[Top][All Lists]
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [Axiom-developer] The Gosper algorithm for sum of hypergeometric fun
From: |
Francois Maltey |
Subject: |
Re: [Axiom-developer] The Gosper algorithm for sum of hypergeometric functions. |
Date: |
27 Nov 2006 19:24:18 +0100 |
User-agent: |
Gnus/5.09 (Gnus v5.9.0) Emacs/21.4 |
Thanks a lot Martin and Waldek,
In fact I'm looking for testing with axiom the sum that my students do.
I hope that axiom computes right (as the two M....) the most possible series.
By example students search the series bellow.
Are they all hypergeometrics ?
this means that u(n+1) / u(n) is an algébraic fraction
as (n-...)(n-...) - - - (n-...)/(n-...) - - - (n-...)
I believe yes but the cos/cosh/sin/sinh.
In this case the standard way with complex, combine and expand is right.
The very last one can be find by expand sum ... + sum ...
The only real problem is about the malicious sum ((2^((-1)^n), n)
for n even and n odd.
Am I right ?
Theses exercices have a closed form so the Gosper algorithm gives the
solution as a hypergeometric serie.
Am I right (again) ?
How can I use the GosperPackage :
I don't know how to use the signature for the command
GosperMethod (Q, V, ()-> V) -> Union (Q, "failed")
++ GospersMethod(b, n, new) returns a rational function
++ \spad{rf(n)} such that \spad{a(n) * rf(n)} is the indefinite
++ sum of \spad{a(n)}
++ with respect to upward difference on \spad{n}, i.e.
++ \spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},
The package is :
GosperSummationMethod(E, V, R, P, Q): Exports == Impl where
E: OrderedAbelianMonoidSup
V: OrderedSet
R: IntegralDomain
P: PolynomialCategory(R, E, V)
Q: Join(RetractableTo Fraction Integer, Field with
(coerce: P -> %; numer : % -> P; denom : % -> P))
Then can I recognize << with my eyes >> the hypergeometric serie ?
The easiest hypergeometric serie are 0F0 (x)=exp x and 1F0 (a, x)=(1-x)^(-a).
For others functions must I cut the hypergeometric serie in order to recognize
atan, exp and so. Is it possible ?
The main problem is perhaps to simplify (n+1)!/n!,
but an expand/rewrite function can do it, no ?
Martin, I'm sorry but I don't understand what your package do,
And I don't find your package on my silver axiom.
My aim is to force axiom to compute theses exercices about series.
Thanks a lot if you accept to drive me inside theses algorithms.
sum (n^2 * x^n, n=0..%plusInfinity) -- YES
sum (n^3 * x^n, n=0..%plusInfinity) -- YES
sum (x^n / (2*n-1), n=1..%plusInfinity) -- no
sum (1 / (n+1) / (n+3), n=0..%plusInfinity) -- YES
sum (x^n / (n+1) / (n+3), n=0..%plusInfinity) -- no
sum (1 / (4*n^2-1), n=0..%plusInfinity) -- YES
sum ((-1)^n * x^(2*n+1) / (4*n^2-1), n=0..%plusInfinity) -- no
sum ((-1)^n * x^(2*n+1) / (4*n^2-1), n=0..%plusInfinity) -- no
sum (x^n / (4*n-1), n=1..%plusInfinity) -- no
sum ((n+3) * x^n / (2*n+1), n=0..%plusInfinity) -- no
sum (x^n * exp (n*a), n=0..%plusInfinity) -- YES
sum (x^n * cosh (n*a), n=0..%plusInfinity) -- no
sum (x^n * exp (n*a) / n, n=0..%plusInfinity) -- no
sum (x^n * cosh (n*a) / n, n=0..%plusInfinity) -- no
sum (x^n * sin (n*a)^2 / 2^n, n=0..%plusInfinity) -- YES with exp %i
sum (x^n * (n^2+1) / (n+1), n=0..%plusInfinity) -- no
sum (x^n / factorial n, n=0..%plusInfinity) -- no
sum (x^n / factorial (2*n), n=0..%plusInfinity) -- no
sum (x^n * sin (n*a)^2 / factorial (n), n=0..%plusInfinity) -- no
sum (x^n * n^5 / factorial n, n=0..%plusInfinity) -- no
sum (x^(3*n) / factorial (3*n), n=0..%plusInfinity) -- no
sum (x^n * binomial (n+1, 2*n), n=0..%plusInfinity) -- no
sum ((-1)^n * binomial (n, 2*n) / 4^n, n=0..%plusInfinity) -- no
sum (1 / (n^2-1), n=0..%plusInfinity) -- YES
sum (x^n / (n^2-1), n=0..%plusInfinity) -- no
sum (1 / (3*n+1) / (6*n+5), n=0..%plusInfinity) -- no
sum (1 / n / (n-1), n=0..%plusInfinity) -- YES
sum (x^n / n / (n-1), n=0..%plusInfinity) -- no
sum ((4*n+1) / (2*n^2+n-1), n=0..%plusInfinity) -- no
sum ((4*n+1) * x^n / (2*n^2+n-1), n=0..%plusInfinity) -- no
sum ((2^((-1)^n), n=0..%plusInfinity) -- no
sum (a^n * (1+b^n) / n, n=0..%plusInfinity) -- no