[Top][All Lists]

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
## Re: [Axiom-developer] Schaums help

**From**: |
root |

**Subject**: |
Re: [Axiom-developer] Schaums help |

**Date**: |
Sat, 3 May 2008 00:10:04 -0400 |

>*> My copy of Schaums (1968, printing 4) shows*
>*>*
>*> 14:334:*
>*>*
>*> int(1/(x*sqrt(x^n-a^n)),x) == 2/(n*sqrt(a^n))*acos(sqrt(a^n/x^n))*
>*>*
>*> It seems this cannot be the answers.*
>*> Can someone with a later version please check for a typo?*
>*>*
>*> Tim*
>*>*
>*>*
>*> _______________________________________________*
>*> Axiom-developer mailing list*
>*> address@hidden*
>*> http://lists.nongnu.org/mailman/listinfo/axiom-developer*
>*>*
>*> *
>*My schaums shows that answer.*
>*also usind Maxima to do the derivative I get the LHS.*
>*(%i5) diff(2/(n*sqrt(a^n))*acos(sqrt(a^n/x^n)),x);*
>*(%o5) (a^n*x^(-n-1))/(sqrt(a^n)*sqrt(a^n/x^n)*sqrt(1-a^n/x^n))*
>*(%i6) radcan(%);*
>*(%o6) 1/(x*sqrt(x^n-a^n))*
If you compute
aa:=integrate(1/(x*sqrt(x^n-a^n)),x)
bb:=2/(n*sqrt(a^n))*acos(sqrt(a^n/x^n))
cc1:=aa.1-bb
cc2:=aa.2-bb
Can you find a simplification path (in Axiom) such that either
cc1 or cc2 simplify to a constant?
Alternatively, can you use Maxima to find the constant?
I'm failing to do either, although I'm still trying.
Tim

**[Axiom-developer] Schaums help**, *daly*, `2008/05/02`
**Re: [Axiom-developer] Schaums help**, *Doug Stewart*, `2008/05/02`
**Re: [Axiom-developer] Schaums help**,
*root* **<=**
**Re: [Axiom-developer] Schaums help**, *Doug Stewart*, `2008/05/02`
**Re: [Axiom-developer] Schaums help**, *Doug Stewart*, `2008/05/03`
**Re: [Axiom-developer] Schaums help**, *root*, `2008/05/03`
**Re: [Axiom-developer] Schaums help**, *Martin Rubey*, `2008/05/03`
**Re: [Axiom-developer] Schaums help**, *root*, `2008/05/03`
**Re: [Axiom-developer] Schaums help**, *Martin Rubey*, `2008/05/03`