[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[Getfem-commits] (no subject)
From: |
Yves Renard |
Subject: |
[Getfem-commits] (no subject) |
Date: |
Fri, 20 Nov 2020 02:36:37 -0500 (EST) |
branch: master
commit 4164a973b3cbab2e56808a7971d8aff5248d04a8
Author: Yves Renard <Yves.Renard@insa-lyon.fr>
AuthorDate: Fri Nov 20 08:34:37 2020 +0100
fix formula typos
---
doc/sphinx/source/userdoc/model_nonlinear_elasticity.rst | 12 ++++++------
1 file changed, 6 insertions(+), 6 deletions(-)
diff --git a/doc/sphinx/source/userdoc/model_nonlinear_elasticity.rst
b/doc/sphinx/source/userdoc/model_nonlinear_elasticity.rst
index af9264a..d4eeb9d 100644
--- a/doc/sphinx/source/userdoc/model_nonlinear_elasticity.rst
+++ b/doc/sphinx/source/userdoc/model_nonlinear_elasticity.rst
@@ -113,7 +113,7 @@ The stress in the reference configuration can be describe
by the second Piola-Ki
.. math::
- {\hat{\hat{\sigma}}} &= \frac{\partial}{\partial E} {W}(E) =
2\frac{\partial}{\partial C} {W}(C)
+ {\hat{\hat{\sigma}}} = \frac{\partial}{\partial E} {W}(E) =
2\frac{\partial}{\partial C} {W}(C)
where :math:`{W}` is the density of strain energy of the material. The total
strain energy is given by
@@ -222,12 +222,12 @@ Incompressible material.
.. math::
{d_1} = 0
- \intertext{with the additional constraint:}
+ \mbox{ with the additional constraint: }
i_3( C) = 1
The incompressibility constraint :math:`i_3( C) = 1` is handled with a
Lagrange multiplier :math:`p` (the pressure)
-constraint: :math:`\sigma = -pI \rm I\hspace{-0.15em}Rightarrow
{\hat{\hat{\sigma}}} = -p\nabla\Phi\nabla\Phi^{-T}\det\nabla\Phi`
+constraint: :math:`\sigma = -pI \Rightarrow {\hat{\hat{\sigma}}} =
-p\nabla\Phi\nabla\Phi^{-T}\det\nabla\Phi`
.. math::
@@ -248,7 +248,7 @@ constraint: :math:`\sigma = -pI \rm
I\hspace{-0.15em}Rightarrow {\hat{\hat{\sigm
.. math::
- {W} &= a\; i_1(C) + (\frac{\mu}{2} - a)i_2(C) + (\frac{\lambda}{4} -
\frac{\mu}{2} + a)i_3(C) - (\frac{\mu}{2}+\frac{\lambda}{4})\log \det(C)
+ {W} = a\; i_1(C) + (\frac{\mu}{2} - a)i_2(C) + (\frac{\lambda}{4} -
\frac{\mu}{2} + a)i_3(C) - (\frac{\mu}{2}+\frac{\lambda}{4})\log \det(C)
with :math:`\lambda, \mu` the Lame coefficients and
:math:`\max(0,\frac{\mu}{2}-\frac{\lambda}{4})<a<\frac{\mu}{2}` (see
[ciarlet1988]_).
@@ -258,14 +258,14 @@ with :math:`\lambda, \mu` the Lame coefficients and
:math:`\max(0,\frac{\mu}{2}
.. math::
- {W} &= (ai_1(C) + bi_3(C)^{1/2} + c\frac{\i_2(C)}{\i_3(C)} + d)^n
+ {W} = (a i_1(C) + b i_3(C)^{1/2} + c\frac{i_2(C)}{i_3(C)} + d)^n
Since :math:`\frac{\partial}{\partial C} {W}(C) =
\displaystyle\sum_{j}\frac{\partial W}{\partial i_j(C)} \frac{\partial
i_j(C)}{\partial C}`, and :math:`\frac{\partial^2}{\partial C^2} {W}(C) =
\displaystyle\sum_{j} \displaystyle\sum_{k} \frac{\partial^2 W}{\partial i_j(C)
\partial i_k(C)} \frac{\partial i_k(C)}{\partial C} \otimes \frac{\partial
i_j(C)}{\partial C} + \displaystyle\sum_{j} \frac{\partial W}{\partial i_j(C)}
\frac{\partial^2 i_j(C)}{\partial C^2}` we must compute the der [...]
.. math::
\begin{array}{l}
\frac{\partial W}{\partial i_1(C)} = naZ^{n-1}
- ~~~~\mbox{with } Z = (ai_1(C) + bi_3(C)^{1/2} + c\frac{\i_2(C)}{\i_3(C)} +
d)\\
+ ~~~~\mbox{with } Z = (a i_1(C) + b i_3(C)^{1/2} + c\frac{i_2(C)}{i_3(C)} +
d)\\
\frac{\partial W}{\partial i_2(C)} = n\frac{c}{i_3(C)}Z^{n-1}\\
\frac{\partial W}{\partial i_3(C)} =
n(\frac{b}{2i_3(C)^{1/2}}-\frac{ci_2(C)}{i_3(C)^2})Z^{n-1}\\
\frac{\partial W^2}{\partial^2 i_1(C)} = n(n-1)A^2Z^{n-2}\\