
Development Report: Incorporating a Genetic Algorithm
Framework into a Multi-agent Modeling System

Jeffrey Fuller and Greg Wolffe

fullerje@student.gvsu.edu, wolffe@gvsu.edu
Dept. of Computer Science

Grand Valley State University
Allendale, MI 49401

Abstract
This project involved the incorporation of varying levels of intelligence into a Swarm-like
simulation system. In particular, it entailed the incorporation of a genetic algorithm
framework into the RePast agent-modeling tool. We describe the details of our
implementation, present some preliminary results, and indicate potential directions for
future research.

Introduction
In order to better understand, and possibly enhance, agent-modeling, we began a project
to merge the capabilities of a genetic algorithms package into an existing simulation
toolkit.

Multi-agent Modeling

RePast (REcursive Porous Agent Simulation Toolkit) is a Swarm-like software
framework written in Java and used to create agent-based simulations. It consists of a
rich library of classes designed to facilitate the modeling of flexible agents imbued with
social characteristics.

Genetic Algorithms

JGAP (Java Genetic Algorithms Package) is a component used for developing an
evolutionary computing approach to problem solving. It includes a set of classes
providing genetic operators (reproduction, crossover, mutation) and the infrastructure
necessary to exploit the principle of natural selection as an optimization mechanism.

Description
RePast and JGAP are both written in Java. They are frameworks with a clean, modular
design that simplified the task of merging the functionality of the two packages.
However, the concept of merging presented several design alternatives as to what level
the genetic algorithm (GA) should be incorporated.

Agent level

When the genetic algorithm is incorporated at the agent level, the possible behaviors of
the agent function as genes. Each agent runs a genetic algorithm that selects the optimal
behavior for that individual agent. A specific agent's behavior "profiles" are mutated and
exchanged in an effort to produce a behavior that is more fit within the circumstances of
that agent.

Model level

Using a GA at the model level implies that agents should be considered genes. The
model runs a genetic algorithm to select, or favor, the optimal agent within the model.
Agents exchange behaviors during reproduction, or pass mutated behaviors on to their
offspring. The fittest agents, original or offspring, persist and flourish throughout the
duration of the simulation.

Population of models level

At the top level, an entire simulation is considered a gene. The genetic algorithm is used
to choose the optimal model from among a population of simulations. Simulation models
exchange agents with each other to create new hybrid models or mutate agents to create
modified models. A global model fitness measure is used to determine which simulations
persist over time.

Results and Discussion
To date we have completed merging the two frameworks at the model level. In order to
incorporate evolutionary behaviors into a simulation, the user should:

Create an agent, which extends the Chromosome class. All genetically mutable
behaviors should be created as genes within an array of genes in the agent. The agent
must override the clone(), and compareTo() methods of the Chromosome class to include
any relevant information in addition to the gene array.

The next step is to implement a fitness function. This is done by extending the fitness
function class, and overriding the evaluate() function.

Within the model, instantiate a new configuration object and fitness function object. To
initialize the configuration object, create a sample chromosome containing the set of
behaviors defined by the gene array designed in the agents. Then initialize the
population, encode the population into an array of chromosomes, and create a genotype
object using the encoded population and the configuration object. Finally, add a
scheduler action to the model that calls the evolve() function of the genotype.

Example

We used the above methodology to add natural selection to the Heat Bug model included
as an example with the RePast toolkit. The model consists of multiple agents (heat bugs)
that each seek their ideal temperature. Each bug emits heat that contributes to the

ambient temperature at the discrete locations within the simulation environment. Since
most bugs’ ideal temperature is higher than the ambient temperature, they seek proximity
with other bugs and tend to “cluster” together for warmth.

The figure below shows the evolving state of the two systems over time (i.e. “ticks” of
the simulation). The group of images labeled “RePast” is the original model included
with the toolkit. The images labeled “GA enhanced” show the effect of incorporating a
genetic algorithm into the model. It appears the genetic algorithm served to amplify the
behavior observed in the original model.

Heat Bug Model

RePast – time 100 RePast – time 1000 RePast – time 2000

GA enhanced – time 100 GA enhanced – time 1000 GA enhanced – time 2000

Summary
We are currently implementing the remaining two levels of integration. We are also
performing additional tests in order to understand the functioning, the possible
capabilities, and the appropriate use of our integrated frameworks.

We are very interested in presenting this work in a venue (poster, workshop) that will
allow us to obtain feedback on our design decisions and interpretation.

