
 15.4.3.2.4 Test Anything Protocol (TAP) Test Driver

The Test Anything Protocol (TAP) is a Error: Reference source not found. The protocol TAP
Standard is defined at http://testanything.org/ as modified by Automake. The TAP Test
Driver is called a TAP Harness in the TAP Standard. YAML Standard
(http://www.yaml.org/spec/1.2/spec.html)

TAP requires an interfacing test class program to output ASCII lines as defined by the TAP
Protocol. The TAP test driver analyses these lines and outputs a log file and Test Results File
compatible with the Error: Reference source not found.

 15.4.3.2.4.1 TAP Protocol

A test case using the TAP protocol must output formatted lines of ASCII text conforming the
TAP Standard, as modified by Automake. Each line must start in column 1 except for YAML
comments which must start in column 2 or more.

A little teminology:

• The test case is the name of the script of program generating the TAP Protocol
compliant data.

• A test case executes tests. The result of each test execution is a TAP formatted test
line, YAML comments and Diagnostics.

• Whitespace <ws> is either a blank, ' ', or a tab character, \t.

• Where one <ws> is required, many can be used.

• A test line is any line which has an ok or not ok in column 1.

• All test lines are sequentially numbered, during processing, starting at one (1). The
current test line number is the current sequential number.

The format of TAP Protocol Element is:

TAP Type Syntax Description

Test plan [1..N] N the number of tests.

Test plan 1..0 [# comment] Skip tests

Test line ok [N] [comment] [# Directive] Test success (or skip)

Test line not ok [N] [comment] Test fail.

Bail out! Bail out! [comment] Terminate processing.

Diagnostic # comment A free from comment.

YAML ---
 ...

Comments bracketed by --- and ...

http://testanything.org/

The description of the TAP Protocol Elements is:

The test plan is required and must precede the first test line or follow the last
test line. Diagnostics are optional before and after the test plan.

1..N The number N must be the number of test lines.

1..0 Indicates that the test case is skipped.

ok Test success. This is case sensitive.

not ok Test failure, This is case sensitive. There must be a single blank character
between not and ok.

N Test number. Must be the same as the test line number if in a test line.

comment Free form comment not containing a hash (#).

Directive The first word must be either SKIP or TODO. The remainder of the line is treated
as a free form comment. SKIP and TODO. are not case sensitive.

Bail out! Stop processing the current test case TAP Protocol.

Diagnostic A line beginning with a '#' and followed by a comment.

YAML YAML lines are a comments and are ignored for processing.

The requirements for satisfying the TAP Protocol are:

• By definition the a test line number is formed by incrementing a test line number after
each test line with the first test line being one (1). The current test line number is the
value of the current number. Note that non-test lines are not counted.

• Test Plans:

◦ A Test Plan must be the first non-Diagnostic line or the last line before 0 or more
Diagnostic lines, that is, the Test Plan must follow all test lines and YAML text.

◦ If there is a test plan, 1..N, where N is greater than zero, then if the number of test
lines is less than N, say k is the last test line, then each k+1 .. N missing tests line
will be considered as SKIPed. A diagnostic message will be logged.

◦ If there is a test plan, 1..N, where N is greater than zero, hen if the number of test
lines is greater than N, say k is the last test line, then N+1 .. k test lines will be
accepted and a diagnostic message will be logged.

◦ If there is a test plan, 1..0 then the test case will be considered as SKIPed and no
test lines are required. If any test lines are present then they will be accepted but
but the test case will be considered as SKIPed.

• Test Lines:

◦ ok and not ok are case sensitive.

◦ If a test line has a number, N, it must be separated from the preceding ok by <ws>.
The number N must be the current test line number.

◦ The test line not ok must have a single blank character between not and ok.

◦ If the test line has a comment, then the comment must be separated from the
preceding ok or N by <ws>. A comment can not have a leading number or an
embedded hash character..

◦ The Directive separator is a hash sign '#'.

◦ A Directive must be SKIP or TODO. Directives are case insensitive. SKIP has the
same meaning as in Error: Reference source not found.

• Bail out!: Must start in column 1 and there must be a single space between Bail and
out!. Any comments must have <ws> between out! and the start of the comment. No
further tests will be processed for the current test case.

• Diagnostic: If the first character seen is a hash character, '#', then the line is a
comment. There is no comment processing.

• YAML comments are comments and are ignored. YAML comments can not start in
column 1, this includes the bracketing --- and …. The YAML brackets must be in a
solitary line.

• All input will be logged into a .log file.

• All input which does not satisfy the requirements will be flagged as an error.

A sample of test case TAP Protocol output is:

test line
number N
 1..55
 1 ok
 2 ok 2
 # this is a comment
 3 not ok 17 comment
 4 ok - comment # skip skip reason

 This is a YAML comment.
 It can be extend across multiple lines.
 '---' and '...' must be on their own line.
 ...

And:

• 1..55 is the test plan. The test case output is in error because there are only 4 tests. The
test plan is optional and can appear as the first or last physical line in the test case
output.

• Test 3 is in error because N is 17 and not 3.

• Test 4 is a skipped test.

• The YAML comments do not start in column 1 and are multiline.

 15.4.3.2.4.2 TAP Makefile.am Variables
Automake – TAP Variables

AM_TAP_AWK Puts a reference to the local AWK into the environment.

This must be used in the ext_LOG_DRIVER variable to initiate TAP Protocol processing. The
only acceptable way to reference the TAP Protocol processor is:

TEST_LOG_DRIVER = env AM_TAP_AWK='$(AWK)' $(SHELL) \
 $(top_srcdir)/build-aux/tap-driver.sh

 15.4.3.2.4.3 Test Harness to TAP Test Driver Interface

Section Error: Reference source not found plus the following Test Harness to TAP Test
Driver Options. The options are input to the TAP driver using the ext_DRIVER_FLAGS or
AM_ ext_DRIVER_FLAGS variables, as in ext_DRIVER_FLAGS = --comments.

The –enable-hard-errors is not supported in the TAP Protocol and is ignored.

Test Harness to TAP Test Driver Options

--long_form=value description

--comments Display Diagnostics to the System Administrator monitor.

--diagnostic-string Change the Diagnostic prefix, '#', with a string of 1 or more
characters.

--ignore-exit Causes the test driver to ignore the exit status of the test
scripts; by default, the driver will report an error if the script
exits with a non-zero status. This option has effect also on non-
zero exit statuses due to termination by a signal.

--merge Instruct the test driver to merge the test class standard error
into the Test Driver standard output.

--no-comments Default: Do not display Diagnostics to the System
Administrator monitor.

--no-merge Default: Standard error and standard output are not merged.

 15.4.3.2.4.4 TAP Test Driver to Test Harness Interface

Results returned are compatible with the Test Results File. The results can be divided into
local, dealing with each test line, and global, dealing with the test case. The global results are
defined in the Test Results File values of :recheck: and :test-global-result: and :copy-in-
global-log:. The local results are captured in :test-result:.

A test case can have 1 or more tests. The result of each test is a TAP test line. If the test plan is
1..0 then there can be no tests.

In all cases PASS is substituted for ok and FAIL is substituted for not ok in the following
discussions.

The formation rules to generate these results are:

• :test-result: Either PASS, FAIL or SKIP as determined by each test line.The expected
Test Results File (.trs) output is given in the following table.

options
TEST

.trs output

expect :test-result:

-- PASS PASS

no FAIL FAIL

yes FAIL

yes PASS

-- SKIP SKIP

• The global result is the computed cumulative value for all test lines. The global result
is considered the test case final value. The results are calculated in the following way:

◦ If any test line is not ok then the global result is FAIL.

◦ Test lines with SKIP are considered as PASS when calculating the global result. If
all test lines are SKIPed then the test case is considered as SKIPed.

◦ For a test plan of 1..N, if the number of test lines is < N then the missing tests are
marked as SKIP and :test-result: SKIP is output.

◦ For a test plan of 1..N, if the number of test lines is > N then N will be considered
as a incorrect number, the test lines will be accepted as if N + k, where k is the
excess test lines over N, then it will be assumed that 1..N + k was given as the test
plan..

◦ For a test plan of 1..0 the global result will be SKIP. SKIP trumps FAIL. If test lines
are included and if any test line is not ok the global test result will be SKIP not
FAIL.

◦ If all test results are SKIP then the global result will be SKIP, otherwise a single
XPASS will cause the global result to be reported as a FAIL.

◦ In summary

∑test lines .trs
exit

result :recheck: copy

PASS PASS no no 0

FAIL FAIL yes yes 2

SKIP SKIP no yes 77

where

∑test lines global result calculation

result :test-global-result:

:recheck: .recheck:

copy :copy-in-global:

exit tap-driver.sh return value

 15.4.3.2.4.5 Test Class to TAP Test Driver Interface

This is defined as the TAP Protocol in TAP Protocol.

 15.4.4 Parallel Test Cases

 15.4.4.2.4 Test Case Preprocessing

 15.4.4.3 Test Driver to Test Case Interfaces

 15.4.4.4 Test Case to Test Driver Interface

 15.4.5 dejaGnu Test Harness

 15.5 Use of make

 15.6 Examples

	15.4.3.2.4 Test Anything Protocol (TAP) Test Driver
	15.4.3.2.4.1 TAP Protocol
	15.4.3.2.4.2 TAP Makefile.am Variables
	15.4.3.2.4.3 Test Harness to TAP Test Driver Interface
	15.4.3.2.4.4 TAP Test Driver to Test Harness Interface
	15.4.3.2.4.5 Test Class to TAP Test Driver Interface

	15.4.4 Parallel Test Cases
	15.4.4.2.4 Test Case Preprocessing
	15.4.4.3 Test Driver to Test Case Interfaces
	15.4.4.4 Test Case to Test Driver Interface

	15.4.5 dejaGnu Test Harness
	15.5 Use of make
	15.6 Examples

