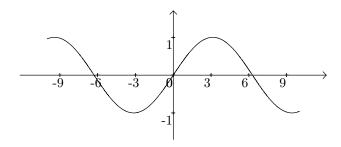
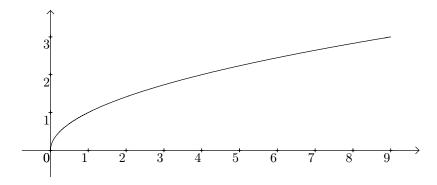
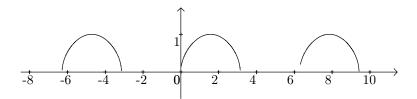
Hasky Plotter (a small Haskell function plotter for $T_{\hbox{\footnotesize E}}X_{\hbox{\scriptsize MACS}}$)


1] Cartesian single curve (function of variable x only)

Step 1 : Introduce the function as : hp plot "f(x)" "(a,b)"

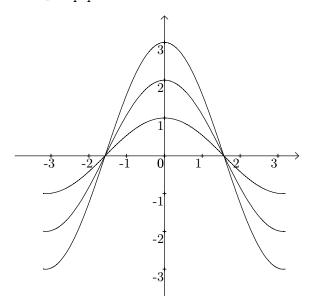

Step 2 : Revert (from the menu File)

Examples:

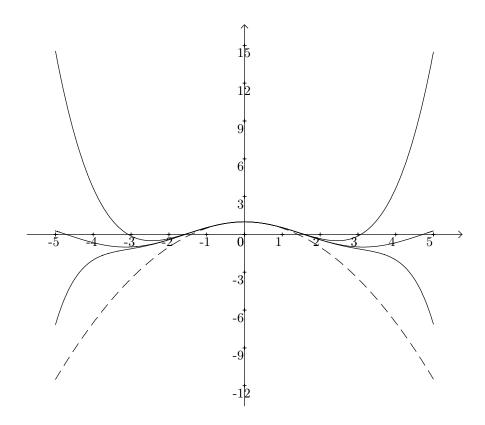

Shell] hp plot "sin(x)" "(-3,3)"

Shell] hp plot "sqrt(x)" "(0,9)"

Shell] hp plot "sqrt(sin(x))" "(-7,10)"


2] Set of n cartesian curves (functions of variable x only)

Step 1 : Introduce the function as : hp plots " $f_1(x)|f_2(x)|...|f_n(x)$ " "(a,b)"


Step 2 : Revert (from the menu File)

Examples

Shell] hp plots "cos(x)|2*cos(x)|3*cos(x)" "(-3.2,3.2)"

Shell] hp plots $"1-x^2/2|1-x^2/2+x^4/24|1-x^2/2+x^4/24-x^6/720|\cos(x)"$ "(-5,5)"


3 Parapetric single curves (x and y functions of t only)

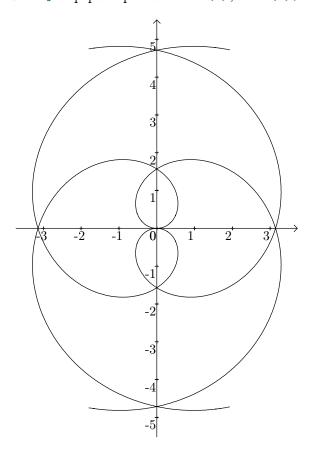
Step 1 : Introduce the function as : hp paramplot " $\mathbf{x}(\mathbf{t}), \mathbf{y}(\mathbf{t})$ " " (t_1, t_2) "

Step 2: Revert (from the menu File)

Example

Shell] hp paramplot $\cos(t), \sin(t) = (-3.1, 3.2)$

4 Set of n parapetric curves (x and y functions of t only)


Step 1: Introduce the function as:

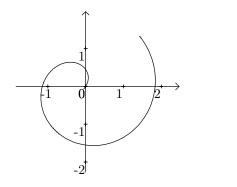
hp paramplots "x₁(t),y₁(t)|x₂(t),y₂(t)|...|x_n(t),y_n(t)" "(t₁,t₂)"

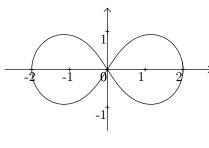
Step 2 : Revert (from the menu File)

Example

Shell] hp paramplots " $t*\cos(t)$, $t*\sin(t)$ | $t*\cos(t)$, $(-t)*\sin(t)$ " "(-5,5)"

5] Polar (parapetric) single curves (r and θ as functions of t only)


Step 1 : Introduce the function as : hp polarplot " $\mathbf{r}(\mathbf{t}), \theta(\mathbf{t})$ " " (t_1, t_2) "

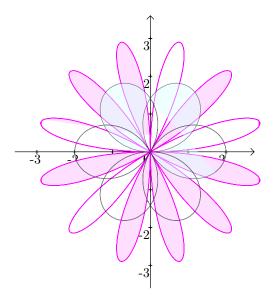

Step 2 : Revert (from the menu File)

exemples

Shell] hp polarplot "log(t),t" "(0,6.3)"

Shell] hp polarplot $2*\cos(t),\sin(t)$ "(0,6.3)"

6 Set of *n* polar (parapetric) curves (r and θ as functions of t only)


Step 1 : Introduce the function as :

hp polar plots "r_1(t),y_1(t)|x_2(t),y_2(t)|...|x_n(t),y_n(t)" "(t_1,t_2)"

Step 2 : Revert (from the menu File)

Example

Shell] hp polarplots $3*\sin(24*t), 4*t|2*\cos(6*t), 4*t" "(0,5)"$

