axiom-developer
[Top][All Lists]

## [Axiom-developer] docstrings created by aldor

 From: Martin Rubey Subject: [Axiom-developer] docstrings created by aldor Date: 12 Apr 2007 19:45:43 +0200 User-agent: Gnus/5.09 (Gnus v5.9.0) Emacs/21.4

Dear Tim, Waldek,

I'm currently experimenting with libdb.text files generated by aldor when
compiling for axiom.

Would you have an idea why

\adname[CombinatorialSpeciesCategory]{cycleIndexSeries}$\adtype{SetSpecies}(Integer); +++ k: MachineInteger := 3; +++ s: \adthistype{} := \adthisname(x, k); +++ \end{adusage}%$
+++   \begin{addescription}{Stretch a \useterm{cycle index series}.}
+++     For some integer $k$ and a given \useterm{cycle index series}
+++     \begin{gather*}
+++       f = \sum_{n=0}^\infty f_n(x_1,x_2,\ldots,x_n)
+++     \end{gather*}
+++     the function returns a \emph{stretched} series $g$
+++     \begin{gather*}
+++       g = \sum_{n=0}^\infty f_n(x_k,x_{2k},\ldots,x_{nk}).
+++     \end{gather*}
+++     This functions respects the fact that
+++     \adcode$\adname[FormalPowerSeriesCategory]{coefficient}(g,n)$
+++     returns a polynomial of (weighted) degree $n$, \ie, the function
+++     \adcode$\adname[FormalPowerSeriesCategory]{coefficients}(g)$
+++     returns a sequence with gaps of size $k-1$ between actual non-zero
+++     polynomials.

in the aldor source would be transformed into

ostretch2x(_$,ACMachineInteger)->_$dCycleIndexSeries\begin{adusage}
eIndexSeries}$\adtype{SetSpecies}(Integer); k: MachineInteger := 3; s: \adthistype{} := \adthisname(x, k); \end{adusage}%$    \b
egin{addescription}{Stretch a \useterm{cycle index series}.}      For some
integer $k$ and a given \useterm{cycle index series}      \begin{g
ather*}        f = \sum_{n=0}^\infty f_n(x_1,x_2,\ldots,x_n)
\end{gather----------------*}      the function returns a \emph{stretched}
series $g$      \begin{gather*}        g = \sum_{n=0}^\infty
\beg
in{adremarks}      This functions respects the fact that
\adcode$\adname[FormalPowerSeriesCategory]{coefficient}(g,n)$      returns a po
lynomial of (weighted) degree $n$, \ie, the function
\adcode$\adname[FormalPowerSeriesCategory]{coefficients}(g)$      returns a
sequenc
e with gaps o--f --si--ze-- $--k---1$-- b--etween actual non-zero

in libdb.text?

(The line breaks are OK, but the minus signs in

\end{gather----------------*}      the function returns a \emph{stretched}

and

e with gaps o--f --si--ze-- $--k---1$-- b--etween actual non-zero

are terrible!

Some hints:

in the asy file, everything is still ok:

(|symeNameCode| . 798514742)
(|symeTypeCode| . 622595490)))
(|Declare|
|stretch|
(|Apply| -> (|Comma| % |ACMachineInteger|) %)
((|documentation| .

\\adname[CombinatorialSpeciesCategory]{cycleIndexSeries}$\\adtype{SetSpecies}(Integer); k: MachineInteger := 3; s: \\adthistype{} := \\adthisname(x, k); \\end{adusage}%$
For some integer $k$ and a given \\useterm{cycle index series}
\\begin{gather*}
f = \\sum_{n=0}^\\infty f_n(x_1,x_2,\\ldots,x_n)
\\end{gather*}
the function returns a \\emph{stretched} series $g$
\\begin{gather*}
g = \\sum_{n=0}^\\infty f_n(x_k,x_{2k},\\ldots,x_{nk}).
\\end{gather*}
This functions respects the fact that
\\adcode$\\adname[FormalPowerSeriesCategory]{coefficient}(g,n)$
returns a polynomial of (weighted) degree $n$, \\ie, the function
\\adcode$\\adname[FormalPowerSeriesCategory]{coefficients}(g)$
returns a sequence with gaps of size $k-1$ between actual non-zero
polynomials.
")

Also the version in libcombinatax.al is fine.  I could not find any other files
that contain the docstring.

The libdb is created magically when I first )lib the compiled files

Any insight would be great,

Martin