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Part 1

Introduction

1 Development of discrete dipole approximation
(DDA)

The discrete dipole approximation (DDA) method, also referred to as the cou-
pled dipole method (CDM), was first introduced by Purcell & Pennypacker
(1973) for modelling light scattering from arbitrarily-shaped, inhomogeneous
and anisotropic objects, ranging from nanometers to microns in size. It was
later popularized by Draine & Flatau (1994) who released DDSCAT, an open
source DDA software package written in Fortran. Amongst others, another
popular and notable open source package is Amsterdam DDA (ADDA), written
in C by Yurkin et al. (2007), who also reviewed different implementations and
approaches to DDA and their comparative performances (Yurkin & Hoekstra,
2007). Various light scattering theories, including DDA, were compared and
discussed by Kahnert et al. (2003); Wriedt (2009).

The standard DDA implementation was designed for the interaction of EM
waves with objects in free space. To model light scattering from particles on
a planar surface, Taubenblatt & Tran (1993) added the surface interaction ca-
pability in their Fortran implementation of DDA. Later Schmehl et al. (1997);
Nebeker (1998) implemented DDSURF, also written in Fortran, and released
the compiled executable. Neither of the surface-enabled DDA source codes
were made available to the general public. This paper accompanies the release
a set of MATLAB toolboxes, comprising DDA with surface interaction (Loke &
Mengiig, 2010) called DDA-SI, the standard free-space DDA and other tools for
light scattering calculations.

The initial implementation of DDA-SI is limited to light scattering from particles
on a homogeneous substrate. In academic and industrial laboratories, planar
substrates are often stratified, i.e., they may have one of more layers of film.
The filmed surface implementation, called DDFILM, was developed by Zhang
& Hirleman (2002). Later a variation called DDEFILM was developed by Bae
et al. (2008) for particles embedded in the film. Another variation is DDSUB by
Nebeker (1998), for subsurface particles. However, none of the abovementioned
software nor source are publicly available. We prioritize further development of
DDA-SI towards stratified substrate capability. This requires additional terms
in the Green’s tensor to account reflections off the other surfaces.

DDA is mostly limited to non-magnetic scatterers given that most scatter-
ers produce very little magnetic effects, especially in the visible light regime.
Nonetheless, various versions of magnetically-capable DDA or equivalent have
been implemented by Mulholland et al. (1994); Lemaire (1997); Chaumet &



Rahmani (2009). The inclusion of magnetic dipoles into DDA will see wider ap-
plications in astrophysics, magnetic nanoantennae and other systems containing
magnetic scatterers. This feature will be incorporated into later releases.

2 Software

The DDA and DDA-ST toolboxes can be downloaded from Scattport (www.
scattport.org/index.php/programs-menu/DDA-SI-menu). This includes the
current and past versions as well as the user manual which contains details on
usage of the functions in the toolbox.

The toolboxes and manual can be downloaded from www. scattport.org/index.
php/programs-menu/DDA-SI-menu. Example implementations for different types
of scattering systems and calculations are also included in the toolbox. Func-
tions for arbitrary beam illumination, beam power, force, torque, vector spheri-
cal harmonics and other calculations are packaged in the Optical Tweezers Com-
putational Toolbox (www.physics.uq.edu.au/people/nieminen/software.html)
developed by Nieminen et al. (2007).

The main disadvantage of MATLAB, an interpreted language, is its speed of
execution of loops in comparison to compiled code written in languages such
as C or Fortran. However, we have offset this to a certain extent by providing
an option to use a wrapper function that calls a pre-compiled function writ-
ten in C to perform the Sommerfeld integration. This is achieved via a MEX
file (www.mathworks.com/help/techdoc/ref/mex.html) built under the MAT-
LAB command line utilizing the external GNU C (gcc) compiler. In subsequent
releases, the MEX wrapper can be extended to the time-consuming double-loop
routine which assembles the interaction matrix. Loops aside, the matrix and
vector manipulation functions in MATLAB, particularly the iterative solvers,
are fast; this is due the the fact that they are written in C.

There are a number of reasons why we persist with MATLAB. The main reason
is that we exploit MATLAB’s fourth generation language ease of implementation
and hence speed development, especially for prototype concepts. Its capability
in displaying data in a multitude of ways aids development, debugging and pre-
sentation for a quick intuitive feel of the results. There is also the popularity
of MATLAB as a scientific, mathematical and engineering computational lan-
guage amongst lecturers, researchers and students. These are also the reasons
why we implemented the Optical Tweezers Computational Toolbox (Nieminen
et al., 2007) in MATLAB, which, together with the DDA and DDA-ST toolboxes
are part of an ongoing development of a suite of tools for modelling light inter-
action with matter.



3 User guide

This document relates the theory to the functions that are available in the DDA
and DDA-SI toolboxes

Assumes familiarity with MATLAB and EM theory

Part II
Standard DDA

4 Discrete dipole approximation (DDA) theory

TODO
e Rayleigh scatterers
e cubic lattice,

e random molecular, polarizability refractive index lattice spacing depen-
dent

In addition to the incident field E;,. ; an each dipole, there are the field contri-
butions from other re-radiating dipoles. The radiation from the other dipoles
are assumed to be instantaneous given such short distances. Let E; be the time
harmonic E-field amplitude at each dipole location r; due to the incident field
Einc,j = Egexp(ikr; — iwt) plus contributions from N — 1 dipoles. A system of
equations can be initially constructed as follows:

Ej =Einc; — ZAjkP/W (1)
k#j

where Aj; is the tensor that represents the interaction between a receiving
dipole at r; and the radiating dipole at r;. The off-diagonal block 3 x 3 tensor
in the interaction matrix is
exp(ikr;p . ikrie—1,.
:Mx K2 (Fjif — 13) + —L— 3kt — I3) |, (2)
Tjk Tjk

Ajp

J#k,

where 7, is the distance from points r; to 74, 7;; is the unit vector in the
direction from points 7; to ;. The dipole interaction tensor is related to the
Green’s tensor Gy of the electric field from the radiating dipole, i.e., A, =
k*Gj. The derivation of the Green’s tensor from the vector Helmholtz equation
is shown in Jackson (1998). From (8) we can define the diagonal tensors as
Aj= a;l, and substituting into (1) gives

Einc;j = Aj;P;+ > AjPy. (3)

k]



The above equation can be simplified by combining the two matrices since their
non-zeros tensors do not overlap. We are left with solving 3/N unknown dipole
moments P; in the following exactly determined system of 3NV linear equations

(Fig. 1):

N
k=1
-1
Y, zl.x Einc,l.x
1y 1 A / \ A P1.y Einc.l.y
%, 12 13 1N 1z inc,1.z
T
%ox Ez.x Einc,z.x
Al=.l A SR A 2y o2y
2,1 %, 2,3 2N Pz Einc.z
E
3x 1 Es,x Elnc.&x
Al A% Al =]
31 32 %, 3N 3z inc,3,2
—
. —
N-1,N
Y
Onx 1 PN.x Einc.N.x
AlA[A] - [A[%] 5]
N1 N.2 N3 N.N-1 g Pn. Eincnz

Figure 1: The system of equations comprises the interaction matrix (A), the
unknown dipole moments (P) and the incident field (Einc). A is a square matrix
containing N x NN of Aj; 3 x 3 tensors, where N is the number of dipoles.

5 DDA toolbox

5.1 Calculation steps

The primary objective of DDA is to calculate the z, y and z components of
the dipole moment P; of each dipole. The DDA calculation involves solving a
system of linear equations (Fig. 1) where P; are the unknowns; it is usually
performed in the following steps:

1. load or create the coordinates of the dipoles,

2. load or assign the polarizability a; to each dipole,
3. calculated the incident field Ei,c ; at each dipole,
4. assemble the interaction matrix A and
5

. solve for P in the system of linear equations



Knowing P, other quantities such as the scattered field, dipole force, Poynt-
ing vector, extinction, absorption and scattering cross sections, phase function,
Mueller matrix etc. can be calculated.

5.2 Dipole coordinates

The scattering object is represented by point dipoles which are essentially Rayleigh
scatterers, numbered j = 1,..., N with polarizabilities o; located at positions
r;. The shape file containing the dipole coordinates is usually read from a text
file in using r=dlmread(‘mycoordinates.txt’). The text file format for N
number of dipoles is as follows:

X1, Y1, 21
X2, Y2, Z2

TN, YN, ZN

The variable r is an N x 3 array (matrix). The values for the coordinates should
be converted to wavelength units if they are not already so.

The standard DDA uses the Cartesian coordinate system and the dipoles are
packed in a cubic lattice. The number of dipoles required to represent the
scatterer and the minimal lattice spacing is determined by Draine & Flatau
(1994) using the volume relation:

Nd® = ~ma?, (5)

where the LHS is the cubic volume of the space occupied by the NV-dipole lattice
with spacing d and the RHS is the volume of the equivalent sphere with radius

a. Thus, the effective radius,
3N\ ¥
=d|l—| . 6
o=a(57) 0

The lattice spacing, relative to the wavelength of the incident light, has to be

sufficiently small such that
1

d< —. 7

~ k|m)| (™)

For glass in air, it is required that d < 0.12. On the hand, lattice spacings in
the order of d < 0.01 are required for noble metals due to their high imaginary

component of their refractive indices especially at shorter wavelengths.

5.3 Polarizability

The field E; at a particular dipole causes it to be polarized or acquire a dipole
moment P;. The extent to which this occurs is determined by a quantity called

10



polarizability a;. The dipole moment is thus
Pj = OéjEj, (8)

where «; is the polarizability tensor at each dipole (Draine & Flatau, 1994).

The original implementation of DDA Purcell & Pennypacker (1973) used the
Clausius-Mossotti polarizability, given by

jom _ Bd® mi =1 3d?

_( _(Ejfl
I Ax m§—|—2 T A4r € +2

)- 9)

Subsequent corrections by Goedecke & O’Brien (1988); Hage & Greenberg
(1990); Dungey & Bohren (1991) have been made to this calculation. The
current most popular form, the lattice dispersion relation (LDR), was derived
by Draine & Goodman (1993):

oFPR — (10)

J
CM
@

)

af
1+ S [(by + m2by + m2b3.S) (kd)? — 2i(kd)?3]

by = —1.891531, by = 0.1648469,
3
by = —1.7700004, S = Z(ajéj)%

Jj=1

where a and é are unit vectors defining the direction and polarization of the
incident light.

The polarizability of each dipole can be different in the x, y and z directions for
anisotropic substances and different from the other dipoles for inhomogeneous
materials. The polarizability values are arranged in the same sequence as the
dipole coordinates. However, they are transposed from N x 3 to the 3N x 1
array of o, oy, 0y, Qs Qo Olzy sy oony Qi Oy, Oz, SO that the inverse polar-
izabilities can conveniently fit into the diagonal of the interaction matrix when
compacting (3) into (4).

The polarizability values can be loaded from a text file, as with the coordinates,
in the N x 3 format, then transposed to 3N x 1:

alph = dlmread(‘mypolarizabilities.txt’);
alph = col3tol(alph); (utility function included in the toolbox)

In many cases, we only know the relative refractive index (or indices) but not
the polarizabilities, in which case, they can be calculated using

function alph = polarizability LDR(d,m,kvec,E0)
k = 2xpi;
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N = length(m); % number of dipoles

bl = -1.8915316;
b2 = 0.1648469;
b3 = -1.7700004;

a-hat = kvec/norm(kvec);
e_hat = EO/norm(EQ) ;

S = 0;

for j = 1:3

S = S + (ahat(j)*ehat(j))?2;
end

alpha CM = 3*d"3/(4*pi)*(m."2 - 1)./(m."2 + 2); % Clausius-Mossotti
alpha LDR = alpha CM./...

(1 + (alpha CM/d"3).*((bl+m. 2%b2+m. 2*b3*S) * (k*d) "2-2/3*i*k~3*d"3)) ;
alph = col3tol([alpha LDR’; alpha LDR’; alpha LDR’])

In the initial release of the toolbox, the above function caters for isotropic
substances only, i.e., the polarizability of a dipole the same in x, y and z-
directions. However, the anisotropic feature can be easily implemented; the
function (10) can be calculated for each axis. Form birefringence, on the other
hand, can be achieved via the arrangement of the dipoles.

The scatterer can be homogeneous or made from composite materials. It is a
matter of having different sets of polarizabilities, calculated for corresponding
dipoles coordinates, for different materials. For example, if a silica sphere is
coated with a layer of gold, there will be 2 sets of appended coordinates and
their corresponding polarizabilities.

5.4 The incident E-field

The scatterer(s) may be illuminated by any form incident electric field, the sim-
plest being the plane wave. For the calculation of the E-field of each dipole
at r;, we leave out time harmonic component iwt of the E-field and just use
Einc,j = Epexp(ikr;) in the function:

function Ei = E_inc(EO,kvec,r)

[N,cols] = size(x);

D = ones(N,1);

kr = dot([kvec(1)*D kvec(2)*D kvec(3)*D],r,2);
expikr = exp(ixkr);

E1 = [EO0(1)*expikr EO0(2)*expikr EO0(3)*expikr];
Ei = col3tol(E1l);

For example, the wave vector k = (0,0,1) and the unit vector &, = (1,0,0)
means that the plane wave propagates in the z-direction and is x-polarized.
If the plane wave has left-circular polarization and propagates in y-direction,
k = (0,1,0) and éy = (1,0,7). For wave vectors that are not aligned with any
axis, the unit vector of the incident field é; and the wave vector k given an
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arbitrary incident angle is calculated using simple trigonometry.

Arbitrary incident light, e.g., a tightly-focused Gaussian laser beam, a Laguerre-
Gauss donut beam, a Bessel beam, or even a plane wave can be modelled using
beam shape coefficients (Nieminen et al., 2003b). These coefficients represent
the amplitudes of the modes of the vector spherical wave functions (Mischenko
et al., 2000) which form exact representations of the ideal beam. Details for
calculating the incident field at the dipoles illuminated by and arbitrary beam
are explained in the toolbox user manual.

5.5 Constructing the interaction matrix

The interaction matrix is constructed by looping from dipoles j = 1...N. The
‘self-interaction’ of a dipole is just the reciprocal of its polarizability as shown in
the block diagonal in figure 1. The block off-diagonals are the Green’s tensors
for the receiving dipoles at r; and the radiating dipoles at ry, k = 1...N, are
defined as follows:

k% exp(ikor i) Bk + VikTk, ’YJkTJk@TJ;ﬁy VikTjk,xTjk,z
j ~ A ~ ~ ~
Ajp =— ——— | YkPikylikas  Bik + VikPiey  VikTikyTik,2

L VikTik,2Tike  VikPikeTiky Bk +'Wﬁkf?k@

(11)
where
riw = [(z5 — 2)? + (g5 — we)? + (25 — 2)2]M2, (12)
~ Tjk,x ~ Tik,y ~ Tik,z

r'k,m == ) T ik,y — ) T jk,2 — ) 13
j it ey = S j it (13)
Bk = [1 — (korjr) =2 +i(korsx) '], (14)
Yik = —[1 = 3(korjx) "% + 3i(korjx) ~']; (15)

The function for calculating the interaction matrix is

function A = interaction A(k,r,alph)
[N, dummy] = size(r);

A = single(zeros(3*N,3*N));

I = eye(3);

for jj=1:N
for kk=1:N
if jj = kk
rk_torj = r(jj,:)-r(kk,:);
rjk = norm(rk_to_rj);
rjkhat = (rk-to_rj)/rjk;
rjkrjk = rjk hat’*rjk hat;

13



Ajk = exp(i*k*rjk)/rjk*...
((x"2x(rjkrjk - I) + ixk*rjk-1)/rjk~2*(3*rjkrjk - I));

AC(53-1)#3+1:jj*3, (kk-1)*3+1:kk*3) = Ajk;

else
AC(§j-1)*3+1, (kKk-1)*3+1)
AC(33-1)%3+2, (kk-1)*3+2)
AC(3j-1)*3+3, (kk-1)*3+3)

end

end
end

1/alph((jj-1)*3+1);
1/alph((jj-1)*3+2);
1/alph((jj-1)*3+3);

Alternatively, the variable A can be declared global which saves memory by only
keeping one copy the variable. To do this, delclare ‘global A’ in the main or
calling script and use interaction A_glob(k, r, alph) instead.

The interaction matrix, which has complex elements, is the component that
takes up most of the RAM during the calculation; its memory requirements
scales with (3N)2. The single and double precision interaction matrices consume
8 x (3N)? bytes and 16 x (3N)? bytes respectively.

5.6 Solving the system of equations

We have a system of linear equations (Fig. 1), AP = E;,.. Due to the size
of linear system for most DDA calculations, the MATLAB backslash operator
P = A\Ei is not the method of choice for solving P. The problem lies not with
its accuracy when computing the least squares solution, rather, it is very slow
compared with other sufficiently accurate methods. The recommended functions
are the iterative methods minres(A,Ei), gmres(A,Ei) or qmr (A,Ei).

5.7 Extinction, scattering and absorption cross-sections

The extinction and absorption cross sections can be calculated, as defined in
Draine (1988):

ark &
Cext = |E0|2 ;Im (Ei*nc,j ' P]) ’ (16)
N
4k —1\xp* 2,3 2
Cun = o o [Py 7B - JRRSE
and the scattering cross section Cyca = Cext — Caps. The absorption and extinc-

tion cross section functions are:

function C = C_abs(k, EO, P, alph)
C = 4%pixk/norm(E0)2*(-imag(dot(P,P./alph)) - 2/3%k3*dot(P,P));

and
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function C = C_ext(k, EO, Ei, P)
C = 4*pi*k/sum(abs(E0.2))*imag(dot (Ei,P));

respectively. These quantities are often expressed in terms of extinction, ab-
sorption and scattering efficiencies, i.e., the cross section divided by the cross-
sectional area of the scatterer. In the case of a sphere, the extinction effi-
ciency is defined as Qext = Cext/(ma?), where a is the radius of the sphere.
Similarly, the absorption and scattering efficiencies are defined, respectively, as
Qabs = Cabs/(ﬂuQ) and Qsca = Csca/(ﬂ-a2)-

m = 1.33+0.1i
3
251
2l
O 151
1
x Qg
05t L ° %
x Qg (Mie)
— - - Q (Mie)
o Qu,(Mie)
0 . . . . . :
0 2 4 6 8 10 12

size parameter ka

Figure 2: The extinction, absorption and scattering efficiencies of fictitious ab-
sorbing water spheres (n = 1.33 + 0.1¢) versus the size parameter. DDA is
benchmarked against the Mie theory.

Figure 3: Pseudospheres made from 32, 552 and 3112 dipoles, arranged in cubic
lattices.

Figure 2 shows the extinction efficiency of a spheres, with refractive index
n = 1.33 4+ 0.14, as a function of the diameter calculated via a DDA and the
Mie theory. The DDA pseudo sphere is scaled to achieve the correct diameter
whist observing the minimum required number of dipoles (5) and the maximum
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allowable lattice spacing (7). The following listing demonstrates the calculation
of extinction, absorption and scattering cross-sections and efficiencies:

EO = [1 1 0];

ml = 1.33 + .1i;

k = 2xpi;

d = 1/(abs(ml) *k);

nrange = [8 32 136 280 552 912 1472 2176 3112 4224 5616 7208 9328 11536];
arange = (3*nrange/(4*pi)).~(1/3) * d;

Csca = zeros(1,length(nrange));
Cabs = zeros(1,length(unrange));
Cext = zeros(1,length(urange));

ix = 0;
for N = nrange % number of dipoles
ix = ix+1;
m = ml*xones(N,1);
kvec = [0 0 k];
rfile = [’sphere_’ int2str(nrange(ix)) ’.txt’];
S=dlmread(rfile);
r = d*[S(:,1) S(:,2) S(:,3)];
Ei = E_inc(EO, kvec, r);
alph = polarizability(d,m,k);
A = interactionA(k, r, alph);
P = gmres(A,Ei);

Cext(ix) = C_ext(k,E0,Ei,P);

Cabs(ix) = C_abs(k,E0,Ei,P,alph);

Csca(ix) = Cext(ix) - Cabs(ix);
end

ix = 0;

range = 0.1:0.01:2;

Qext Mie = zeros(1,length(range));
Qabs_Mie = zeros(1,length(range));
QscaMie = zeros(1l,length(range));
for a = range;

ix = ix + 1;

ka = k*a;

res = Mie(ml,ka);

Qext_ Mie(ix) = res(1);

Qabs_Mie(ix) = res(3);
QscaMie(ix) = res(2);
end
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5.8 The scattered and total E-field

The scattered E-field at any point r (relative to the origin) can be calculated
by adding up the contributions from each dipole using the electric dipole field
equation from section 9.2 of Jackson (1998),

ikr

{sz(pr) <+ 4 [3%(¢ - p) — p] (i_i) eikr}, (18)

Esca (kI') -

47eq r r3

The toolbox function for calculating the E-field at evaluation point r_E is

function E = E_sca(kO,r,P,rE)
[N,dummy] = size(r);

E = zeros(1,3);
I = eye(3);
for j = 1:N

rEj = r E-r(j,:); % dipole to evaluation point vector
r_mag = norm(rEj); % magnitude of the vector
rEj_hat = rEj/r._mag;
rEjrEj = rEj hat’*rEj hat;
E = E + (exp(i*kO*rmag)/r magk...
(k0"2*(rEjrEj - I) + (ixkO*rmag-1)/rmag 2*(3*rEjrEj - I))*...
P(3*(j-1)+1:3*%(j-1)+3))7;
end

In the far field zone, defined as at any given point that is much farther than
the intra-dipole distances (r >> r;), the 1/r? and 1/r® terms in (18) can be
ignored as their contributions diminish rapidly with distance; the scattered field

approaches: .
- 1 9. R elkr
E... (kr) = E*(F x p) x . (19)

" drweg T

The corresponding toolbox function usage is

function E = E_sca FF(k,r,P,rE)
[N,cols] = size(r);

E =0;

rmnorm = norm(r_E);

r_hat = r.E/r_norm;

for j = 1:N

E = E + exp(-i*k*dot(r_hat,r(j,:)))*(rhat’*rhat - eye(3))*P(3*(j-1)+1:3*%(j-1)+3);
end
E = Exk~2*exp(i*k*rmorm)/r norm;

where r can be a single point (x,y, z) or an N x 3 array of points but r_E is an
single evaluation point. After calculating the scattered field, the total field can
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be determined by the superposition of the incident and scattered fields,
Etot(kr) = Einc(kr) + Esca(kr); (20)

To calculate the field intensities at the array of points, we simply use the dot
product function, i.e., I=dot (E,E,2).

5.9 Phase function

The scattering phase function is a means of characterizing one of the main scat-
tering properties of a particle (van de Hulst, 1957); it is the scattered intensity
in the far field versus the scattering angle, normalized against the intensity at
the angle (0°),
1(0)
d(0) = 21

Figure 4 shows the scattering geometry for the phase function, which is usually
calculated or measure in two planes, one parallel and the other perpendicular
to the plane of polarization of the incident plane wave.

Figure 4: The schematic for angles at which the scattered intensity are measured
or calculated; S sweeps along the plane of the polarization of the incident plane
wave and « along the perpendicular.

EO [1 0 0]; % x-polarization
ml = 1.33;

rfile = [’sphere 552.txt’];

S = dlmread(rfile);

N = length(S(:,1))

k 2xpi; % wave number

d = 1/(abs(ml)*k);

a_eff = (3%N/(4xpi))~(1/3)*1/(k*abs(ml));
r

m

= d*[S(:,1) S(:,2) S(:,3)];
= mi*ones(N,1);
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kvec = [0 0 k]; % propagating in +z direction
Ei = E_inc(EO,kvec,1);

alph = polarizability(d,m,k);

A = interaction A(k,r,alph);

P = gmres(A,Ei);

th = linspace(0,pi,100);

Esca_S = zeros(1,length(th));
Esca P = zeros(1l,length(th));
Einc_S = zeros(1,length(th));
Einc P = zeros(1,length(th));

ix = 0;
for theta = th
ix = ix+1;

phi = 90; % perpendicular to x-z plane

r_E = zeros(1,3); % evaluation point

[rE(1) rE(2) rE(3)] = rtp2xyz (100, theta, phi);
E = E_scaFF(k,r,P,rE);

Esca_S(ix) = norm(E);

kr = dot([k k k],rE,2);

expikr = exp(di.x*kr);

E1 = [EO0(1)*expikr EO0(2)*expikr EO0(3)*expikr];
Einc_S(ix) = norm(E1l);

phi = 0; % parallel to x-z plane
r E = zeros(1,3);
[rE(1) rE(2) rE(3)] = rtp2xyz(100, theta, phi);
E = E_.scaFF(k,r,P,rE);
EscaP(ix) = norm(E);
kr = dot([k k k],r.E,2);
expikr = exp(i.x*kr);
E1l = [EO0(1)*expikr EO0(2)*expikr EO0(3)*expikr];
Einc P(ix) = norm(E1l);
end

semilogy (th*180/pi,EscaP.”2./EincP."2,’--’,th*180/pi,EscaS."2./Einc.S."2)
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Figure 5:

Part 111

DDA for symmetrical objects

5.10 Formulating the T-matrix via DDA and exploiting
rotational symmetry

The extended boundary condition method (EBCM) or null-field method (NFM)
developed by Waterman (1971) was first used to formulate the T-matrix; EBCM
is often synonymously referred to as the T-matriz method. However, any valid
method for calculating light interaction with matter can be used to calculate
the T-matrix. DDA is such a method as demonstrated by Mackowski (2002)
and Loke et al. (2009). We include the function for calculating the T-matrix via
the near-field point matching (Loke et al., 2009) scheme in the first release and
the far-field point matching Loke et al. (2010) will follow in subsequent releases.

The fields of the incident (E;;,.) and scattered (Es,) light for an illuminated par-
ticle in free space can be represented in terms of vector spherical wave functions
(VSWFs)(Waterman, 1971; Mishchenko, 1991; Nieminen et al., 2003b,a):

o0 n

Eine = Y Y anmME) (kr) + bpmNG), (kr), (22)

n=1m=-n

oo n
Esca = Z Z pangll%(kT) + QnmNgll,ZL(kT) (23)

where MS’% & NS’% are regular VSWFs, M% & NS% are the outward-propagating
VSWFs, n & m are radial and azimuthal modes respectively and the incident
and scattered coefficients are connected by the T-matrix (Waterman, 1971;
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Mishchenko, 1991):

pnm anm
el 21
Put another way, the light scattering characteristics of the particle, for a given
wavelength, is encapsulated in the T-matrix. The T-matrix need only be cal-
culated once and its advantage come to the forth when repeated calculation by
varying illumination is required; given a set of incident coefficients, the scatter-
ing coefficients and be calculated in a matter of seconds.

Some scatterers may be excessively large to a point where the computer RAM
may be insufficient. If the scatterer possesses discrete rotational symmetry,
such as a microrotor, optimization schemes (Loke et al., 2009) can be applied to
reduce the required memory and computational time by orders of magnitude.
The symmetry optimized T-matrix calculation is included in the toolbox. It’s
extensive implementation details are covered in Loke et al..

Examples of the phase functions of cubes, using pre-calculated T-matrices, are
shown in figure 6. The calculations are based on equivalent cubes of those used
by Wriedt & Comberg (1998).
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Figure 6: The phase function for cubes with the refractive index of 1.5 and
widths of a) 0.75\ b) 1.25\.
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Part IV

DDA with surface interaction
(DDA-SI)

DDA was designed for free-space light scattering and does not account for sur-
face interactions when the scatterer is near a surface. In the presence of a
surface, we have to consider three aspects. Firstly, if the illumination originates
from the same medium where the scatterer resides, the incident field results
from the superposition of the direct and reflected incident light (Fig. 7). Sec-
ondly, in addition to the direct dipole-dipole interactions in standard DDA we
will have to include the surface-reflected interactions (Fig. 9). Finally, when
calculating the scattered field, the reflected component (Fig 12) needs to be
included. The DDA-SI toolbox is a MATLAB implementation of DDA with
surface interaction (Loke & Mengiig, 2010).

6 The incident field

Consider that the source of illumination is a plane wave that originates from
the same side of the planar interface as the scatterer, with the incident angle v
(Fig. 7). The incident electric field at the dipoles due to direct TE-polarized
plane wave illumination is calculated as follows:

EO = [0 1 0];
kvec = kx[sin(gamma) O -cos(gamma)];
Ei = E_inc(EO, kvec, r);

Direct

Y Dipole j

Reflected

Figure 7: A dipole illuminated by the direct incident plane wave incident at
angle v and the reflected plane wave.

Figure 11b shows the axes and angle conventions used in the toolbox. The
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reflected plane wave is still TE-polarized but undergoes attenuation (Fresnel
reflection coefficient) and reversal in the z-direction:

[refl TE,refl_TM] = Fresnel_coeff n(nl,abs(gamma));
EO_r = refl_TEx[0 1 0];

kvecr = kx[sin(gamma) 0 cos(gamma)];

Ei_r = E_.inc(EO_r, kvec_r, 1);

The total incident field is then Ei + Ei_r.

In the scenario where the source is on the opposite of the planar interface,
there is no reflected component. The case of the incident plane undergoing to-
tal internal reflection is of particular interest because an evanescent field will
exist along the media interface (Fig. 8); the formalism is discussed in Loke
& Mengii¢ (2010). The following function calculates the resultant evanescent
TE (E1s) and TM (Elp) E-field field amplitudes and complex wave vector kvec:

[kvec,E2s,E2p] = evanescent E(Els,Elp,gamma2,n_1,n 2);
function [k2,E2s,E2p] = evanescent E(Els,Elp,theta 1,n1,n2)

given the incident TE (Els) and TM (Elp) E-field which are alternately 1 or
0. The returned values are then passed to the standard function for calculating
the E-field a the dipoles as r:

Ei = E_inc(E2s + E2p, kvec, r);

which returns the N x 3 array of incident E-fields (Ei) for dipoles at r, due to
the imaginary z-component of kvec, are consistent with E, = Egexp(ik.z). In
other words, the E-field exponentially decays in the z-direction.

air air

dielectric dielectric

© (O]

(a)

Figure 8: Total internal reflection of incident (a) TM (b) TE plane waves from
below the substrate surface. Evanescent waves exists above the surface.
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Figure 9: Radiating dipole over a surface, its image and the receiving dipole.
On the surface, z = 0.
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Figure 10: The spherical wave decomposed into cylindrical and planar compo-
nents.

7 The interaction matrix

In the presence of at surface the Green’s tensor for a dipole-dipole interaction
will have two components; the system of linear equations for DDA-SI is

N N

ZA§1£Pk = Z (Aji + Rjx) P, = Eine j, (25)
k=1 k=1

where the Ajj term represents the direct interaction and is identical that in
free-space DDA (11) and R, is the contribution from the reflected dipole inter-
action (Fig. 9). The reflected component is not a straight forward calculation
of image Green’s function. This is because the spherical wave from each dipole
is only partially reflected, and not equally in all directions. Sommerfeld (1909)
proposed that a spherical wave can be decomposed into cylindrical and planar
components (Fig. 10). The cylindrical wave will be unperturbed because it ex-
pands parallel to the surface. The planar wave, on the other hand, propagates
in direction normal to the surface and is partially reflected. The fraction of the
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reflected field strength is calculated using the Fresnel coefficients for the TE and
TM incident fields (Chew, 1990).

The following Sommerfeld integral is used to evaluate the Green’s function of
the electric field from a reflected dipole:

elkr i 0 kp . .
— —J k RTE,TM lkgz(Zj+])dk/, 26
<47T7A>TE1TI\/[ A7 0 kz 0( Pp) € P ( )

where Jy, the Bessel function, represents the cylindrical wave component of the
expansion whereas e'#2#(%i17) is the planar component. By using variable sub-
stitution (Bartios, 1966; Lytle & Lager, 1974), the integral is separated in to com-
ponents that are evaluated using contour and numerical integration (Schmehl
et al., 1997). The complicated derivation process is shown in Loke & Mengiig
(2010) and the resultant reflection tensor becomes:

7:12[H_7:IQI(I; 7:127212(151_*_[(21;1) ,,212]\/

jkx=p jky jkx' jky jkx=p
Rjp =— | Mafin, (L +15)  HEl —#a 1y Hal | = (27)
~Fiinly ~ily I
it | e T
[T —— ’ —VikTieyTike  —Bjk + VikTiny)  VikTikyTikz
_V;kf;ki%zfm _%ka;kirngy ]Ik + V;kf;vfz
where
P = [ = 2n)® 4 (g = ue)® + (5 + 2072, (28)
I 1 I
G TR (29)
ﬂ;k =[1- (kOT}k)_Q + i(kOT}k)_l]a (30)
ik = =1 = 3(korj) 2 + 3i(kory,) 7, (31)
and I/Y, IY,H,and I 3; are Sommerfeld identities (Loke & Mengiig, 2010), which

are evaluated using contour integration either in MATLAB or calling the a MEX
(MATLAB interface compiled in C) function, to be determined by the user us-
ing a global flag. The interaction matrix in (25) is seamlessly calculated using:

A = interaction AR(k1,k2,r,alph)

For a given number of dipoles, the size of the interaction matrix is the same as
that for conventional DDA.

8 The scattered E-field in the far-field zone

The scattered field in the upper half-space is the sum of the field contributions
as a result of the dipole moments of every dipole as per conventional DDA with
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those from the image (reflected) dipoles (Fig. 11a). Figure 11b shows the field
detection geometry. The scattering frame, on which the calculations are based,

Evaluation point

Direct

Dipole j Reflected

Ny

(a)

incident

detector, r d

(b) X

Figure 11: a) The scattered electric field. b) The scattering geometry for a
particle on a surface. The direction of the incident light is defined by the angle
v from the surface normal and the incident plane coincides with x = 0. The
scattered far field is calculated for a range of zenith angles 6 along the plane at
the azimuthal angle ¢.

is shown in figure 12. In the far-field zone, the scattered E-field is calculated
(Schmehl et al., 1997) using:

eiko'f' N . ) R . R R
Bucalr) = 5 3~ {7507 [(p; - 60)61 + (b €2)6] + (32)
j=1
e hecas s [R™(p; - &1)é1 + R™"(p, - &2)é:] },

where the unit vectors e; and e; are the Cartesian expressions of the ey and
e4 vectors in spherical coordinates respectively, in the scattering frame (Fig.
12). The radial component of the scattered field approaches zero in the far field
and thus e, is irrelevant. The reflected terms in (32) are subject to the Fres-
nel reflection coefficients, R™ and RT®. The corresponding toolbox function is:

E = E_scaSI(k,r,P,detr,theta,phi,refl TM,refl TE)
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Figure 12: The scattering frame of a given dipole for calculating the scattered
field.

We use the above function to calculate the scattered intensity of a particle on a
Silicon substrate for a range of scattering angles (Fig. 11b) based on examples
from a similar coupled dipole method by Taubenblatt & Tran (1993). Fig. 13
shows the scattered intensity of a 540 nm polystyrene sphere illuminated by
an s-polarized plane wave with an incident angle of v = 0°. The scattering
profile is very sensitive to the shape, size and refractive index of the particle
and can effectively be used as a ‘signature to identify the particle that cannot
be conventionally seen optical microscopes.

10
10" |
N\_
(&a“’;
~ 10° )
N=32
|- - -N=280
10 "f| ——N=912
0 20 40 60 80

Scattering Angle

Figure 13: The scattered intensity versus the scattering angle for a 540 nm
polystyrene sphere on a flat Si surface. The incident light was s-polarized,
wavelength A = 632.8 nm and the incident angle was v = 0°.

In another example, Taubenblatt & Tran (1993) proposed that defects on inte-
grated circuit structures can be detected in this manner; a 300 nm sided cube
is illuminated by an s-polarized plane wave incident at v = 65°. The scattering
intensity for cubes with various defects, modelled with missing octants in the
top left, top right and bottom right, are used as test cases (Fig. 14). The re-
sults from our toolbox model are similar to those of (Taubenblatt & Tran, 1993)
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apart from the case of the missing top right octant.
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Figure 14: The scattered intensity versus the scattering angle for a 300 nm
SiO cube on a flat Si surface. The incident light was p-polarized, wavelength
A = 632.8 nm and the incident angle was v = 65°.

9 The internal and near-field zones

In some applications, the E-field distribution of the internal and near field is
of particular interest. For example, in the study of the near-field coupling be-
tween an AFM probe on a nanoparticle on a silicon substrate illuminated by an
evanescent wave (Loke & Mengiig, 2010), the field intensity indicates where and
how much relative heating occurs in the nanostructures. Experiments by Hawes
et al. (2008) have shown that it was possible to selectively melt a nanoparticle
in a similar configuration.

The scattered near field can be calculated using (18). However, due to the pres-
ence the substrate, the contribution from the image dipoles (Fig. 12) will need
to be added as per (32). The total field (20) is just the superposition of the
incident and scattered fields.

To calculate the internal field, we have to note that (18) cannot be used at the
dipole coordinate where a singularity exists. Instead, the E-field of the cubic
element in which the point dipole resides can be calculated as follows:

E} =EBinc; — Y AP, (33)
k#j

where P} is the dipole moment of the cubic element calculated using the molec-
ular dipole moment formula from section 4.5 of Jackson (1998),

1
P; = OZjEj + ng (34)
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We assume that the cubic element is sufficiently small such that its field ap-
proximately uniform.

With the total near and internal field calculations at hand we can plot the field
intensity distribution (Fig. 15), demonstrating the effect an AFM probe in the
vicinity of a nanoparticle that sits on a planar surface, under evanescent wave
illumination. The 3D field distribution plot provides a visual and intuitive feel
for the dynamics of such a system.

Figure 15: Relative field intensity in the region comprising a simulated gold
AFM probe tip in the vicinity of a 20 nm gold nanoparticle on a silicon surface,
illuminated by an evanescent wave.

10 Dipole forces

The AFM probe causes a highly localized and intense field in the vicinity of the
probe tip and particle; high field gradients exist will result in significant optical
forces. Each dipole in the DDA model can be treated as a Rayleigh particle
and, on that basis, we propose that the gradient and scattering forces exerted
on a dipole can be calculated based on formulae by Harada & Asakura (1996).
The gradient force is given by

Fgrad =

m2 + 2

2mnia® (m? —1
c

) VI(r), (35)

where n, is the refractive index of the surrounding medium, «a is taken as the half
the lattice spacing, m is the relative refractive index and VI(r) are the intensity
gradients in directions of the 3 Cartesian axes, and the scattering force is given
by

N2 8 ?

Fucar = 22 Sr(ka)'a? (m - 1)2 I(x), (36)

m2 + 2
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where Z is the unit vector in the direction of propagation of a focussed beam.
Figure 16 shows the gradient force vectors resulting from the AFM probe-

Figure 16: The gradient force vectors of the dipoles in a nanoparticle on a
substrate, resulting from a simulated AFM probe placed in its vicinity.

particle-surface coupling. The total force exerted on the particle is just the
aggregate of all the force vectors of the dipoles in its lattice. Further investi-
gation will be required to determine the feasibility of the AFM probe ’tractor’
moving or aligning nanoparticles on a substrate. The function for calculating
the gradient forces for the dipoles is:

F = F_grad(EO,kvec,r,d,n.1,n2,n 3,RF,P)
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A List of variables for the MATLAB toolbox

A interaction matrix

alph polarizability particle(s)/scatterer(s)

d lattice spacing

EO Complex amplitude vector of the incident E-field
Els TE incident E-field amplitude in the substrate
Elp TM incident E-field amplitude in the substrate
E2s TE E-field amplitude in the upper medium
E2p TM E-field amplitude in the upper medium

Ei incident field

k wave number

k-0 wave number in air/vacuum

k-1 wave number in substrate

k 2 wave number in upper medium

kvec wave vector (kg ky k]

m relative refractive index (scatterer to surrounding medium)
N number of dipoles

n_1 refractive index of substrate

n_2 refractive index of upper medium

n_3 refractive index of particle(s)/scatterer(s)

P dipole moment

r N x 3 dipole coordinates

rE evaluation point

RF reflection coefficient

refl_TE Fresnel reflection for the TE mode
refl_TM Fresnel reflection for the TM mode
gamma incident angle
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