
m4 Dangling Pointer Bug

John Brzustowski

January 18, 2006

(jump to ”Current problematic behaviour” for a quick example)

1 Overview

It appears that the GNU documentation for m4 does not specify how m4 should
behave when a macro whose arguments are being collected is redefined or
deleted. In the latter case, there is a dangling pointer bug. Below are de-
tails of the misbehaviour, and the rationale and implementation of a proposed
solution. A set of patches to m4-1.4.4 is provided separately.

2 Current unspecified but non-problematic be-
haviour

Redefining a macro with define() causes the new definition to be used for
pending expansions:

define(‘f’,‘one’)f(define(‘f’,‘two’))
=> two

Redefining a macro with ”pushdef” causes the original definition to be used
for pending expansions:

define(‘f’,‘one’)f(pushdef(‘f’,‘two’)) f()
=> one two

pushdef() protects pushed definitions from define(), so that the original
definition is used for pending expansions:

define(‘f’,‘one’)f(pushdef(‘f’,‘two’)f(define(‘f’,‘three’)))
=> one

2

January 18, 2006 m4bug.nw 3

If the definition of a macro with a pending expansion is changed with
define(), its ultimate expansion is not affected by any subsequent pushdef()s:

define(‘f’,‘one $1’)f(define(‘f’,‘two $1’)f(pushdef(‘f’,‘three $1’)‘four’))
=> two two four

3 Current problematic behaviour

In what follows, the string ***JUNK*** represents non-printable or nonsense
characters. Invoke m4 with ”-dqeat” to see the behaviour more clearly.

Undefining a macro with pending expansion exposes the dangling pointer
bug:

define(‘f’,‘one’)f(undefine(‘f’)‘two’)
=> ***JUNK***

proposal: result should be f(two)
This also occurs when more than one definition for the macro has been made

using pushdef:

define(‘f’,‘one’)f(pushdef(‘f’,‘two’)f(undefine(‘f’)‘three’))
=> ***JUNK***

proposal: result should be f(f(three))
Popping the definition of a pending expansion, even if there remains a def-

inition for a symbol with the same name as the pending macro, exposes the
bug. Here, the inner (pushed) definition of f becomes invalid, while the outer
one remains correct.

define(‘f’,‘one $1’)f(pushdef(‘f’,‘two $1’)f(popdef(‘f’)three))
=> one ***JUNK***

January 18, 2006 m4bug.nw 4

proposal: result should be one one three

4 Source of the problem

Consider this example:

$ m4 -dqeat
define(‘f’, ‘level1 $1’)f(f(f(undefine(‘f’)stuff)))
=> m4trace: -1- define(‘f’, ‘level1 $1’)
=> m4trace: -4- undefine(‘f’)
=> m4trace: -3- ***JUNK***(‘stuff’) -> ‘***JUNK***’
=> m4trace: -2- ***JUNK***(‘***JUNK***’) -> ‘***JUNK***’
=> m4trace: -1- ***JUNK***(‘***JUNK***’) -> ‘***JUNK***’

There are three pending expansions of f when undefine(‘f’) is called.
Simply deleting the definition of f from the symbol table at that point leaves
three dangling pointers on the stack (in the local variable sym of function
expand macro()). Depending on how the memory allocation/deallocation rou-
tines work, this example might not be enough to expose the bug, since all
free()d storage might be intact. A more complicated example that might ex-
pose the bug in such cases by preventing re-use of identical deallocated memory
is this:

$ m4 -dqeat
define(‘f’, ‘level1 $1’)f(f(f(undefine(‘f’)undefine(‘include’))))
=> m4trace: -1- define(‘f’, ‘level1 $1’)
=> m4trace: -4- undefine(‘f’)
=> m4trace: -4- undefine(‘include’)
=> m4trace: -3- ***JUNK***(‘’) -> ‘***JUNK***’
=> m4trace: -2- ***JUNK***(‘***JUNK***’) -> ‘***JUNK***’
=> m4trace: -1- ***JUNK***(‘***JUNK***’) -> ‘***JUNK***’
=> ***JUNK***

January 18, 2006 m4bug.nw 5

5 Goals of proposed fix

• maintain the existing behaviour in non-problematic cases: if, while its
arguments are being expanded, a macro’s definition is changed (by a
define() not preceeded by any pushdef()s), use the changed definition
(which might not be the most recent definition, since pushdef()s might
have occurred since the redefinition) for expanding the macro.

• change the existing behaviour in problematic cases: if, while its arguments
are being expanded, a macro’s definition is deleted either by popdef() or
undefine(), then use the current definition (i.e. the most recent non-
deleted definition of the macro) when expanding the macro. If there is no
non-deleted definition of the macro, then expand it as $0($@@), which is
identical behaviour to that when the macro is undefined, except that lead-
ing whitespace is stripped from its arguments. (A non-deleted definition
is one still in the symbol table and for which SYMBOL DELETED is false. See
below.)

QUESTION: is it worth the effort of maintaining or retrieving the orig-
inal argument text to remove this leading whitespace discrepancy?

• do this with minimal impact on code and performance.

6 Note on m4 vs cpp

This fix makes explicit a difference between how m4 and cpp expand macros.
According to GNU documentation for cpp, macro expansion always uses the
definition of the macro at the time collection of its arguments begins, so that if
an argument redefines the macro, this does not affect any pending expansions:

Current non-problematic m4 behaviour is already incompatible:

$ cpp -P $ m4
#define f(x) one define(‘f’,‘one’)
f(f(define(‘f’,‘two’))
#undef f => two
#define f(x) two
)
=> one

January 18, 2006 m4bug.nw 6

By specifying the following behaviour for m4 under currently problematic
conditions, this fix widens the discrepancy:

$ cpp -P $ m4
#define f(x) one x define(‘f’,‘one $1’)
f(f(undefine(‘f’)two)
#undef f => f(two)
two
)
=> one two

January 18, 2006 m4bug.nw 7

I am not suggesting semantic compatibility with cpp should be a goal for
m4, but just pointing out where existing differences will be solidified, as this
may be a source of confusion for people using both programs.

7 Mechanics of proposed fix

Add two fields to struct symbol:

• int expansions pending: The number of pending expansions of this
symbol definition. This will equal the number of pointers to this symbol ta-
ble entry stored in the sym local variable of stack frames for expand macro().
The initial value for a newly-defined symbol (whether or not it shadows
an existing symbol) is 0. Accessed by macro SYMBOL EXPANSIONS PENDING
(sym).

• boolean deleted: TRUE if and only if this symbol represents a definition
that has been deleted by popdef() or undefine(), but not yet removed
from the symbol table because of pending expansions (i.e. to avoid dan-
gling pointers). The initial value for a newly-defined symbol is FALSE.
Accessed by macro SYMBOL DELETED (sym).

8 Changes to functions

• builtin.c: expand user macro() If SYMBOL DELETED (sym) is TRUE, then
expand this macro as $0($@@).

• macro.c: expand macro()

Increase SYMBOL EXPANSIONS PENDING (sym) before arguments to this macro
are collected.

Decrease SYMBOL EXPANSIONS PENDING (sym) after arguments to this macro
are collected, but before the macro is expanded. If argument collection has
made SYMBOL DELETED (sym) true, lookup the most recent non-deleted
symbol of the same name before expanding the macro, if one exists. Use
the SYMBOL INTERNAL NAME flag for lookup symbol() because we already
have the symbol table pointer to the name. Otherwise, since all symbols
of the same name have been deleted, just use sym, and the expansion code
will expand this SYMBOL DELETED macro as $0($@@).

After expanding the macro, if SYMBOL EXPANSIONS PENDING (sym) has
reached zero, and SYMBOL DELETED (sym) == TRUE, then mark symbol
by setting SYMBOL EXPANSIONS PENDING(sym) = -1 and delete sym from
the symbol table using lookup sym() with mode = SYMBOL FINALIZE.

• macro.c: call macro()

If SYMBOL TYPE (sym) == TOKEN FUNC and SYMBOL DELETED (sym) == TRUE,
call expand user macro() instead of calling the builtin function for this

January 18, 2006 m4bug.nw 8

symbol. This corresponds to the case of a deleted builtin function with ex-
pansion pending. As noted above, this will expand the macro as $0($@@).

• symtab.c: lookup symbol() Use pointer comparisons instead of strcmp()
for string equality when the target name is known to be internal.

– case mode == SYMBOL LOOKUP:
Find the first symbol with name for which SYMBOL DELETED == FALSE.
If there is no such symbol (either because none match the name or be-
cause all those with matching name have SYMBOL DELETED == TRUE),
return NULL for undefined.

– case mode == SYMBOL INSERT:

∗ case a) the symbol exists in the symbol table, with one or more
definitions, and at least one has SYMBOL DELETED == FALSE

1. find the first symbol of that name with SYMBOL DELETED ==
FALSE

2. preserve the value of EXPANSIONS PENDING

3. set SYMBOL TRACED = FALSE

∗ case b) the symbol does not exist in the symbol table, or if it
does, then all occurences have SYMBOL DELETED == TRUE

1. allocate a new symbol
2. allocate a new copy of the symbol name if no symbol of this

name exists
3. set SYMBOL DELETED = FALSE

4. set EXPANSIONS PENDING = 0

– case mode == SYMBOL PUSHDEF:
1. allocate a new symbol
2. allocate a new copy of the symbol name, if no symbol of this

name exists
3. set SYMBOL DELETED = FALSE

4. set EXPANSIONS PENDING = 0

5. mark the next non-DELETED symbol of this name as SYMBOL SHADOWED,
and copy its value of SYMBOL TRACED status to the new symbol.

– case mode == SYMBOL DELETE:
For every symbol, sym, matching name, if SYMBOL EXPANSIONS PENDING

(sym) > 0, set SYMBOL DELETED (sym) = TRUE and do not free
it; otherwise, free sym.

– case mode == SYMBOL POPDEF:
Find the first symbol, sym, matching name for which SYMBOL DELETED

== FALSE. If SYMBOL EXPANSIONS PENDING (sym) > 0, mark it
as set SYMBOL DELETED (sym) = TRUE and do not free it. Otherwise,
free it.

January 18, 2006 m4bug.nw 9

– case mode == SYMBOL FINALIZE:
Find and remove the sym matching name and flagged with EXPANSIONS PENDING
== -1 from the symbol table and free its storage.

• symtab.c: free symbol()

If sym is the last remaining symbol with its name, free the storage for
that name. This can be checked by examining the SYMBOL NAME pointers
of the preceding symbol (now passed as a parameter) and next symbol.
Otherwise, do not free the symbol name. Free the symbol table entry.

