help-octave
[Top][All Lists]

## What is error(19) or error(15): out of bound(1)...how to resolve?

 From: Satyaballi Subject: What is error(19) or error(15): out of bound(1)...how to resolve? Date: Sat, 27 Oct 2018 15:24:40 -0500 (CDT)

```please tell me...m solving an optimization problem with inequality
constraints.  The error m getting while running my code is : "error: x(15):
out of bound 1"

please let me know...what is the error and how to resolve this.

My code: clear all;
format short e;

% global variable declaration for all constants
global P=6000 L=14 E=30e6 Delmax=0.25 G=12e6 Taumax=13.6e3 Sigmax=30e3;

%defining initial values, max no.of iterations and tolerance
x0=[1;1;0.5;0.5];
lb=[0.125; 0.1; 0.01; 0.01];
ub=[inf; inf; 10; 2];
maxiter=1000;
tol=1e-8;

%defining objective function
function obj=f(x)
obj=1.10471*x(1)^2*x(2)+0.04811*x(3)*x(4)*(14+x(2))
endfunction

0.04811*x(3)*(14+x(2))];
endfunction

%defining Hessian of objective function
function Hessobj=ddf(x)
Hessobj=[2.20942*x(2) 2.20942*x(1) 0 0;2.20942*x(1) 0 0.04811*x(4)
0.04811*x(3);
0 0.04811*x(4) 0 0.04811*(14+x(2));0 0.04811*x(3)
0.04811*(14+x(2)) 0];
endfunction

%defining constraints
function ineqcons=g(x)
global P L E Delmax G Taumax Sigmax;
%display(E);
Tau1=P/(sqrt(2)*x(1)*x(2));
M=P*(L+x(2)/2);
R=sqrt(x(2)^2/4+((x(1)+x(3))/2)^2);
J=2*sqrt(2)*x(1)*x(2)*(x(2)^2/12+((x(1)+x(3))/2)^2);
Tau2=M*R/J;
Tau=sqrt(Tau1^2+2*Tau1*Tau2*x(2)/(2*R)+Tau2^2);
Sigma=6*P*L/(x(4)*x(3)^2);
Delta=4*P*L^3/(E*x(3)^3*x(4));
Pc=(4.103*E/L^2)*(x(3)*x(4)^3/6)*(1-(x(3)/2*L)*sqrt(E/(4*G)));
ineqcons=[-(Tau-Taumax); -(Sigma-Sigmax); -(x(1)-x(4)); -(Delta-Delmax);
-(0.10471*x(1)^2+0.04811*x(3)*x(4)(14+x(2))-5); -(P-Pc)];
endfunction

%Supplying Objective function including Gradient and Hessian
Objfun={@(x)f(x),@(x)df(x),@(x)ddf(x)};

[x,obj,info,iter,nf,lambda] = ...
sqp(x0,Objfun,[],@g,lb,ub, maxiter, tol);

Error message:
/obj =    1.2851e+00
error: x(15): out of bound 1
error: called from
g at line 44 column 11
sqp>cf_ub_lb at line 698 column 9
sqp>@<anonymous> at line 316 column 21
sqp at line 367 column 6
Project_Question2_1 at line 51 column 28*/

--
Sent from: http://octave.1599824.n4.nabble.com/Octave-General-f1599825.html

```