouble or IFPFBits.
       if (format[3] == 'F') {  // IFPFbits.
-        AppendToOutput("#%" PRId64, 64 - instr->FPScale());
+        AppendToOutput("#%d", 64 - instr->FPScale());
         return 8;
       } else {
         AppendToOutput("#0x%" PRIx64 " (%.4f)", instr->ImmFP(),
@@ -1412,27 +1439,27 @@ int Disassembler::SubstituteImmediateField(Instruction* 
instr,
       return 5;
     }
     case 'P': {  // IP - Conditional compare.
-      AppendToOutput("#%" PRId64, instr->ImmCondCmp());
+      AppendToOutput("#%d", instr->ImmCondCmp());
       return 2;
     }
     case 'B': {  // Bitfields.
       return SubstituteBitfieldImmediateField(instr, format);
     }
     case 'E': {  // IExtract.
-      AppendToOutput("#%" PRId64, instr->ImmS());
+      AppendToOutput("#%d", instr->ImmS());
       return 8;
     }
     case 'S': {  // IS - Test and branch bit.
-      AppendToOutput("#%" PRId64, (instr->ImmTestBranchBit5() << 5) |
-                                  instr->ImmTestBranchBit40());
+      AppendToOutput("#%d", (instr->ImmTestBranchBit5() << 5) |
+                            instr->ImmTestBranchBit40());
       return 2;
     }
     case 'D': {  // IDebug - HLT and BRK instructions.
-      AppendToOutput("#0x%" PRIx64, instr->ImmException());
+      AppendToOutput("#0x%x", instr->ImmException());
       return 6;
     }
     default: {
-      UNIMPLEMENTED();
+      VIXL_UNIMPLEMENTED();
       return 0;
     }
   }
@@ -1441,7 +1468,7 @@ int Disassembler::SubstituteImmediateField(Instruction* 
instr,
 
 int Disassembler::SubstituteBitfieldImmediateField(Instruction* instr,
                                                    const char* format) {
-  ASSERT((format[0] == 'I') && (format[1] == 'B'));
+  VIXL_ASSERT((format[0] == 'I') && (format[1] == 'B'));
   unsigned r = instr->ImmR();
   unsigned s = instr->ImmS();
 
@@ -1455,19 +1482,19 @@ int 
Disassembler::SubstituteBitfieldImmediateField(Instruction* instr,
         AppendToOutput("#%d", s + 1);
         return 5;
       } else {
-        ASSERT(format[3] == '-');
+        VIXL_ASSERT(format[3] == '-');
         AppendToOutput("#%d", s - r + 1);
         return 7;
       }
     }
     case 'Z': {  // IBZ-r.
-      ASSERT((format[3] == '-') && (format[4] == 'r'));
+      VIXL_ASSERT((format[3] == '-') && (format[4] == 'r'));
       unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSize : 
kWRegSize;
       AppendToOutput("#%d", reg_size - r);
       return 5;
     }
     default: {
-      UNREACHABLE();
+      VIXL_UNREACHABLE();
       return 0;
     }
   }
@@ -1476,7 +1503,7 @@ int 
Disassembler::SubstituteBitfieldImmediateField(Instruction* instr,
 
 int Disassembler::SubstituteLiteralField(Instruction* instr,
                                          const char* format) {
-  ASSERT(strncmp(format, "LValue", 6) == 0);
+  VIXL_ASSERT(strncmp(format, "LValue", 6) == 0);
   USE(format);
 
   switch (instr->Mask(LoadLiteralMask)) {
@@ -1484,7 +1511,7 @@ int Disassembler::SubstituteLiteralField(Instruction* 
instr,
     case LDR_x_lit:
     case LDR_s_lit:
     case LDR_d_lit: AppendToOutput("(addr %p)", instr->LiteralAddress()); 
break;
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
 
   return 6;
@@ -1492,12 +1519,12 @@ int Disassembler::SubstituteLiteralField(Instruction* 
instr,
 
 
 int Disassembler::SubstituteShiftField(Instruction* instr, const char* format) 
{
-  ASSERT(format[0] == 'H');
-  ASSERT(instr->ShiftDP() <= 0x3);
+  VIXL_ASSERT(format[0] == 'H');
+  VIXL_ASSERT(instr->ShiftDP() <= 0x3);
 
   switch (format[1]) {
     case 'D': {  // HDP.
-      ASSERT(instr->ShiftDP() != ROR);
+      VIXL_ASSERT(instr->ShiftDP() != ROR);
     }  // Fall through.
     case 'L': {  // HLo.
       if (instr->ImmDPShift() != 0) {
@@ -1508,7 +1535,7 @@ int Disassembler::SubstituteShiftField(Instruction* 
instr, const char* format) {
       return 3;
     }
     default:
-      UNIMPLEMENTED();
+      VIXL_UNIMPLEMENTED();
       return 0;
   }
 }
@@ -1516,7 +1543,7 @@ int Disassembler::SubstituteShiftField(Instruction* 
instr, const char* format) {
 
 int Disassembler::SubstituteConditionField(Instruction* instr,
                                            const char* format) {
-  ASSERT(format[0] == 'C');
+  VIXL_ASSERT(format[0] == 'C');
   const char* condition_code[] = { "eq", "ne", "hs", "lo",
                                    "mi", "pl", "vs", "vc",
                                    "hi", "ls", "ge", "lt",
@@ -1538,27 +1565,27 @@ int Disassembler::SubstituteConditionField(Instruction* 
instr,
 int Disassembler::SubstitutePCRelAddressField(Instruction* instr,
                                               const char* format) {
   USE(format);
-  ASSERT(strncmp(format, "AddrPCRel", 9) == 0);
+  VIXL_ASSERT(strncmp(format, "AddrPCRel", 9) == 0);
 
   int offset = instr->ImmPCRel();
 
   // Only ADR (AddrPCRelByte) is supported.
-  ASSERT(strcmp(format, "AddrPCRelByte") == 0);
+  VIXL_ASSERT(strcmp(format, "AddrPCRelByte") == 0);
 
   char sign = '+';
   if (offset < 0) {
     offset = -offset;
     sign = '-';
   }
-  // TODO: Extend this to support printing the target address.
-  AppendToOutput("#%c0x%x", sign, offset);
+  VIXL_STATIC_ASSERT(sizeof(*instr) == 1);
+  AppendToOutput("#%c0x%x (addr %p)", sign, offset, instr + offset);
   return 13;
 }
 
 
 int Disassembler::SubstituteBranchTargetField(Instruction* instr,
                                               const char* format) {
-  ASSERT(strncmp(format, "BImm", 4) == 0);
+  VIXL_ASSERT(strncmp(format, "BImm", 4) == 0);
 
   int64_t offset = 0;
   switch (format[5]) {
@@ -1570,7 +1597,7 @@ int 
Disassembler::SubstituteBranchTargetField(Instruction* instr,
     case 'm': offset = instr->ImmCmpBranch(); break;
     // BImmTest - test and branch immediate.
     case 'e': offset = instr->ImmTestBranch(); break;
-    default: UNIMPLEMENTED();
+    default: VIXL_UNIMPLEMENTED();
   }
   offset <<= kInstructionSizeLog2;
   char sign = '+';
@@ -1578,15 +1605,16 @@ int 
Disassembler::SubstituteBranchTargetField(Instruction* instr,
     offset = -offset;
     sign = '-';
   }
-  AppendToOutput("#%c0x%" PRIx64, sign, offset);
+  VIXL_STATIC_ASSERT(sizeof(*instr) == 1);
+  AppendToOutput("#%c0x%" PRIx64 " (addr %p)", sign, offset, instr + offset);
   return 8;
 }
 
 
 int Disassembler::SubstituteExtendField(Instruction* instr,
                                         const char* format) {
-  ASSERT(strncmp(format, "Ext", 3) == 0);
-  ASSERT(instr->ExtendMode() <= 7);
+  VIXL_ASSERT(strncmp(format, "Ext", 3) == 0);
+  VIXL_ASSERT(instr->ExtendMode() <= 7);
   USE(format);
 
   const char* extend_mode[] = { "uxtb", "uxth", "uxtw", "uxtx",
@@ -1598,12 +1626,12 @@ int Disassembler::SubstituteExtendField(Instruction* 
instr,
       (((instr->ExtendMode() == UXTW) && (instr->SixtyFourBits() == 0)) ||
        (instr->ExtendMode() == UXTX))) {
     if (instr->ImmExtendShift() > 0) {
-      AppendToOutput(", lsl #%" PRId64, instr->ImmExtendShift());
+      AppendToOutput(", lsl #%d", instr->ImmExtendShift());
     }
   } else {
     AppendToOutput(", %s", extend_mode[instr->ExtendMode()]);
     if (instr->ImmExtendShift() > 0) {
-      AppendToOutput(" #%" PRId64, instr->ImmExtendShift());
+      AppendToOutput(" #%d", instr->ImmExtendShift());
     }
   }
   return 3;
@@ -1612,7 +1640,7 @@ int Disassembler::SubstituteExtendField(Instruction* 
instr,
 
 int Disassembler::SubstituteLSRegOffsetField(Instruction* instr,
                                              const char* format) {
-  ASSERT(strncmp(format, "Offsetreg", 9) == 0);
+  VIXL_ASSERT(strncmp(format, "Offsetreg", 9) == 0);
   const char* extend_mode[] = { "undefined", "undefined", "uxtw", "lsl",
                                 "undefined", "undefined", "sxtw", "sxtx" };
   USE(format);
@@ -1632,7 +1660,7 @@ int Disassembler::SubstituteLSRegOffsetField(Instruction* 
instr,
   if (!((ext == UXTX) && (shift == 0))) {
     AppendToOutput(", %s", extend_mode[ext]);
     if (shift != 0) {
-      AppendToOutput(" #%" PRId64, instr->SizeLS());
+      AppendToOutput(" #%d", instr->SizeLS());
     }
   }
   return 9;
@@ -1641,7 +1669,7 @@ int Disassembler::SubstituteLSRegOffsetField(Instruction* 
instr,
 
 int Disassembler::SubstitutePrefetchField(Instruction* instr,
                                           const char* format) {
-  ASSERT(format[0] == 'P');
+  VIXL_ASSERT(format[0] == 'P');
   USE(format);
 
   int prefetch_mode = instr->PrefetchMode();
@@ -1654,6 +1682,23 @@ int Disassembler::SubstitutePrefetchField(Instruction* 
instr,
   return 6;
 }
 
+int Disassembler::SubstituteBarrierField(Instruction* instr,
+                                         const char* format) {
+  VIXL_ASSERT(format[0] == 'M');
+  USE(format);
+
+  static const char* options[4][4] = {
+    { "sy (0b0000)", "oshld", "oshst", "osh" },
+    { "sy (0b0100)", "nshld", "nshst", "nsh" },
+    { "sy (0b1000)", "ishld", "ishst", "ish" },
+    { "sy (0b1100)", "ld", "st", "sy" }
+  };
+  int domain = instr->ImmBarrierDomain();
+  int type = instr->ImmBarrierType();
+
+  AppendToOutput("%s", options[domain][type]);
+  return 1;
+}
 
 void Disassembler::ResetOutput() {
   buffer_pos_ = 0;
diff --git a/disas/libvixl/a64/disasm-a64.h b/disas/libvixl/a64/disasm-a64.h
index 857a5ac..3a56e15 100644
--- a/disas/libvixl/a64/disasm-a64.h
+++ b/disas/libvixl/a64/disasm-a64.h
@@ -64,6 +64,7 @@ class Disassembler: public DecoderVisitor {
   int SubstituteBranchTargetField(Instruction* instr, const char* format);
   int SubstituteLSRegOffsetField(Instruction* instr, const char* format);
   int SubstitutePrefetchField(Instruction* instr, const char* format);
+  int SubstituteBarrierField(Instruction* instr, const char* format);
 
   inline bool RdIsZROrSP(Instruction* instr) const {
     return (instr->Rd() == kZeroRegCode);
diff --git a/disas/libvixl/a64/instructions-a64.cc 
b/disas/libvixl/a64/instructions-a64.cc
index e87fa3a..c4eb7c4 100644
--- a/disas/libvixl/a64/instructions-a64.cc
+++ b/disas/libvixl/a64/instructions-a64.cc
@@ -33,20 +33,20 @@ namespace vixl {
 static uint64_t RotateRight(uint64_t value,
                             unsigned int rotate,
                             unsigned int width) {
-  ASSERT(width <= 64);
+  VIXL_ASSERT(width <= 64);
   rotate &= 63;
-  return ((value & ((1UL << rotate) - 1UL)) << (width - rotate)) |
-         (value >> rotate);
+  return ((value & ((UINT64_C(1) << rotate) - 1)) <<
+          (width - rotate)) | (value >> rotate);
 }
 
 
 static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
                                     uint64_t value,
                                     unsigned width) {
-  ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
-         (width == 32));
-  ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
-  uint64_t result = value & ((1UL << width) - 1UL);
+  VIXL_ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
+              (width == 32));
+  VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+  uint64_t result = value & ((UINT64_C(1) << width) - 1);
   for (unsigned i = width; i < reg_size; i *= 2) {
     result |= (result << i);
   }
@@ -84,7 +84,7 @@ uint64_t Instruction::ImmLogical() {
     if (imm_s == 0x3F) {
       return 0;
     }
-    uint64_t bits = (1UL << (imm_s + 1)) - 1;
+    uint64_t bits = (UINT64_C(1) << (imm_s + 1)) - 1;
     return RotateRight(bits, imm_r, 64);
   } else {
     if ((imm_s >> 1) == 0x1F) {
@@ -96,14 +96,14 @@ uint64_t Instruction::ImmLogical() {
         if ((imm_s & mask) == mask) {
           return 0;
         }
-        uint64_t bits = (1UL << ((imm_s & mask) + 1)) - 1;
+        uint64_t bits = (UINT64_C(1) << ((imm_s & mask) + 1)) - 1;
         return RepeatBitsAcrossReg(reg_size,
                                    RotateRight(bits, imm_r & mask, width),
                                    width);
       }
     }
   }
-  UNREACHABLE();
+  VIXL_UNREACHABLE();
   return 0;
 }
 
@@ -155,7 +155,7 @@ Instruction* Instruction::ImmPCOffsetTarget() {
     offset = ImmPCRel();
   } else {
     // All PC-relative branches.
-    ASSERT(BranchType() != UnknownBranchType);
+    VIXL_ASSERT(BranchType() != UnknownBranchType);
     // Relative branch offsets are instruction-size-aligned.
     offset = ImmBranch() << kInstructionSizeLog2;
   }
@@ -169,7 +169,7 @@ inline int Instruction::ImmBranch() const {
     case UncondBranchType: return ImmUncondBranch();
     case CompareBranchType: return ImmCmpBranch();
     case TestBranchType: return ImmTestBranch();
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   return 0;
 }
@@ -186,7 +186,7 @@ void Instruction::SetImmPCOffsetTarget(Instruction* target) 
{
 
 void Instruction::SetPCRelImmTarget(Instruction* target) {
   // ADRP is not supported, so 'this' must point to an ADR instruction.
-  ASSERT(Mask(PCRelAddressingMask) == ADR);
+  VIXL_ASSERT(Mask(PCRelAddressingMask) == ADR);
 
   Instr imm = Assembler::ImmPCRelAddress(target - this);
 
@@ -195,7 +195,7 @@ void Instruction::SetPCRelImmTarget(Instruction* target) {
 
 
 void Instruction::SetBranchImmTarget(Instruction* target) {
-  ASSERT(((target - this) & 3) == 0);
+  VIXL_ASSERT(((target - this) & 3) == 0);
   Instr branch_imm = 0;
   uint32_t imm_mask = 0;
   int offset = (target - this) >> kInstructionSizeLog2;
@@ -220,14 +220,14 @@ void Instruction::SetBranchImmTarget(Instruction* target) 
{
       imm_mask = ImmTestBranch_mask;
       break;
     }
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   SetInstructionBits(Mask(~imm_mask) | branch_imm);
 }
 
 
 void Instruction::SetImmLLiteral(Instruction* source) {
-  ASSERT(((source - this) & 3) == 0);
+  VIXL_ASSERT(((source - this) & 3) == 0);
   int offset = (source - this) >> kLiteralEntrySizeLog2;
   Instr imm = Assembler::ImmLLiteral(offset);
   Instr mask = ImmLLiteral_mask;
diff --git a/disas/libvixl/a64/instructions-a64.h 
b/disas/libvixl/a64/instructions-a64.h
index ba9068c..a4240d7 100644
--- a/disas/libvixl/a64/instructions-a64.h
+++ b/disas/libvixl/a64/instructions-a64.h
@@ -44,30 +44,36 @@ const unsigned kMaxLoadLiteralRange = 1 * MBytes;
 const unsigned kWRegSize = 32;
 const unsigned kWRegSizeLog2 = 5;
 const unsigned kWRegSizeInBytes = kWRegSize / 8;
+const unsigned kWRegSizeInBytesLog2 = kWRegSizeLog2 - 3;
 const unsigned kXRegSize = 64;
 const unsigned kXRegSizeLog2 = 6;
 const unsigned kXRegSizeInBytes = kXRegSize / 8;
+const unsigned kXRegSizeInBytesLog2 = kXRegSizeLog2 - 3;
 const unsigned kSRegSize = 32;
 const unsigned kSRegSizeLog2 = 5;
 const unsigned kSRegSizeInBytes = kSRegSize / 8;
+const unsigned kSRegSizeInBytesLog2 = kSRegSizeLog2 - 3;
 const unsigned kDRegSize = 64;
 const unsigned kDRegSizeLog2 = 6;
 const unsigned kDRegSizeInBytes = kDRegSize / 8;
-const int64_t kWRegMask = 0x00000000ffffffffLL;
-const int64_t kXRegMask = 0xffffffffffffffffLL;
-const int64_t kSRegMask = 0x00000000ffffffffLL;
-const int64_t kDRegMask = 0xffffffffffffffffLL;
-const int64_t kXSignMask = 0x1LL << 63;
-const int64_t kWSignMask = 0x1LL << 31;
-const int64_t kByteMask = 0xffL;
-const int64_t kHalfWordMask = 0xffffL;
-const int64_t kWordMask = 0xffffffffLL;
-const uint64_t kXMaxUInt = 0xffffffffffffffffULL;
-const uint64_t kWMaxUInt = 0xffffffffULL;
-const int64_t kXMaxInt = 0x7fffffffffffffffLL;
-const int64_t kXMinInt = 0x8000000000000000LL;
-const int32_t kWMaxInt = 0x7fffffff;
-const int32_t kWMinInt = 0x80000000;
+const unsigned kDRegSizeInBytesLog2 = kDRegSizeLog2 - 3;
+const uint64_t kWRegMask = UINT64_C(0xffffffff);
+const uint64_t kXRegMask = UINT64_C(0xffffffffffffffff);
+const uint64_t kSRegMask = UINT64_C(0xffffffff);
+const uint64_t kDRegMask = UINT64_C(0xffffffffffffffff);
+const uint64_t kSSignMask = UINT64_C(0x80000000);
+const uint64_t kDSignMask = UINT64_C(0x8000000000000000);
+const uint64_t kWSignMask = UINT64_C(0x80000000);
+const uint64_t kXSignMask = UINT64_C(0x8000000000000000);
+const uint64_t kByteMask = UINT64_C(0xff);
+const uint64_t kHalfWordMask = UINT64_C(0xffff);
+const uint64_t kWordMask = UINT64_C(0xffffffff);
+const uint64_t kXMaxUInt = UINT64_C(0xffffffffffffffff);
+const uint64_t kWMaxUInt = UINT64_C(0xffffffff);
+const int64_t kXMaxInt = INT64_C(0x7fffffffffffffff);
+const int64_t kXMinInt = INT64_C(0x8000000000000000);
+const int32_t kWMaxInt = INT32_C(0x7fffffff);
+const int32_t kWMinInt = INT32_C(0x80000000);
 const unsigned kLinkRegCode = 30;
 const unsigned kZeroRegCode = 31;
 const unsigned kSPRegInternalCode = 63;
@@ -81,18 +87,28 @@ const unsigned kFloatExponentBits = 8;
 
 const float kFP32PositiveInfinity = rawbits_to_float(0x7f800000);
 const float kFP32NegativeInfinity = rawbits_to_float(0xff800000);
-const double kFP64PositiveInfinity = rawbits_to_double(0x7ff0000000000000ULL);
-const double kFP64NegativeInfinity = rawbits_to_double(0xfff0000000000000ULL);
+const double kFP64PositiveInfinity =
+    rawbits_to_double(UINT64_C(0x7ff0000000000000));
+const double kFP64NegativeInfinity =
+    rawbits_to_double(UINT64_C(0xfff0000000000000));
 
 // This value is a signalling NaN as both a double and as a float (taking the
 // least-significant word).
-static const double kFP64SignallingNaN = 
rawbits_to_double(0x7ff000007f800001ULL);
+static const double kFP64SignallingNaN =
+    rawbits_to_double(UINT64_C(0x7ff000007f800001));
 static const float kFP32SignallingNaN = rawbits_to_float(0x7f800001);
 
 // A similar value, but as a quiet NaN.
-static const double kFP64QuietNaN = rawbits_to_double(0x7ff800007fc00001ULL);
+static const double kFP64QuietNaN =
+    rawbits_to_double(UINT64_C(0x7ff800007fc00001));
 static const float kFP32QuietNaN = rawbits_to_float(0x7fc00001);
 
+// The default NaN values (for FPCR.DN=1).
+static const double kFP64DefaultNaN =
+    rawbits_to_double(UINT64_C(0x7ff8000000000000));
+static const float kFP32DefaultNaN = rawbits_to_float(0x7fc00000);
+
+
 enum LSDataSize {
   LSByte        = 0,
   LSHalfword    = 1,
@@ -325,7 +341,7 @@ class Instruction {
   }
 
   inline Instruction* InstructionAtOffset(int64_t offset) {
-    ASSERT(IsWordAligned(this + offset));
+    VIXL_ASSERT(IsWordAligned(this + offset));
     return this + offset;
   }
 
diff --git a/disas/libvixl/globals.h b/disas/libvixl/globals.h
index a6a3fcc..e28dc66 100644
--- a/disas/libvixl/globals.h
+++ b/disas/libvixl/globals.h
@@ -27,8 +27,20 @@
 #ifndef VIXL_GLOBALS_H
 #define VIXL_GLOBALS_H
 
-// Get the standard printf format macros for C99 stdint types.
+// Get standard C99 macros for integer types.
+#ifndef __STDC_CONSTANT_MACROS
+#define __STDC_CONSTANT_MACROS
+#endif
+
+#ifndef __STDC_LIMIT_MACROS
+#define __STDC_LIMIT_MACROS
+#endif
+
+#ifndef __STDC_FORMAT_MACROS
 #define __STDC_FORMAT_MACROS
+#endif
+
+#include <stdint.h>
 #include <inttypes.h>
 
 #include <assert.h>
@@ -45,21 +57,29 @@ typedef uint8_t byte;
 const int KBytes = 1024;
 const int MBytes = 1024 * KBytes;
 
-  #define ABORT() printf("in %s, line %i", __FILE__, __LINE__); abort()
+#define VIXL_ABORT() printf("in %s, line %i", __FILE__, __LINE__); abort()
 #ifdef DEBUG
-  #define ASSERT(condition) assert(condition)
-  #define CHECK(condition) ASSERT(condition)
-  #define UNIMPLEMENTED() printf("UNIMPLEMENTED\t"); ABORT()
-  #define UNREACHABLE() printf("UNREACHABLE\t"); ABORT()
+  #define VIXL_ASSERT(condition) assert(condition)
+  #define VIXL_CHECK(condition) VIXL_ASSERT(condition)
+  #define VIXL_UNIMPLEMENTED() printf("UNIMPLEMENTED\t"); VIXL_ABORT()
+  #define VIXL_UNREACHABLE() printf("UNREACHABLE\t"); VIXL_ABORT()
 #else
-  #define ASSERT(condition) ((void) 0)
-  #define CHECK(condition) assert(condition)
-  #define UNIMPLEMENTED() ((void) 0)
-  #define UNREACHABLE() ((void) 0)
+  #define VIXL_ASSERT(condition) ((void) 0)
+  #define VIXL_CHECK(condition) assert(condition)
+  #define VIXL_UNIMPLEMENTED() ((void) 0)
+  #define VIXL_UNREACHABLE() ((void) 0)
 #endif
+// This is not as powerful as template based assertions, but it is simple.
+// It assumes that the descriptions are unique. If this starts being a problem,
+// we can switch to a different implemention.
+#define VIXL_CONCAT(a, b) a##b
+#define VIXL_STATIC_ASSERT_LINE(line, condition) \
+  typedef char VIXL_CONCAT(STATIC_ASSERT_LINE_, line)[(condition) ? 1 : -1] \
+  __attribute__((unused))
+#define VIXL_STATIC_ASSERT(condition) VIXL_STATIC_ASSERT_LINE(__LINE__, 
condition) //NOLINT
 
 template <typename T> inline void USE(T) {}
 
-#define ALIGNMENT_EXCEPTION() printf("ALIGNMENT EXCEPTION\t"); ABORT()
+#define VIXL_ALIGNMENT_EXCEPTION() printf("ALIGNMENT EXCEPTION\t"); 
VIXL_ABORT()
 
 #endif  // VIXL_GLOBALS_H
diff --git a/disas/libvixl/platform.h b/disas/libvixl/platform.h
index a2600f3..b5c2085 100644
--- a/disas/libvixl/platform.h
+++ b/disas/libvixl/platform.h
@@ -34,9 +34,7 @@ namespace vixl {
 // Currently we assume running the simulator implies running on x86 hardware.
 inline void HostBreakpoint() { asm("int3"); }
 #else
-inline void HostBreakpoint() {
-  // TODO: Implement HostBreakpoint on a64.
-}
+inline void HostBreakpoint() { asm("brk"); }
 #endif
 }  // namespace vixl
 
diff --git a/disas/libvixl/utils.cc b/disas/libvixl/utils.cc
index a45fb95..c9c05d1 100644
--- a/disas/libvixl/utils.cc
+++ b/disas/libvixl/utils.cc
@@ -58,9 +58,9 @@ double rawbits_to_double(uint64_t bits) {
 
 
 int CountLeadingZeros(uint64_t value, int width) {
-  ASSERT((width == 32) || (width == 64));
+  VIXL_ASSERT((width == 32) || (width == 64));
   int count = 0;
-  uint64_t bit_test = 1UL << (width - 1);
+  uint64_t bit_test = UINT64_C(1) << (width - 1);
   while ((count < width) && ((bit_test & value) == 0)) {
     count++;
     bit_test >>= 1;
@@ -70,7 +70,7 @@ int CountLeadingZeros(uint64_t value, int width) {
 
 
 int CountLeadingSignBits(int64_t value, int width) {
-  ASSERT((width == 32) || (width == 64));
+  VIXL_ASSERT((width == 32) || (width == 64));
   if (value >= 0) {
     return CountLeadingZeros(value, width) - 1;
   } else {
@@ -80,7 +80,7 @@ int CountLeadingSignBits(int64_t value, int width) {
 
 
 int CountTrailingZeros(uint64_t value, int width) {
-  ASSERT((width == 32) || (width == 64));
+  VIXL_ASSERT((width == 32) || (width == 64));
   int count = 0;
   while ((count < width) && (((value >> count) & 1) == 0)) {
     count++;
@@ -92,10 +92,10 @@ int CountTrailingZeros(uint64_t value, int width) {
 int CountSetBits(uint64_t value, int width) {
   // TODO: Other widths could be added here, as the implementation already
   // supports them.
-  ASSERT((width == 32) || (width == 64));
+  VIXL_ASSERT((width == 32) || (width == 64));
 
   // Mask out unused bits to ensure that they are not counted.
-  value &= (0xffffffffffffffffULL >> (64-width));
+  value &= (UINT64_C(0xffffffffffffffff) >> (64-width));
 
   // Add up the set bits.
   // The algorithm works by adding pairs of bit fields together iteratively,
@@ -108,18 +108,19 @@ int CountSetBits(uint64_t value, int width) {
   // value =   h+g+f+e     d+c+b+a
   //                  \          |
   // value =       h+g+f+e+d+c+b+a
-  value = ((value >> 1) & 0x5555555555555555ULL) +
-           (value & 0x5555555555555555ULL);
-  value = ((value >> 2) & 0x3333333333333333ULL) +
-           (value & 0x3333333333333333ULL);
-  value = ((value >> 4) & 0x0f0f0f0f0f0f0f0fULL) +
-           (value & 0x0f0f0f0f0f0f0f0fULL);
-  value = ((value >> 8) & 0x00ff00ff00ff00ffULL) +
-           (value & 0x00ff00ff00ff00ffULL);
-  value = ((value >> 16) & 0x0000ffff0000ffffULL) +
-           (value & 0x0000ffff0000ffffULL);
-  value = ((value >> 32) & 0x00000000ffffffffULL) +
-           (value & 0x00000000ffffffffULL);
+  const uint64_t kMasks[] = {
+    UINT64_C(0x5555555555555555),
+    UINT64_C(0x3333333333333333),
+    UINT64_C(0x0f0f0f0f0f0f0f0f),
+    UINT64_C(0x00ff00ff00ff00ff),
+    UINT64_C(0x0000ffff0000ffff),
+    UINT64_C(0x00000000ffffffff),
+  };
+
+  for (unsigned i = 0; i < (sizeof(kMasks) / sizeof(kMasks[0])); i++) {
+    int shift = 1 << i;
+    value = ((value >> shift) & kMasks[i]) + (value & kMasks[i]);
+  }
 
   return value;
 }
diff --git a/disas/libvixl/utils.h b/disas/libvixl/utils.h
index 029341e..83c928c 100644
--- a/disas/libvixl/utils.h
+++ b/disas/libvixl/utils.h
@@ -27,7 +27,7 @@
 #ifndef VIXL_UTILS_H
 #define VIXL_UTILS_H
 
-
+#include <math.h>
 #include <string.h>
 #include "globals.h"
 
@@ -35,19 +35,19 @@ namespace vixl {
 
 // Check number width.
 inline bool is_intn(unsigned n, int64_t x) {
-  ASSERT((0 < n) && (n < 64));
-  int64_t limit = 1ULL << (n - 1);
+  VIXL_ASSERT((0 < n) && (n < 64));
+  int64_t limit = INT64_C(1) << (n - 1);
   return (-limit <= x) && (x < limit);
 }
 
 inline bool is_uintn(unsigned n, int64_t x) {
-  ASSERT((0 < n) && (n < 64));
+  VIXL_ASSERT((0 < n) && (n < 64));
   return !(x >> n);
 }
 
 inline unsigned truncate_to_intn(unsigned n, int64_t x) {
-  ASSERT((0 < n) && (n < 64));
-  return (x & ((1ULL << n) - 1));
+  VIXL_ASSERT((0 < n) && (n < 64));
+  return (x & ((INT64_C(1) << n) - 1));
 }
 
 #define INT_1_TO_63_LIST(V)                                                    
\
@@ -90,13 +90,67 @@ inline int64_t signed_bitextract_64(int msb, int lsb, 
int64_t x) {
   return (x << (63 - msb)) >> (lsb + 63 - msb);
 }
 
-// floating point representation
+// Floating point representation.
 uint32_t float_to_rawbits(float value);
 uint64_t double_to_rawbits(double value);
 float rawbits_to_float(uint32_t bits);
 double rawbits_to_double(uint64_t bits);
 
-// Bits counting.
+
+// NaN tests.
+inline bool IsSignallingNaN(double num) {
+  const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
+  uint64_t raw = double_to_rawbits(num);
+  if (isnan(num) && ((raw & kFP64QuietNaNMask) == 0)) {
+    return true;
+  }
+  return false;
+}
+
+
+inline bool IsSignallingNaN(float num) {
+  const uint32_t kFP32QuietNaNMask = 0x00400000;
+  uint32_t raw = float_to_rawbits(num);
+  if (isnan(num) && ((raw & kFP32QuietNaNMask) == 0)) {
+    return true;
+  }
+  return false;
+}
+
+
+template <typename T>
+inline bool IsQuietNaN(T num) {
+  return isnan(num) && !IsSignallingNaN(num);
+}
+
+
+// Convert the NaN in 'num' to a quiet NaN.
+inline double ToQuietNaN(double num) {
+  const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
+  VIXL_ASSERT(isnan(num));
+  return rawbits_to_double(double_to_rawbits(num) | kFP64QuietNaNMask);
+}
+
+
+inline float ToQuietNaN(float num) {
+  const uint32_t kFP32QuietNaNMask = 0x00400000;
+  VIXL_ASSERT(isnan(num));
+  return rawbits_to_float(float_to_rawbits(num) | kFP32QuietNaNMask);
+}
+
+
+// Fused multiply-add.
+inline double FusedMultiplyAdd(double op1, double op2, double a) {
+  return fma(op1, op2, a);
+}
+
+
+inline float FusedMultiplyAdd(float op1, float op2, float a) {
+  return fmaf(op1, op2, a);
+}
+
+
+// Bit counting.
 int CountLeadingZeros(uint64_t value, int width);
 int CountLeadingSignBits(int64_t value, int width);
 int CountTrailingZeros(uint64_t value, int width);
@@ -106,20 +160,30 @@ int CountSetBits(uint64_t value, int width);
 // TODO: rename/refactor to make it specific to instructions.
 template<typename T>
 bool IsWordAligned(T pointer) {
-  ASSERT(sizeof(pointer) == sizeof(intptr_t));   // NOLINT(runtime/sizeof)
+  VIXL_ASSERT(sizeof(pointer) == sizeof(intptr_t));   // NOLINT(runtime/sizeof)
   return (reinterpret_cast<intptr_t>(pointer) & 3) == 0;
 }
 
 // Increment a pointer until it has the specified alignment.
 template<class T>
 T AlignUp(T pointer, size_t alignment) {
-  ASSERT(sizeof(pointer) == sizeof(uintptr_t));
+  VIXL_STATIC_ASSERT(sizeof(pointer) == sizeof(uintptr_t));
   uintptr_t pointer_raw = reinterpret_cast<uintptr_t>(pointer);
   size_t align_step = (alignment - pointer_raw) % alignment;
-  ASSERT((pointer_raw + align_step) % alignment == 0);
+  VIXL_ASSERT((pointer_raw + align_step) % alignment == 0);
   return reinterpret_cast<T>(pointer_raw + align_step);
 }
 
+// Decrement a pointer until it has the specified alignment.
+template<class T>
+T AlignDown(T pointer, size_t alignment) {
+  VIXL_STATIC_ASSERT(sizeof(pointer) == sizeof(uintptr_t));
+  uintptr_t pointer_raw = reinterpret_cast<uintptr_t>(pointer);
+  size_t align_step = pointer_raw % alignment;
+  VIXL_ASSERT((pointer_raw - align_step) % alignment == 0);
+  return reinterpret_cast<T>(pointer_raw - align_step);
+}
+
 
 }  // namespace vixl
 
-- 
1.9.2




reply via email to

[Prev in Thread] Current Thread [Next in Thread]