[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[Getfem-commits] (no subject)
From: |
Tetsuo Koyama |
Subject: |
[Getfem-commits] (no subject) |
Date: |
Sat, 11 Jan 2020 01:50:13 -0500 (EST) |
branch: devel-tetsuo-fix-spell-of-code
commit 747670d6bb8bbe36b460b78bce031888a5f23198
Author: Tetsuo Koyama <address@hidden>
AuthorDate: Sat Jan 11 15:27:36 2020 +0900
:hammer_and_wrench: typo
---
ChangeLog | 2 +-
bin/extract_doc | 2 +-
interface/src/gf_asm.cc | 2 +-
interface/src/gf_fem.cc | 2 +-
interface/src/gf_fem_get.cc | 2 +-
interface/src/gf_mesh_fem_get.cc | 4 ++--
interface/src/gf_mesh_fem_set.cc | 2 +-
interface/src/gf_model_set.cc | 12 ++++++------
interface/src/gf_precond.cc | 2 +-
interface/src/gf_slice.cc | 2 +-
interface/src/scilab/help/en_US/gf_asm.xml | 2 +-
interface/src/scilab/help/en_US/gf_fem.xml | 2 +-
interface/src/scilab/help/en_US/gf_fem_get.xml | 2 +-
interface/src/scilab/help/en_US/gf_mesh_fem_get.xml | 4 ++--
interface/src/scilab/help/en_US/gf_mesh_fem_set.xml | 2 +-
interface/src/scilab/help/en_US/gf_model_set.xml | 16 ++++++++--------
interface/src/scilab/help/en_US/gf_precond.xml | 2 +-
interface/src/scilab/help/en_US/gf_slice.xml | 2 +-
interface/src/scilab/help/en_US/objects.xml | 2 +-
interface/src/scilab/help/en_US/preliminary.xml | 2 +-
interface/src/scilab/help/latex/getfemmatlab.lyx | 10 +++++-----
interface/src/scilab/help/latex/getfemmatlab.tex | 10 +++++-----
src/getfem/getfem_config.h | 2 +-
src/getfem/getfem_fourth_order.h | 8 ++++----
src/getfem/getfem_models.h | 4 ++--
src/getfem_fem_level_set.cc | 2 +-
src/gmm/gmm_precond.h | 2 +-
27 files changed, 53 insertions(+), 53 deletions(-)
diff --git a/ChangeLog b/ChangeLog
index e313a83..fd8936d 100644
--- a/ChangeLog
+++ b/ChangeLog
@@ -677,7 +677,7 @@ For the recent Change log, please see use git log
script.
- Hierarchical and composte methods in 3D.
- First support for Xfem methods
- - Preconditionners in Gmm++ and separated version of Gmm++.
+ - Preconditioner in Gmm++ and separated version of Gmm++.
- Support for Harwell-Boeing and Matrix-Market format in Gmm++.
- New version of the Matlab interface : only one mex file.
- Huge improvement of graphical possibilities with the Matlab
diff --git a/bin/extract_doc b/bin/extract_doc
index c6c587f..3d5788c 100755
--- a/bin/extract_doc
+++ b/bin/extract_doc
@@ -1704,7 +1704,7 @@ def generic_destructor(self, destructible=True):
print('\n#\n# GetFEM class ' + oname + ' definition.\n#\n')
print('class ' + oname + ':')
- print(' """GeFEM ' + oname + ' object\n')
+ print(' """GetFEM ' + oname + ' object\n')
gdoc = FilterDoc(gdoc, langage, objects, commands, set_replace)
print(gdoc)
print(' """')
diff --git a/interface/src/gf_asm.cc b/interface/src/gf_asm.cc
index d7d7492..a69e3a7 100644
--- a/interface/src/gf_asm.cc
+++ b/interface/src/gf_asm.cc
@@ -905,7 +905,7 @@ void gf_asm(getfemint::mexargs_in& m_in,
getfemint::mexargs_out& m_out) {
may be choosen among:
- 'SaintVenant Kirchhoff':
- Linearized law, should be avoided). This law has the two usual
+ Linearized law, should be avoided. This law has the two usual
Lame coefficients as parameters, called lambda and mu.
- 'Mooney Rivlin':
This law has three parameters, called C1, C2 and D1.
diff --git a/interface/src/gf_fem.cc b/interface/src/gf_fem.cc
index a93779c..289c8f1 100644
--- a/interface/src/gf_fem.cc
+++ b/interface/src/gf_fem.cc
@@ -137,7 +137,7 @@ void gf_fem(getfemint::mexargs_in& in,
getfemint::mexargs_out& out) {
- FEM_PK_HIERARCHICAL(n,k) :
PK element with a hierarchical basis.
- FEM_QK_HIERARCHICAL(n,k) :
- QK element with a hierarchical basis
+ QK element with a hierarchical basis.
- FEM_PK_PRISM_HIERARCHICAL(n,k) :
PK element on a prism with a hierarchical basis.
- FEM_STRUCTURED_COMPOSITE(@tfem f,k) :
diff --git a/interface/src/gf_fem_get.cc b/interface/src/gf_fem_get.cc
index 1dbdb0c..7a1246a 100644
--- a/interface/src/gf_fem_get.cc
+++ b/interface/src/gf_fem_get.cc
@@ -196,7 +196,7 @@ void gf_fem_get(getfemint::mexargs_in& m_in,
getfemint::mexargs_out& m_out) {
/*@GET EH = ('hess_base_value',@mat p)
Evaluate the Hessian of all base functions of the @tfem at point `p`.
- `p` is supposed to be in the reference convex!.@*/
+ `p` is supposed to be in the reference convex!@*/
sub_command
("hess_base_value", 1, 1, 0, 1,
getfem::base_tensor t;
diff --git a/interface/src/gf_mesh_fem_get.cc b/interface/src/gf_mesh_fem_get.cc
index e7085e2..9937d79 100644
--- a/interface/src/gf_mesh_fem_get.cc
+++ b/interface/src/gf_mesh_fem_get.cc
@@ -434,7 +434,7 @@ void gf_mesh_fem_get(getfemint::mexargs_in& m_in,
/*@GET CVs = ('convex_index')
- Return the list of convexes who have a FEM.@*/
+ Return the list of convexes who have an FEM.@*/
sub_command
("convex_index", 0, 0, 0, 1,
out.pop().from_bit_vector(mf->convex_index());
@@ -868,7 +868,7 @@ void gf_mesh_fem_get(getfemint::mexargs_in& m_in,
Interpolate data given on each convex of the mesh to the @tmf dof.
The @tmf has to be lagrangian, and should be discontinuous (typically
- a FEM_PK(N,0) or FEM_QK(N,0) should be used).
+ an FEM_PK(N,0) or FEM_QK(N,0) should be used).
The last dimension of the input vector Ucv should have
MESH:GET('max cvid') elements.
diff --git a/interface/src/gf_mesh_fem_set.cc b/interface/src/gf_mesh_fem_set.cc
index 00cb947..1cbdab3 100644
--- a/interface/src/gf_mesh_fem_set.cc
+++ b/interface/src/gf_mesh_fem_set.cc
@@ -144,7 +144,7 @@ void gf_mesh_fem_set(getfemint::mexargs_in& m_in,
/*@SET ('fem', @tfem f[, @ivec CVids])
Set the Finite Element Method.
- Assign a FEM `f` to all convexes whose #ids are listed in `CVids`.
+ Assign an FEM `f` to all convexes whose #ids are listed in `CVids`.
If `CVids` is not given, the integration is assigned to all convexes.
See the help of FEM:INIT to obtain a list of available FEM methods.@*/
diff --git a/interface/src/gf_model_set.cc b/interface/src/gf_model_set.cc
index d8cb22e..91c2445 100644
--- a/interface/src/gf_model_set.cc
+++ b/interface/src/gf_model_set.cc
@@ -702,7 +702,7 @@ void gf_model_set(getfemint::mexargs_in& m_in,
If you are not sure, the better is to declare the term not symmetric
and not coercive. But some solvers (conjugate gradient for instance)
are not allowed for non-coercive problems.
- `brickname` is an otpional name for the brick.@*/
+ `brickname` is an optional name for the brick.@*/
sub_command
("add linear term", 2, 5, 0, 1,
getfem::mesh_im *mim = to_meshim_object(in.pop());
@@ -776,7 +776,7 @@ void gf_model_set(getfemint::mexargs_in& m_in,
If you are not sure, the better is to declare the term not symmetric
and not coercive. But some solvers (conjugate gradient for instance)
are not allowed for non-coercive problems.
- `brickname` is an otpional name for the brick.@*/
+ `brickname` is an optional name for the brick.@*/
sub_command
("add nonlinear term", 2, 5, 0, 1,
getfem::mesh_im *mim = to_meshim_object(in.pop());
@@ -1744,7 +1744,7 @@ void gf_model_set(getfemint::mexargs_in& m_in,
/*@SET ind = ('add constraint with penalization', @str varname, @scalar
coeff, @tspmat B, {@vec L | @str dataname})
Add an additional explicit penalized constraint on the variable `varname`.
The constraint is :math`BU=L` with `B` being a rectangular sparse matrix.
- Be aware that `B` should not contain a palin row, otherwise the whole
+ Be aware that `B` should not contain a plain row, otherwise the whole
tangent matrix will be plain. It is possible to change the constraint
at any time with the methods MODEL:SET('set private matrix')
and MODEL:SET('set private rhs'). The method
@@ -2561,7 +2561,7 @@ void gf_model_set(getfemint::mexargs_in& m_in,
/*@SET ind = ('add normal derivative Dirichlet condition with
multipliers', @tmim mim, @str varname, mult_description, @int region [, @str
dataname, @int R_must_be_derivated])
Add a Dirichlet condition on the normal derivative of the variable
- `varname` and on the mesh region `region` (which should be a boundary.
+ `varname` and on the mesh region `region` (which should be a boundary).
The general form is
:math:`\int \partial_n u(x)v(x) = \int r(x)v(x) \forall v`
where :math:`r(x)` is
@@ -2629,7 +2629,7 @@ void gf_model_set(getfemint::mexargs_in& m_in,
/*@SET ind = ('add normal derivative Dirichlet condition with
penalization', @tmim mim, @str varname, @scalar coeff, @int region [, @str
dataname, @int R_must_be_derivated])
Add a Dirichlet condition on the normal derivative of the variable
- `varname` and on the mesh region `region` (which should be a boundary.
+ `varname` and on the mesh region `region` (which should be a boundary).
The general form is
:math:`\int \partial_n u(x)v(x) = \int r(x)v(x) \forall v`
where :math:`r(x)` is
@@ -2819,7 +2819,7 @@ void gf_model_set(getfemint::mexargs_in& m_in,
/*@SET ('set time step', @scalar dt)
Set the value of the time step to `dt`. This value can be change
- from a step to another for all one-step schemes (i.e for the moment
+ from a step to another for all one-step schemes (i.e. for the moment
to all proposed time integration schemes). @*/
sub_command
("set time step", 1, 1, 0, 0,
diff --git a/interface/src/gf_precond.cc b/interface/src/gf_precond.cc
index 09dcd30..b5bf83c 100644
--- a/interface/src/gf_precond.cc
+++ b/interface/src/gf_precond.cc
@@ -226,7 +226,7 @@ void gf_precond(getfemint::mexargs_in& m_in,
getfemint::mexargs_out& m_out) {
);
/*@INIT PC = ('spmat', @tsp m)
- Preconditionner given explicitely by a sparse matrix.@*/
+ Preconditioner given explicitely by a sparse matrix.@*/
sub_command
("spmat", 1, 1, 0, 1,
gsparse *ggsp = 0;
diff --git a/interface/src/gf_slice.cc b/interface/src/gf_slice.cc
index 5cb69a1..d9d6fcd 100644
--- a/interface/src/gf_slice.cc
+++ b/interface/src/gf_slice.cc
@@ -467,7 +467,7 @@ void gf_slice(getfemint::mexargs_in& in,
getfemint::mexargs_out& out)
/*@INIT sl = ('points', @tmesh m, @dmat Pts)
Return the "slice" composed of points given by the columns of `Pts`
(useful for interpolation on a given set of sparse points, see
- ``::COMPUTE('interpolate on',sl)``.@*/
+ ``::COMPUTE('interpolate on',sl)``).@*/
mm = extract_mesh_object(in.pop());
pstored = std::make_shared<getfem::stored_mesh_slice>();
getfem::mesh_slicer slicer(*mm);
diff --git a/interface/src/scilab/help/en_US/gf_asm.xml
b/interface/src/scilab/help/en_US/gf_asm.xml
index 3e1df0b..d340e38 100644
--- a/interface/src/scilab/help/en_US/gf_asm.xml
+++ b/interface/src/scilab/help/en_US/gf_asm.xml
@@ -168,7 +168,7 @@
may be choosen among:
- 'SaintVenant Kirchhoff':
- Linearized law, should be avoided). This law has the two usual
+ Linearized law, should be avoided. This law has the two usual
Lame coefficients as parameters, called lambda and mu.
- 'Mooney Rivlin':
This law has three parameters, called C1, C2 and D1.
diff --git a/interface/src/scilab/help/en_US/gf_fem.xml
b/interface/src/scilab/help/en_US/gf_fem.xml
index dc3295b..2767445 100644
--- a/interface/src/scilab/help/en_US/gf_fem.xml
+++ b/interface/src/scilab/help/en_US/gf_fem.xml
@@ -81,7 +81,7 @@
- FEM_PK_HIERARCHICAL(n,k) :
PK element with a hierarchical basis.
- FEM_QK_HIERARCHICAL(n,k) :
- QK element with a hierarchical basis
+ QK element with a hierarchical basis.
- FEM_PK_PRISM_HIERARCHICAL(n,k) :
PK element on a prism with a hierarchical basis.
- FEM_STRUCTURED_COMPOSITE(fem f,k) :
diff --git a/interface/src/scilab/help/en_US/gf_fem_get.xml
b/interface/src/scilab/help/en_US/gf_fem_get.xml
index 593d5fc..0524bc5 100644
--- a/interface/src/scilab/help/en_US/gf_fem_get.xml
+++ b/interface/src/scilab/help/en_US/gf_fem_get.xml
@@ -145,7 +145,7 @@
<para> Evaluate the Hessian of all base functions of the fem at
point <literal>p</literal>.
- <literal>p</literal> is supposed to be in the reference convex!.
+ <literal>p</literal> is supposed to be in the reference convex!
</para>
</listitem>
diff --git a/interface/src/scilab/help/en_US/gf_mesh_fem_get.xml
b/interface/src/scilab/help/en_US/gf_mesh_fem_get.xml
index 639f75e..e68a3cc 100644
--- a/interface/src/scilab/help/en_US/gf_mesh_fem_get.xml
+++ b/interface/src/scilab/help/en_US/gf_mesh_fem_get.xml
@@ -181,7 +181,7 @@
<listitem>
<para><literal>CVs = gf_mesh_fem_get(mesh_fem MF,
'convex_index')</literal></para>
- <para> Return the list of convexes who have a FEM.
+ <para> Return the list of convexes who have an FEM.
</para>
</listitem>
@@ -420,7 +420,7 @@
<para>
Interpolate data given on each convex of the mesh to the mesh_fem dof.
The mesh_fem has to be lagrangian, and should be discontinuous (typically
- a FEM_PK(N,0) or FEM_QK(N,0) should be used).
+ an FEM_PK(N,0) or FEM_QK(N,0) should be used).
The last dimension of the input vector Ucv should have
gf_mesh_get(mesh M, 'max cvid') elements.
diff --git a/interface/src/scilab/help/en_US/gf_mesh_fem_set.xml
b/interface/src/scilab/help/en_US/gf_mesh_fem_set.xml
index 046210b..ea9f0a4 100644
--- a/interface/src/scilab/help/en_US/gf_mesh_fem_set.xml
+++ b/interface/src/scilab/help/en_US/gf_mesh_fem_set.xml
@@ -44,7 +44,7 @@
<para> Set the Finite Element Method.
- Assign a FEM <literal>f</literal> to all convexes whose #ids are listed
in <literal>CVids</literal>.
+ Assign an FEM <literal>f</literal> to all convexes whose #ids are listed
in <literal>CVids</literal>.
If <literal>CVids</literal> is not given, the integration is assigned to
all convexes.
See the help of gf_fem to obtain a list of available FEM methods.
diff --git a/interface/src/scilab/help/en_US/gf_model_set.xml
b/interface/src/scilab/help/en_US/gf_model_set.xml
index e664c90..101e1bf 100644
--- a/interface/src/scilab/help/en_US/gf_model_set.xml
+++ b/interface/src/scilab/help/en_US/gf_model_set.xml
@@ -347,7 +347,7 @@
If you are not sure, the better is to declare the term not symmetric
and not coercive. But some solvers (conjugate gradient for instance)
are not allowed for non-coercive problems.
- <literal>brickname</literal> is an otpional name for the brick.
+ <literal>brickname</literal> is an optional name for the brick.
</para>
</listitem>
@@ -363,7 +363,7 @@
If you are not sure, the better is to declare the term not symmetric
and not coercive. But some solvers (conjugate gradient for instance)
are not allowed for non-coercive problems.
- <literal>brickname</literal> is an otpional name for the brick.
+ <literal>brickname</literal> is an optional name for the brick.
</para>
</listitem>
@@ -376,7 +376,7 @@
Take care that if the expression contains some variables and if the
expression is a potential, the expression will be
derivated with respect to all variables.
- <literal>brickname</literal> is an otpional name for the brick.
+ <literal>brickname</literal> is an optional name for the brick.
</para>
</listitem>
@@ -810,7 +810,7 @@
<para> Add an additional explicit penalized constraint on the
variable <literal>varname</literal>.
The constraint is :math<literal>BU=L</literal> with <literal>B</literal>
being a rectangular sparse matrix.
- Be aware that <literal>B</literal> should not contain a palin row,
otherwise the whole
+ Be aware that <literal>B</literal> should not contain a plain row,
otherwise the whole
tangent matrix will be plain. It is possible to change the constraint
at any time with the methods gf_model_set(model M, 'set private matrix')
and gf_model_set(model M, 'set private rhs'). The method
@@ -1213,7 +1213,7 @@
<para><literal>ind = gf_model_set(model M, 'add normal derivative
Dirichlet condition with multipliers', mesh_im mim, string varname,
mult_description, int region [, string dataname, int
R_must_be_derivated])</literal></para>
<para> Add a Dirichlet condition on the normal derivative of the
variable
- <literal>varname</literal> and on the mesh region
<literal>region</literal> (which should be a boundary.
+ <literal>varname</literal> and on the mesh region
<literal>region</literal> (which should be a boundary).
The general form is
<latex style="text"><![CDATA[\int \partial_n u(x)v(x) = \int r(x)v(x)
\forall v]]></latex>
where <latex style="text"><![CDATA[r(x)]]></latex> is
@@ -1241,7 +1241,7 @@
<para><literal>ind = gf_model_set(model M, 'add normal derivative
Dirichlet condition with penalization', mesh_im mim, string varname, scalar
coeff, int region [, string dataname, int R_must_be_derivated])</literal></para>
<para> Add a Dirichlet condition on the normal derivative of the
variable
- <literal>varname</literal> and on the mesh region
<literal>region</literal> (which should be a boundary.
+ <literal>varname</literal> and on the mesh region
<literal>region</literal> (which should be a boundary).
The general form is
<latex style="text"><![CDATA[\int \partial_n u(x)v(x) = \int r(x)v(x)
\forall v]]></latex>
where <latex style="text"><![CDATA[r(x)]]></latex> is
@@ -1326,7 +1326,7 @@
<para><literal>gf_model_set(model M, 'set time step', scalar
dt)</literal></para>
<para> Set the value of the time step to <literal>dt</literal>.
This value can be change
- from a step to another for all one-step schemes (i.e for the moment
+ from a step to another for all one-step schemes (i.e. for the moment
to all proposed time integration schemes).
</para>
</listitem>
@@ -1713,7 +1713,7 @@
Add a contact with or without friction condition between nonmatching
meshes to the model. This brick adds a contact which is defined
in an integral way. It is the direct approximation of an augmented
- agrangian formulation (see Getfem user documentation) defined at the
+ Lagrangian formulation (see Getfem user documentation) defined at the
continuous level. The advantage should be a better scalability:
the number of Newton iterations should be more or less independent
of the mesh size.
diff --git a/interface/src/scilab/help/en_US/gf_precond.xml
b/interface/src/scilab/help/en_US/gf_precond.xml
index cf6e9ee..aefdf42 100644
--- a/interface/src/scilab/help/en_US/gf_precond.xml
+++ b/interface/src/scilab/help/en_US/gf_precond.xml
@@ -113,7 +113,7 @@
<listitem>
<para><literal>PC = gf_precond('spmat', spmat m)</literal></para>
- <para> Preconditionner given explicitely by a sparse matrix.
+ <para> Preconditioner given explicitely by a sparse matrix.
</para>
</listitem>
diff --git a/interface/src/scilab/help/en_US/gf_slice.xml
b/interface/src/scilab/help/en_US/gf_slice.xml
index 37a1f5d..b4b6af0 100644
--- a/interface/src/scilab/help/en_US/gf_slice.xml
+++ b/interface/src/scilab/help/en_US/gf_slice.xml
@@ -155,7 +155,7 @@
<para> Return the "slice" composed of points given by the columns
of <literal>Pts</literal>
(useful for interpolation on a given set of sparse points, see
- <literal></literal>gf_compute('interpolate on',sl)<literal></literal>.
+ <literal></literal>gf_compute('interpolate on',sl)<literal></literal>).
</para>
</listitem>
diff --git a/interface/src/scilab/help/en_US/objects.xml
b/interface/src/scilab/help/en_US/objects.xml
index d5f3e7b..4e18d86 100644
--- a/interface/src/scilab/help/en_US/objects.xml
+++ b/interface/src/scilab/help/en_US/objects.xml
@@ -42,7 +42,7 @@
<para>CVSTRUCT: stores formal information convex structures (nb. of
points, nb. of faces which are themselves convex structures).</para>
</listitem>
<listitem>
- <para>MESHFEM: object linked to a mesh, where each convex has been
assigned a FEM. Created with gf_mesh_fem.</para>
+ <para>MESHFEM: object linked to a mesh, where each convex has been
assigned an FEM. Created with gf_mesh_fem.</para>
</listitem>
<listitem>
<para>MESHIM: object linked to a mesh, where each convex has been
assigned an integration method. Created with gf_mesh_im.</para>
diff --git a/interface/src/scilab/help/en_US/preliminary.xml
b/interface/src/scilab/help/en_US/preliminary.xml
index 6f0d9ad..69b5738 100644
--- a/interface/src/scilab/help/en_US/preliminary.xml
+++ b/interface/src/scilab/help/en_US/preliminary.xml
@@ -88,7 +88,7 @@
<para><latex
align="center"><![CDATA[\nabla\cdot\left(\lambda\left(x\right)\nabla
u\right)=f\left(x\right)]]></latex></para>
- <para>Hence one has to define a FEM for the main unknown u, but also for
+ <para>Hence one has to define an FEM for the main unknown u, but also for
the data λ(x) and f(x) if they are not constant. In order to interpolate
easily these coefficients in their finite element space, one often choose
a Lagrangian FEM.</para>
diff --git a/interface/src/scilab/help/latex/getfemmatlab.lyx
b/interface/src/scilab/help/latex/getfemmatlab.lyx
index 5e0d7e7..351ecca 100644
--- a/interface/src/scilab/help/latex/getfemmatlab.lyx
+++ b/interface/src/scilab/help/latex/getfemmatlab.lyx
@@ -2233,7 +2233,7 @@ When solving a PDE, one often has to use more than one
FEM.
\end_inset
- Hence one has to define a FEM for the main unknown
+ Hence one has to define an FEM for the main unknown
\begin_inset Formula $u$
\end_inset
@@ -4562,7 +4562,7 @@ mesh_fem
\end_inset
-: object linked to a mesh, where each convex has been assigned a FEM.
+: object linked to a mesh, where each convex has been assigned an FEM.
Created with ##gf_mesh_fem.
\begin_inset Newline newline
\end_inset
@@ -17945,7 +17945,7 @@ status collapsed
\end_inset
- Obtain informations about a FEM handle @@F@@
+ Obtain informations about an FEM handle @@F@@
\begin_inset Index
status collapsed
@@ -18616,7 +18616,7 @@ status collapsed
\end_inset
- gives some important properties of a FEM (a polynomial fem is a necessary
+ gives some important properties of an FEM (a polynomial fem is a necessary
condition for an exact integration method, and a interpolation a function
of a Lagrangian fem is easy).
\end_layout
@@ -21922,7 +21922,7 @@ status collapsed
\end_inset
- : return the list of convexes who have a FEM.
+ : return the list of convexes who have an FEM.
\end_layout
\begin_layout Standard
diff --git a/interface/src/scilab/help/latex/getfemmatlab.tex
b/interface/src/scilab/help/latex/getfemmatlab.tex
index 1ebb4f1..f5e0120 100644
--- a/interface/src/scilab/help/latex/getfemmatlab.tex
+++ b/interface/src/scilab/help/latex/getfemmatlab.tex
@@ -429,7 +429,7 @@ When solving a PDE, one often has to use more than one FEM.
The most important o
\begin{equation*}
\nabla.(\lambda(x)\nabla u) = f(x).
\end{equation*}
-Hence one has to define a FEM for the main unknown $u$, but also for the data
$\lambda(x)$ and $f(x)$ if they are not constant. In order to interpolate
easily these coefficients in their finite element space, one often choose a
Lagrangian FEM.
+Hence one has to define an FEM for the main unknown $u$, but also for the data
$\lambda(x)$ and $f(x)$ if they are not constant. In order to interpolate
easily these coefficients in their finite element space, one often choose a
Lagrangian FEM.
The convexes, mesh nodes, and dof are all numbered. We sometimes refer to the
number associated to a convex as its \textit{convex id}\index{convex id}
(contracted to
@@ -547,7 +547,7 @@ a quick way to obtain the list of getfem functions).
\textit{CVSTRUCT}\index{convex structure}: stores formal information convex
structures (nb. of
points, nb. of faces which are themselves convex structures).\\
\textit{MESHFEM}\index{mesh_fem}: object linked to a mesh, where each convex
has been
- assigned a FEM. Created with ##gf\_mesh\_fem.\\
+ assigned an FEM. Created with ##gf\_mesh\_fem.\\
\textit{MESHIM}\index{mesh_im}: object linked to a mesh, where each convex
has been
assigned an integration method. Created with ##gf\_mesh\_im.\\
\textit{MESHSLICE}\index{slice}: object linked to a mesh, very similar to a
P1-discontinuous \mf. Used for fast interpolation and plotting.\\
@@ -1736,7 +1736,7 @@ fem = gf\_fem(sprintf('FEM\_PK(\%d,\%d)', k, n));
\subsection{gf\_fem_get}
\begin{purpose}
\hypertarget{gffemget}
- Obtain informations about a FEM handle @@F@@\index{FEM}.
+ Obtain informations about an FEM handle @@F@@\index{FEM}.
\end{purpose}
\begin{synopsis}
@@\tint I = gf_fem_get(\tfem F,'nbdof')
@@ -1771,7 +1771,7 @@ fem = gf\_fem(sprintf('FEM\_PK(\%d,\%d)', k, n));
\hil{@@gf_fem_get(F,'pts')@@}.
\sep{@@gf_fem_get(F,'is equivalent')@@}, \hil{@@gf_fem_get(F,'is
lagrange')@@}, or
- \hil{@@gf_fem_get(F,'is polynomial')@@} gives some important properties of a
FEM (a
+ \hil{@@gf_fem_get(F,'is polynomial')@@} gives some important properties of
an FEM (a
polynomial fem is a necessary condition for an exact integration method, and
a interpolation a function of a Lagrangian fem is easy).
@@ -2021,7 +2021,7 @@ M=gf_mesh_fem_get(MF, 'memsize')
have any FEM have their correspounding entry in CV2F set to -1.
\sep{@@gf\_mesh\_fem\_get(MF, 'convex\_index')@@} :
- return the list of convexes who have a FEM.
+ return the list of convexes who have an FEM.
\sep{@@gf\_mesh\_fem\_get(MF, \{'is\_lagrangian' | 'is\_equivalent' |
'is\_polynomial'\},[, CVLST])@@} :
diff --git a/src/getfem/getfem_config.h b/src/getfem/getfem_config.h
index a78f7fb..34e436c 100644
--- a/src/getfem/getfem_config.h
+++ b/src/getfem/getfem_config.h
@@ -112,7 +112,7 @@
important one will be of course the one on which is defined the
solution of the PDE. But most PDEs involve various coefficients, for
example: @f[ \nabla.(\lambda(x)\nabla u) = f(x). @f] Hence one has
- to define a FEM for the main unknown @f$u@f$, but also for the data
+ to define an FEM for the main unknown @f$u@f$, but also for the data
@f$\lambda(x)@f$ and @f$f(x)@f$ if they are not constant. In order
to interpolate easily these coefficients in their finite element
space, one often choose a Lagrangian FEM.
diff --git a/src/getfem/getfem_fourth_order.h b/src/getfem/getfem_fourth_order.h
index 5602f90..3a748fa 100644
--- a/src/getfem/getfem_fourth_order.h
+++ b/src/getfem/getfem_fourth_order.h
@@ -394,7 +394,7 @@ namespace getfem {
/* ******************************************************************** */
/** Adds a Dirichlet condition on the normal derivative of the variable
- `varname` and on the mesh region `region` (which should be a boundary.
+ `varname` and on the mesh region `region` (which should be a boundary).
The general form is
:math:`\int \partial_n u(x)v(x) = \int r(x)v(x) \forall v`
where :math:`r(x)` is
@@ -414,7 +414,7 @@ namespace getfem {
/** Adds a Dirichlet condition on the normal derivative of the variable
- `varname` and on the mesh region `region` (which should be a boundary.
+ `varname` and on the mesh region `region` (which should be a boundary).
The general form is
:math:`\int \partial_n u(x)v(x) = \int r(x)v(x) \forall v`
where :math:`r(x)` is
@@ -433,7 +433,7 @@ namespace getfem {
bool R_must_be_derivated = false);
/** Adds a Dirichlet condition on the normal derivative of the variable
- `varname` and on the mesh region `region` (which should be a boundary.
+ `varname` and on the mesh region `region` (which should be a boundary).
The general form is
:math:`\int \partial_n u(x)v(x) = \int r(x)v(x) \forall v`
where :math:`r(x)` is
@@ -453,7 +453,7 @@ namespace getfem {
bool R_must_be_derivated = false);
/** Adds a Dirichlet condition on the normal derivative of the variable
- `varname` and on the mesh region `region` (which should be a boundary.
+ `varname` and on the mesh region `region` (which should be a boundary).
The general form is
:math:`\int \partial_n u(x)v(x) = \int r(x)v(x) \forall v`
where :math:`r(x)` is
diff --git a/src/getfem/getfem_models.h b/src/getfem/getfem_models.h
index 175d337..f5e3726 100644
--- a/src/getfem/getfem_models.h
+++ b/src/getfem/getfem_models.h
@@ -1573,7 +1573,7 @@ namespace getfem {
If you are not sure, the better is to declare the term not symmetric
and not coercive. But some solvers (conjugate gradient for instance)
are not allowed for non-coercive problems.
- `brickname` is an otpional name for the brick.
+ `brickname` is an optional name for the brick.
*/
size_type APIDECL add_linear_term
(model &md, const mesh_im &mim, const std::string &expr,
@@ -1622,7 +1622,7 @@ namespace getfem {
Take care that if the expression contains some variables and if the
expression is a potential, the expression will be
derivated with respect to all variables.
- `brickname` is an otpional name for the brick.
+ `brickname` is an optional name for the brick.
*/
size_type APIDECL add_source_term
(model &md, const mesh_im &mim, const std::string &expr,
diff --git a/src/getfem_fem_level_set.cc b/src/getfem_fem_level_set.cc
index 69234e1..5381067 100644
--- a/src/getfem_fem_level_set.cc
+++ b/src/getfem_fem_level_set.cc
@@ -19,7 +19,7 @@
===========================================================================*/
/** \file getfem_fem_level_set.cc
- \brief a FEM which should be used with getfem::mesh_fem_level_set.
+ \brief an FEM which should be used with getfem::mesh_fem_level_set.
*/
#include "getfem/getfem_fem_level_set.h"
diff --git a/src/gmm/gmm_precond.h b/src/gmm/gmm_precond.h
index 3d527bd..9a46a7a 100644
--- a/src/gmm/gmm_precond.h
+++ b/src/gmm/gmm_precond.h
@@ -42,7 +42,7 @@
/* Preconditioner concept : */
/* */
/* A the matrix, P the preconditioner PA well conditioned. */
-/* PRECOND precontioner type. */
+/* PRECOND preconditioner type. */
/* mult(P, v, w) : w <- P v */
/* transposed_mult(P, v, w) : w <- transposed(P) v */
/* left_mult(P, v, w) : see qmr solver */