
59

5 gtroff Reference

This chapter covers all of the facilities of the GNU troff formatting engine.
Users of macro packages may skip it if not interested in details.

5.1 Text
AT&T troff was designed to take input as it would be composed on a
typewriter, including the teletypewriters used as early computer terminals,
and relieve the user of having to be concerned during the drafting process
with the precise line length that the final version of the document would use,
where words should be hyphenated, and how to achieve straight margins
on both the left and right sides of the page. Early in its development,
the program gained the ability to prepare output for a phototypesetter; a
document could then be prepared for output to either a teletypewriter, a
phototypesetter, or both. GNU troff continues this tradition of permitting
an author to compose a single master version of a document which can then
be rendered for a variety of output formats or devices.

roff input files contain text interspersed with instructions to control
the formatter. Even in the absence of such instructions, GNU troff still
processes its input in several ways, by filling, hyphenating, breaking, and
adjusting it, and supplementing it with inter-sentence space.

5.1.1 Filling

When GNU troff starts up, it obtains information about the device for
which it is preparing output.1 A crucial example is the length of the output
line, such as “6.5 inches”.

GNU troff reads its input character by character, collecting words as
it goes, and fits as many words together on an output line as it can—this
is known as filling. To GNU troff, a word is any sequence of one or more
characters that aren’t spaces, tabs, or newlines. Words are separated by
spaces, tabs, newlines, or file boundaries.2 To disable filling, see Section 5.7
[Manipulating Filling and Adjustment], page 87.

It is a truth universally acknowledged
that a single man in possession of a
good fortune must be in want of a wife.

⇒ It is a truth universally acknowledged that a
⇒ single man in possession of a good fortune must
⇒ be in want of a wife.

1 See Section 8.2 [Device and Font Files], page 232.
2 There are also escape sequences which can function as word characters, word separators,

or neither—the last simply have no effect on GNU troff’s idea of whether its input is
within a word or not.



60 The GNU Troff Manual

5.1.2 Sentences

A passionate debate has raged for decades among writers of the English lan-
guage over whether more space should appear between adjacent sentences
than between words within a sentence, and if so, how much, and what other
circumstances should influence this spacing.3 GNU troff follows the exam-
ple of AT&T troff; it attempts to detect the boundaries between sentences,
and supplies additional inter-sentence space between them.

Hello, world!
Welcome to groff.

⇒ Hello, world! Welcome to groff.

GNU troff does this by flagging certain characters (normally ‘!’, ‘?’,
and ‘.’) as end-of-sentence characters; when GNU troff encounters one
of these characters at the end of a line, or one of them is followed by two
spaces on the same input line, it appends an inter-word space followed by
an inter-sentence space in the formatted output.

R. Harper subscribes to a maxim of P. T. Barnum.
⇒ R. Harper subscribes to a maxim of P. T. Barnum.

In the above example, inter-sentence space is not added after ‘P.’ or ‘T.’
because the periods do not occur at the end of an input line, nor are they
followed by two or more spaces. Let’s imagine that we’ve heard something
about defamation from Mr. Harper’s attorney, recast the sentence, and re-
flowed it in our text editor.

I submit that R. Harper subscribes to a maxim of P. T.
Barnum.

⇒ I submit that R. Harper subscribes to a maxim of
⇒ P. T. Barnum.

“Barnum” doesn’t begin a sentence! What to do? Let us meet our first
escape sequence, a series of input characters that give instructions to GNU
troff instead of being copied as-is to output device glyphs.4 An escape
sequence begins with the backslash character \ by default, an uncommon
character in natural language text, and is always followed by at least one
other character, hence the term “sequence”.

The non-printing input break escape sequence \& can be used after
an end-of-sentence character to defeat end-of-sentence detection on a per-
instance basis. We can therefore rewrite our input more defensively.

3 A well-researched jeremiad appreciated by groff contributors on both sides of the
sentence-spacing debate can be found at https://web.archive.org/web/

20171217060354/http://www.heracliteanriver.com/?p=324.
4 This statement oversimplifes; there are escape sequences whose purpose is precisely to

produce glyphs on the output device, and input characters that aren’t part of escape
sequences can undergo a great deal of processing before getting to the output.



Chapter 5: gtroff Reference 61

I submit that R.\& Harper subscribes to a maxim of P.\&
T.\& Barnum.

⇒ I submit that R. Harper subscribes to a maxim of
⇒ P. T. Barnum.

Adding text caused our input to wrap; now, we don’t need the escape
after ‘T.’ but we do after ‘P.’. Ensuring that potential sentence boundaries
are robust to editing activities and reliably understood both by GNU troff
and the document author is a goal of the advice presented in Section 5.1.10
[Input Conventions], page 67.

Normally, the occurrence of a visible non-end-of-sentence character (as
opposed to a space or tab) immediately after an end-of-sentence character
cancels detection of the end of a sentence. For example, it would be incorrect
for GNU troff to infer the end of a sentence after the dot in ‘3.14159’.
However, several characters are treated transparently after the occurence of
an end-of-sentence character. That is, GNU troff does not cancel end-of-
sentence detection when it processes them. This is because such characters
are often used as footnote markers or to close quotations and parentheticals.
The default set is ‘"’, ‘'’, ‘)’, ‘]’, ‘*’, \[dg], \[dd], \[rq], and \[cq]. The
last four are examples of special characters, escape sequences whose purpose
is to obtain glyphs that are not easily typed at the keyboard, or which have
special meaning to GNU troff (like \ itself).5

\[lq]The idea that the poor should have leisure has always
been shocking to the rich.\[rq]
(Bertrand Russell, 1935)

⇒ "The idea that the poor should have
⇒ leisure has always been shocking to
⇒ the rich." (Bertrand Russell, 1935)

The sets of characters that potentially end sentences or are transparent to
sentence endings are configurable. See the cflags request in Section 5.17.4
[Using Symbols], page 125. To change the additional inter-sentence spacing
amount—even to remove it entirely—see Section 5.7 [Manipulating Filling
and Adjustment], page 87.

5.1.3 Hyphenation

When an output line is nearly full, it is uncommon for the next word col-
lected from the input to exactly fill it—typically, there is room left over only
for part of the next word. The process of splitting a word so that it appears
partially on one line (with a hyphen to indicate to the reader that the word
has been broken) with the remainder of the word on the next is hyphen-
ation. Hyphenation points can be manually specified; GNU troff also uses
a hyphenation algorithm and language-specific pattern files (based on those
used in TEX) to decide which words can be hyphenated and where.

5 The mnemonics for the special characters shown here are “dagger”, “double dagger”,
“right (double) quote”, and “closing (single) quote”. See the groff char(7) man page.



62 The GNU Troff Manual

Hyphenation does not always occur even when the hyphenation rules for
a word allow it; it can be disabled, and when not disabled there are several
parameters that can prevent it in certain circumstances. See Section 5.8
[Manipulating Hyphenation], page 92.

5.1.4 Breaking

Once an output line has been filled, whether or not hyphenation has occurred
on that line, the next word read from the input will be placed on a different
output line; this is called a break. In this manual and in roff discussions
generally, a “break” if not further qualified always refers to the termination
of an output line. When the formatter is filling text, it introduces breaks
automatically to keep output lines from exceeding the configured line length.
After an automatic break, GNU troff adjusts the line if applicable (see
below), and then resumes collecting and filling text on the next output line.

Sometimes, a line cannot be broken automatically. This usually does not
happen with natural language text unless the output line length has been
manipulated to be extremely short, but it can with specialized text like
program source code. We can use perl at the shell prompt to contrive an
example of failure to break the output line. The regular output is omitted
below.

$ perl -e 'print "#" x 80, "\n";' | nroff
error warning: can't break line

The remedy for these cases is to tell GNU troff where the line may be
broken without hyphens. This is done with the non-printing break point
escape sequence ‘\:’; see Section 5.8 [Manipulating Hyphenation], page 92.

What if the document author wants to stop filling lines temporarily, for
instance to start a new paragraph? There are several solutions. A blank
input line not only causes a break, but by default it also outputs a one-
line vertical space (effectively a blank output line). This behavior can be
modified; see Section 5.24.3 [Blank Line Traps], page 175. Macro packages
may discourage or disable the blank line method of paragraphing in favor of
their own macros.

A line that begins with one or more spaces causes a break. The spaces are
output at the beginning of the next line without being adjusted (see below);
however, this behavior can be modified (see Section 5.24.4 [Leading Space
Traps], page 176). Again, macro packages may provide other methods of
producing indented paragraphs. Trailing spaces on text lines are ignored.6

What if there is no next input word? Or the file ends before enough
words have been collected to fill an output line? The end of the file causes
a break, resolving both of these cases. Certain requests also cause breaks,
implicitly or explicitly. This is discussed in Section 5.7 [Manipulating Filling
and Adjustment], page 87.

6 “Text lines” are defined in Section 5.1.7 [Requests and Macros], page 63.



Chapter 5: gtroff Reference 63

5.1.5 Adjustment

After GNU troff performs an automatic line break, it then tries to adjust
the line: inter-word spaces are widened until the text reaches the right mar-
gin. Extra spaces between words are preserved. Leading and trailing spaces
are handled as noted above. Text can be aligned to the left or right margins
or centered; see Section 5.7 [Manipulating Filling and Adjustment], page 87.

5.1.6 Tab Stops

GNU troff translates horizontal tab characters, also called simply “tabs”,
in the input into movements to the next tab stop. These tab stops are by
default located every half inch measured from the current position on the
input line. With them, simple tables can be made.7 However, this method
can be deceptive, as the appearance (and width) of the text in an editor and
the results from GNU troff can vary greatly, particularly when proportional
typefaces are used.

A tab character does not cause a break and therefore does not interrupt
filling. We use an arrow → below to indicate an input tab character.

1
→ 2 → 3 → 4
→ → 5
⇒ 1 2 3 4 5

GNU troff provides sufficient facilities for sophisticated table composi-
tion; see Section 5.10 [Tabs and Fields], page 102. There are many details
to track when using such low-level features, so most users turn to the tbl(1)
preprocessor for table construction.

5.1.7 Requests and Macros

We have now encountered almost all of the syntax there is in roff languages,
with an exception already noted several times in passing. A request is an
instruction to the formatter that occurs after a control character. A control
character must occur at the beginning of an input line to be recognized.8 The
regular control character has a counterpart, the no-break control character,
which suppresses the break that is implied by some requests. The default
control characters are the dot (.) and the neutral apostrophe ('), the latter
being the no-break control character. These characters were chosen because
it is uncommon for lines of text in natural languages to begin with periods
or apostrophes. If you require a literal period or neutral apostrophe where
GNU troff is expecting a control character, prefix it with the non-printing
input break escape sequence, ‘\&’.

7 “Tab” is short for “tabulation”, revealing the term’s origin as a spacing mechanism for
table arrangement.

8 A control character is also expected in arguments to the if, ie, el, and while requests.



64 The GNU Troff Manual

An input line beginning with a control character is called a control line.
Every line of input that is not a control line is a text line.9

Requests often take arguments, words (separated from the request name
and each other by spaces) that specify details of the action GNU troff is
expected to perform. If a request is meaningless without arguments, it is
typically ignored.

GNU troff’s requests and escape sequences comprise the control lan-
guage of the formatter. Of key importance are the requests that define
macros. Macros are invoked like requests, enabling the request repertoire to
be extended or overridden.10

A macro can be thought of as an abbreviation you can define for a col-
lection of control and text lines. When the macro is called by giving its
name after a control character, it is replaced with what it stands for. The
process of textual replacement is known as interpolation.11 Interpolations
are handled as soon as they are recognized, and once performed, a roff for-
matter scans the replacement for further requests, macro calls, and escape
sequences.

In roff systems, the de request defines a macro.12

.de DATE
2020-11-14
..

The foregoing input produces no output by itself; all we have done is store
some information. Observe the pair of dots that ends the macro definition.
This is a default; you can specify your own terminator for the macro defini-
tion as the second argument to the de request.

.de NAME ENDNAME
Heywood Jabuzzoff
.ENDNAME

In fact, the ending marker is itself the name of a macro that will be called
if it is defined at the time the macro definition begins.

.de END
Big Rip
..
.de START END
Big Bang
.END
.START

⇒ Big Rip Big Bang

9 The \RET escape sequence can alter how an input line is classified; see Section 5.14
[Line Control], page 115.

10 Argument handling in macros is more flexible but also more complex. See
Section 5.5.1.1 [Request and Macro Arguments], page 76.

11 Some escape sequences undergo interpolation as well.
12 GNU troff offers additional ones. See Section 5.21 [Writing Macros], page 154.



Chapter 5: gtroff Reference 65

In the foregoing example, “Big Rip” printed before “Big Bang” because its
macro was called first. Consider what would happen if we dropped END from
the ‘.de START’ line and added .. after .END. Would the order change?

Let us consider a more elaborate example.

.de DATE
2020-10-05
..
.
.de BOSS
D.\& Kruger,
J.\& Peterman
..
.
.de NOTICE
Approved:
.DATE
by
.BOSS
..
.
Insert tedious regulatory compliance paragraph here.

.NOTICE

Insert tedious liability disclaimer paragraph here.

.NOTICE
⇒ Insert tedious regulatory compliance paragraph here.
⇒
⇒ Approved: 2020-10-05 by D. Kruger, J. Peterman
⇒
⇒ Insert tedious liability disclaimer paragraph here.
⇒
⇒ Approved: 2020-10-05 by D. Kruger, J. Peterman

The above document started with a series of lines beginning with the control
character. Three macros were defined, with a de request declaring each
macro’s name, and the “body” of the macro starting on the next line and
continuing until a line with two dots ‘..’ marked its end. The text proper
began only after the macros were defined; this is a common pattern. Only
the NOTICE macro was called “directly” by the document; DATE and BOSS
were called only by NOTICE itself. Escape sequences were used in BOSS, two
levels of macro interpolation deep.

The advantage in typing and maintenance economy may not be obvious
from such a short example, but imagine a much longer document with dozens
of such paragraphs, each requiring a notice of managerial approval. Consider



66 The GNU Troff Manual

what must happen if you are in charge of generating a new version of such
a document with a different date, for a different boss. With well-chosen
macros, you only have to change each datum in one place.

In practice, we would probably use strings (see Section 5.19 [Strings],
page 142) instead of macros for such simple interpolations; what is impor-
tant here is to glimpse the potential of macros and the power of recursive
interpolation.

We could have defined DATE and BOSS in the opposite order; perhaps
less obviously, we could also have defined them after NOTICE. “Forward
references” like this are acceptable because the body of a macro definition
is not (completely) interpreted, but stored instead (see Section 5.21.1 [Copy
Mode], page 157). While a macro is being defined (or appended to), requests
are not interpreted and macros not interpolated, whereas some commonly
used escape sequences are interpolated. roff systems also support recursive
macros—as long as you have a way to break the recursion (see Section 5.20
[Conditionals and Loops], page 148). For maintainable roff documents,
arrange your macro definitions so that they are most easily understood when
read from beginning to end.

5.1.8 Macro Packages

Macro definitions can be collected into macro files, roff input files designed
to produce no output themselves but instead ease the preparation of other
roff documents. There is no syntactical difference between a macro file
and any other roff document; only its purpose distinguishes it. When
a macro file is installed at a standard location and suitable for use by a
general audience, it is often termed a macro package.13 Macro packages can
be loaded by supplying the -m option to groff or troff. Alternatively, a
groff document wishing to use a macro package can load it with the mso
(“macro source”) request.

5.1.9 Input Encodings

The groff front end calls the preconv preprocessor to handle most input
character encoding issues without troubling the user. Direct input to GNU
troff, on the other hand, must be in one of two encodings it can recognize.

cp1047 The code page 1047 input encoding works only on EBCDIC plat-
forms (and conversely, the other input encodings don’t work with
EBCDIC); the file cp1047.tmac is loaded at start-up.

latin1 ISO Latin-1, an encoding for Western European languages, is
the default input encoding on non-EBCDIC platforms; the file
latin1.tmac is loaded at start-up.

Any document that is encoded in ISO 646:1991 (a descendant of USAS
X3.4-1968 or “US-ASCII”), or, equivalently, uses only code points from the

13 Macro files and packages frequently define registers and strings as well.



Chapter 5: gtroff Reference 67

“C0 Controls” and “Basic Latin” parts of the Unicode character set is also a
valid ISO Latin-1 document; the standards are interchangeable in their first
128 code points.14

The remaining encodings require support that is not built-in to the GNU
troff executable; instead, they use macro packages.

latin2 To use ISO Latin-2, an encoding for Central and Eastern Euro-
pean languages, either use ‘.mso latin2.tmac’ at the very be-
ginning of your document or use ‘-mlatin2’ as a command-line
argument to groff.

latin5 To use ISO Latin-5, an encoding for the Turkish language, either
use ‘.mso latin5.tmac’ at the very beginning of your document
or use ‘-mlatin5’ as a command-line argument to groff.

latin9 ISO Latin-9 is a successor to Latin-1. Its main difference from
Latin-1 is that Latin-9 contains the Euro sign. To use this en-
coding, either use ‘.mso latin9.tmac’ at the very beginning of
your document or use ‘-mlatin9’ as a command-line argument
to groff.

Some characters from an input encoding may not be available with a
particular output driver, or their glyphs may not have representation in
the font used. For terminal devices, fallbacks are defined, like ‘EUR’ for the
Euro sign and ‘(C)’ for the copyright sign. For typesetter devices, it usually
suffices to install fonts that contain the necessary glyphs and have compatible
metrics with other fonts used in the document.

Due to the importance of the Euro glyph in Europe, groff is distributed
with a PostScript font called freeeuro.pfa, which provides various glyph
shapes for the Euro. Thus, the Latin-9 encoding is supported for the ps and
pdf drivers out of the box, while Latin-2 is is not.

Unicode supports characters from all other input encodings; the utf8
output driver for terminals therefore does as well. The DVI output driver
supports both the Latin-2 and Latin-9 encodings if the command-line option
-mec is used as well.15

5.1.10 Input Conventions

Since GNU troff fills text automatically, it is common practice in roff
languages to not attempt careful visual composition of text in input files: it
is the esthetic appeal of the formatted output that matters. Therefore, roff
input should be arranged such that it is easy for authors and maintainers to
compose and develop the document, understand the syntax of roff requests,

14 The semantics of certain punctuation code points have gotten stricter with the suc-
cessive standards, a cause of some frustration among man page writers; see the
groff char(7) man page.

15 The DVI output device defaults to using the Computer Modern (CM) fonts; ec.tmac
loads the EC fonts instead, which have greater code point coverage.



68 The GNU Troff Manual

macro calls, and preprocessor languages used, and predict the behavior of
the formatter. Several traditions have accrued in service of these goals.

• Break input lines after sentence-ending punctuation to ease their recog-
nition (see Section 5.1.2 [Sentences], page 60). It is frequently convenient
to break after colons and semicolons as well, as these typically precede
independent clauses. Consider breaking after commas; they often occur
in lists that become easy to scan when itemized by line, or constitute
supplements to the sentence that are added, deleted, or updated to clar-
ify it. Parenthetical and quoted phrases are also good candidates for
placement on input lines by themselves.

• Set your text editor’s line length to 72 characters or fewer.16 This limit,
combined with the previous advice regarding breaking around punctu-
ation, makes it less common that an input line will wrap in your text
editor, and thus will help you perceive excessively long constructions in
your text. Recall that natural languages originate in speech, not writ-
ing, and that punctuation is correlated with pauses for breathing and
changes in prosody.

• Use \& after ‘!’, ‘?’, and ‘.’ if they are followed by space, tab, or newline
characters and don’t end a sentence.

• Do not attempt to format the input in a WYSIWYG manner (i.e., don’t
try using spaces to get proper indentation or align columns of a table).

• Comment your document. It is never too soon to apply comments
to record information of use to future document maintainers (including
your future self). We thus introduce another escape sequence, \", which
causes GNU troff to ignore the remainder of the input line.

• Use the empty request—a control character followed immediately by a
newline—to visually manage separation of material in input files. The
groff project’s own documents use an empty request between sentences,
after macro definitions, and where a break is expected, and two empty
requests between paragraphs or other requests or macro calls that will
introduce vertical space into the document.

You can combine the empty request with the comment escape to in-
clude whole-line comments in your document, and even “comment out”
sections of it.

We conclude this section with an example sufficiently long to illustrate
most of the above suggestions in practice. For the purpose of fitting the
example between the margins of this manual with the font used for its typeset
version, we have shortened the input line length to 58 columns. As before,
an arrow → indicates a tab character.

16 Emacs: fill-column: 72; Vim: textwidth=72



Chapter 5: gtroff Reference 69� �
.\" raw roff input example
.\" nroff this_file.roff | less
.\" groff this_file.roff > this_file.ps
→The theory of relativity is intimately connected with the
theory of space and time.
.
I shall therefore begin with a brief investigation of the
origin of our ideas of space and time,
although in doing so I know that I introduce a
controversial subject.
.
.\" remainder of paragraph elided
.
.

→The experiences of an individual appear to us arranged in
a series of events;
in this series the single events which we remember appear
to be ordered according to the criterion of
\[lq]earlier\[rq] and \[lq]later\[rq], \" punct swapped
which cannot be analysed further.
.
There exists,
therefore,
for the individual,
an I-time,
or subjective time.
.
This itself is not measurable.
.
I can,
indeed,
associate numbers with the events,
in such a way that the greater number is associated with
the later event than with an earlier one;
but the nature of this association may be quite arbitrary.
.
This association I can define by means of a clock by
comparing the order of events furnished by the clock with
the order of a given series of events.
.
We understand by a clock something which provides a series
of events which can be counted,
and which has other properties of which we shall speak
later.
.\" Albert Einstein, _The Meaning of Relativity_, 1922
 	


