getfem-commits
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[Getfem-commits] r4818 - /trunk/getfem/interface/tests/matlab/demo_dynam


From: farshid . dabaghi
Subject: [Getfem-commits] r4818 - /trunk/getfem/interface/tests/matlab/demo_dynamic_plasticity.m
Date: Tue, 18 Nov 2014 10:19:02 -0000

Author: fdabaghi
Date: Tue Nov 18 11:19:01 2014
New Revision: 4818

URL: http://svn.gna.org/viewcvs/getfem?rev=4818&view=rev
Log:
new_dynamic_plasticity_file

Added:
    trunk/getfem/interface/tests/matlab/demo_dynamic_plasticity.m

Added: trunk/getfem/interface/tests/matlab/demo_dynamic_plasticity.m
URL: 
http://svn.gna.org/viewcvs/getfem/trunk/getfem/interface/tests/matlab/demo_dynamic_plasticity.m?rev=4818&view=auto
==============================================================================
--- trunk/getfem/interface/tests/matlab/demo_dynamic_plasticity.m       (added)
+++ trunk/getfem/interface/tests/matlab/demo_dynamic_plasticity.m       Tue Nov 
18 11:19:01 2014
@@ -0,0 +1,288 @@
+% Copyright (C) 2010-2014  Yves Renard, Farshid Dabaghi.
+%
+% This file is a part of GETFEM++
+%
+% Getfem++  is  free software;  you  can  redistribute  it  and/or modify it
+% under  the  terms  of the  GNU  Lesser General Public License as published
+% by  the  Free Software Foundation;  either version 3 of the License,  or
+% (at your option) any later version along with the GCC Runtime Library
+% Exception either version 3.1 or (at your option) any later version.
+% This program  is  distributed  in  the  hope  that it will be useful,  but
+% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+% or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
+% License and GCC Runtime Library Exception for more details.
+% You  should  have received a copy of the GNU Lesser General Public License
+% along  with  this program;  if not, write to the Free Software Foundation,
+% Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
+
+
+
+
+
+% We compute a dynamic plasticity problem with a Von Mises criterion with or
+% without kinematic hardening
+% For convenience we consider an homogenous Dirichlet condition on the left
+% of the domain and an easy computed Neumann Condition on the right
+
+
+
+clear all;
+gf_workspace('clear all');
+clc;
+
+with_hardening = 1;
+bi_material = false;
+test_tangent_matrix = 0;
+do_plot = true;
+
+% Initialize used data
+LX = 100;
+LY = 20;
+NX = 50;
+NY = 20;
+
+f = [0 -600]';
+%t = [0 0.5 0.6 0.7 0.8 0.9 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0];
+if (with_hardening == 1)
+  f = [15000 0]';
+%  t = [0 0.5 0.6 0.7 0.8 0.9 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -0.1 
-0.2 -0.4 -0.6 -0.8 -0.6 -0.4 -0.2 0];
+end
+
+
+% transient part.
+T = pi;
+dt = 0.025;
+theta= 1;
+
+
+
+
+
+
+% Create the mesh
+% m = gfMesh('triangles grid', [0:(LX/NX):LX], [0:(LY/NY):LY]);
+m = 
gfMesh('import','structured',sprintf('GT="GT_PK(2,1)";SIZES=[%d,%d];NOISED=0;NSUBDIV=[%d,%d];',
 LX, LY, NX, NY));
+N = gf_mesh_get(m, 'dim');
+  
+% Plotting
+% gf_plot_mesh(m, 'vertices', 'on', 'convexes', 'on');
+
+% Define used MeshIm
+mim=gfMeshIm(m);  set(mim, 'integ', gfInteg('IM_TRIANGLE(6)')); % Gauss 
methods on triangles
+
+% Define used MeshFem
+if (with_hardening == 1)
+  mf_u=gfMeshFem(m,2); set(mf_u, 'fem',gfFem('FEM_PK(2,2)'));
+else
+  mf_u=gfMeshFem(m,2); set(mf_u, 'fem',gfFem('FEM_PK(2,1)'));
+end
+mf_data=gfMeshFem(m); set(mf_data, 'fem', gfFem('FEM_PK_DISCONTINUOUS(2,0)'));
+% mf_sigma=gfMeshFem(m,4); set(mf_sigma, 
'fem',gfFem('FEM_PK_DISCONTINUOUS(2,1)'));
+mf_sigma=gfMeshFem(m,4); set(mf_sigma, 
'fem',gfFem('FEM_PK_DISCONTINUOUS(2,0)'));
+mf_vm = gfMeshFem(m); set(mf_vm, 'fem', gfFem('FEM_PK_DISCONTINUOUS(2,1)'));
+
+% Find the border of the domain
+P=get(m, 'pts');
+pidleft=find(abs(P(1,:))<1e-6); % Retrieve index of points which x near to 0
+pidright=find(abs(P(1,:) - LX)<1e-6); % Retrieve index of points which x near 
to L
+fleft =get(m,'faces from pid',pidleft); 
+fright=get(m,'faces from pid',pidright);
+set(m,'boundary',1,fleft); % for Dirichlet condition
+set(m,'boundary',2,fright); % for Neumann condition
+
+% Decomposed the mesh into 2 regions with different values of Lamé coeff
+if (bi_material) separation = LY/2; else separation = 0; end
+pidtop    = find(P(2,:)>=separation-1E-6); % Retrieve index of points of the 
top part
+pidbottom = find(P(2,:)<=separation+1E-6); % Retrieve index of points of the 
bottom part
+cvidtop   = get(m, 'cvid from pid', pidtop);
+cvidbottom= get(m, 'cvid from pid', pidbottom);
+CVtop     = sort(get(mf_data, 'basic dof from cvid', cvidtop));
+CVbottom  = sort(get(mf_data, 'basic dof from cvid', cvidbottom));
+
+% Definition of Lame coeff
+lambda(CVbottom,1) = 121150; % Steel
+lambda(CVtop,1) = 84605; % Iron
+mu(CVbottom,1) = 80769; %Steel
+mu(CVtop,1) = 77839; % Iron
+% Definition of plastic threshold
+von_mises_threshold(CVbottom) = 7000;
+von_mises_threshold(CVtop) = 8000;
+% Definition of hardening parameter
+if (with_hardening)
+  H = mu(1)/5;
+else
+  H = 0;
+end
+
+% Create the model
+md = gfModel('real');
+
+% Declare that u is the unknown of the system on mf_u
+% 2 is the number of version of the data stored, for the time integration 
scheme 
+set(md, 'add fem variable', 'u', mf_u, 2);
+
+% Declare that lambda is a data of the system on mf_data
+set(md, 'add initialized fem data', 'lambda', mf_data, lambda);
+
+% Declare that mu is a data of the system on mf_data
+set(md, 'add initialized fem data', 'mu', mf_data, mu);
+
+% Declare that von_mises_threshold is a data of the system on mf_data
+set(md, 'add initialized fem data', 'von_mises_threshold', mf_data, 
von_mises_threshold);
+
+
+if (with_hardening)
+  N = gf_mesh_get(m, 'dim');
+  gf_model_set(md, 'add fem data', 'Previous_u', mf_u);
+  mim_data = gf_mesh_im_data(mim, -1, [N, N]);
+  gf_model_set(md, 'add im data', 'sigma', mim_data);
+   
+  set(md, 'add initialized data', 'H', [H]);
+
+  Is = 'Reshape(Id(meshdim*meshdim),meshdim,meshdim,meshdim,meshdim)';
+  IxI = 'Id(meshdim)@Id(meshdim)';
+  coeff_long = '((lambda)*(H))/((2*(mu)+(H))*(meshdim*(lambda)+2*(mu)+(H)))';
+  B_inv = sprintf('((2*(mu)/(2*(mu)+(H)))*(%s) + (%s)*(%s))', Is, coeff_long, 
IxI);
+  B = sprintf('((1+(H)/(2*(mu)))*(%s) - 
(((lambda)*(H))/(2*(mu)*(meshdim*(lambda)+2*(mu))))*(%s))', Is, IxI);
+  ApH = sprintf('((2*(mu)+(H))*(%s) + (lambda)*(%s))', Is, IxI);
+  Enp1 = '((Grad_u+Grad_u'')/2)';
+  En = '((Grad_Previous_u+Grad_Previous_u'')/2)';
+  expr_sigma = strcat('(', B_inv, '*(Von_Mises_projection((-(H)*', Enp1, 
')+(', ApH, '*(',Enp1,'-',En,')) + (', B, '*sigma), von_mises_threshold) + H*', 
Enp1, '))');
+  
+  gf_model_set(md, 'add nonlinear generic assembly brick', mim, 
strcat(expr_sigma, ':Grad_Test_u'));
+  % gf_model_set(md, 'add finite strain elasticity brick', mim, 'u', 
'SaintVenant Kirchhoff', '[lambda; mu]');
+else
+    
+  % Declare that sigma is a data of the system on mf_sigma
+  set(md, 'add fem data', 'sigma', mf_sigma);
+  % Add plasticity brick on u
+  set(md, 'add elastoplasticity brick', mim, 'VM', 'u', 'lambda', 'mu', 
'von_mises_threshold', 'sigma');
+end
+
+% Add homogeneous Dirichlet condition to u on the left hand side of the domain
+set(md, 'add Dirichlet condition with multipliers', mim, 'u', mf_u, 1);
+
+% Add a source term to the system
+set(md,'add initialized fem data', 'VolumicData', mf_data, get(mf_data, 
'eval',{f(1,1)*sin(0);f(2,1)*sin(0)}));
+set(md, 'add source term brick', mim, 'u', 'VolumicData', 2);
+
+
+% interpolate the initial data
+U0 = get(md, 'variable', 'u', 0);
+V0 = 0*U0;
+
+
+
+gf_model_set(md, 'add theta method for second order', 'u',theta);
+gf_model_set(md, 'add mass brick', mim, 'Dot2_u');
+gf_model_set(md, 'set time step', dt);
+
+
+% Initial data.
+gf_model_set(md, 'variable', 'Previous_u',  U0);
+gf_model_set(md, 'variable', 'Previous_Dot_u',  V0);
+
+
+% Initialisation of the acceleration 'Previous_Dot2_u'
+gf_model_set(md, 'perform init time derivative', dt/20.);
+gf_model_get(md, 'solve');
+
+
+VM=zeros(1,get(mf_vm, 'nbdof'));
+ step=1;
+% Iterations
+for t = 0:dt:T
+   
+   disp(sprintf('step %d, coeff = %g', step , sin(4*t))); 
+   
+ 
+  set(md, 'variable', 'VolumicData', get(mf_data, 
'eval',{f(1,1)*sin(4*t);f(2,1)*sin(4*t)}));  
+   
+  gf_model_get(md, 'solve');
+  U = gf_model_get(md, 'variable', 'u');
+  V = gf_model_get(md, 'variable', 'Dot_u'); 
+  
+    
+   
+  
+  if (test_tangent_matrix)
+      gf_model_get(md, 'test tangent matrix', 1E-8, 10, 0.000001);
+    end;
+    
+    
+    if (with_hardening)
+      sigma = gf_model_get(md, 'interpolation', expr_sigma, mim_data);
+      gf_model_set(md, 'variable', 'sigma', sigma);
+      gf_model_set(md, 'variable', 'Previous_u', U);
+      
+      M = gf_asm('mass matrix', mim, mf_vm);
+      L = gf_asm('generic', mim, 1, 'sqrt(3/2)*Norm(Deviator(sigma))*Test_vm', 
-1, 'sigma', 0, mim_data, sigma, 'vm', 1, mf_vm, zeros(gf_mesh_fem_get(mf_vm, 
'nbdof'),1));
+      VM = (M \ L)';
+      coeff1='-lambda/(2*mu*(meshdim*lambda+2*mu))';
+      coeff2='1/(2*mu)';
+      Ainv=sprintf('(%s)*(%s) + (%s)*(%s)', coeff1, IxI, coeff2, Is);
+      Ep = sprintf('(Grad_u+Grad_u'')/2 - (%s)*sigma', Ainv);
+      L = gf_asm('generic', mim, 1, sprintf('Norm(%s)*Test_vm', Ep), -1, 
'sigma', 0, mim_data, sigma, 'u', 0, mf_u, U, 'vm', 1, mf_vm, 
zeros(gf_mesh_fem_get(mf_vm, 'nbdof'),1), 'mu', 0, mf_data, mu, 'lambda', 0, 
mf_data, lambda);
+      plast = (M \ L)';
+      
+      Epsilon_u = gf_model_get(md, 'interpolation', '((Grad_u+Grad_u'')/2)', 
mim_data);
+      ind_gauss_pt = 22500;
+      if (size(sigma, 2) <= N*(ind_gauss_pt + 1))
+        ind_gauss_pt = floor(3*size(sigma, 2) / (4*N*N));
+      end
+      sigma_fig(1,step)=sigma(N*N*ind_gauss_pt + 1);
+      Epsilon_u_fig(1,step)=Epsilon_u(N*N*ind_gauss_pt + 1);
+    else
+      get(md, 'elastoplasticity next iter', mim, 'u', 'VM', 'lambda', 'mu', 
'von_mises_threshold', 'sigma');
+      plast = get(md, 'compute plastic part', mim, mf_vm, 'u', 'VM', 'lambda', 
'mu', 'von_mises_threshold', 'sigma');
+      % Compute Von Mises or Tresca stress
+      VM = get(md, 'compute elastoplasticity Von Mises or Tresca', 'sigma', 
mf_vm, 'Von Mises');
+    end
+    
+       
+    if (do_plot)
+      figure(2)
+      subplot(3,1,1);
+      gf_plot(mf_vm,VM, 'deformation',U,'deformation_mf',mf_u,'refine', 4, 
'deformation_scale',1, 'disp_options', 0); % 'deformed_mesh', 'on')
+      colorbar;
+      axis([-20 130 -20 40]);
+      % caxis([0 10000]);
+      n = t;
+       title(['Von Mises criterion for t = ', num2str(t)]);
+      subplot(3,1,2);
+      gf_plot(mf_vm,plast, 'deformation',U,'deformation_mf',mf_u,'refine', 4, 
'deformation_scale',1, 'disp_options', 0);  % 'deformed_mesh', 'on')
+      colorbar;
+      axis([-20 130 -20 40]);
+      % caxis([0 10000]);
+      n = t;
+      title(['Plastification for t = ', num2str(t)]);
+    
+      if (with_hardening)
+        subplot(3,1,3);
+        plot(Epsilon_u_fig, sigma_fig,'r','LineWidth',2)
+        xlabel('Strain');
+        ylabel('Stress')
+        axis([-0.25 0.25 -16500 16500 ]);
+        title(sprintf('step %d / %d, coeff = %g', step,size([0:dt:T],2) , 
sin(4*t)));
+        
+        % hold on;
+      end;
+      
+      pause(0.1);
+    end
+    
+    
+     step= step+ 1;
+   gf_model_set(md, 'shift variables for time integration');
+end;
+
+
+
+
+
+
+
+
+
+
+




reply via email to

[Prev in Thread] Current Thread [Next in Thread]