
Computer Notes

An Efficient Algorithm for the
Additive Kinship Matrix
V. Backus and M. Gilpin

In this article we show how object-orient-

ed programming can provide an efficient

method for calculating kinship coeffi-

cients for very large pedigrees—large in

number of individuals or generations, or

both. We call our approach the ‘‘com-

pressed kinship matrix.’’ We use Java as

our object-oriented language, but the

algorithm should be similarly imple-

mented in other object-oriented lan-

guages. The documented source code

and illustrative Java applets are available

on our Web site: www.consbio.com/

kinshipAlgorithm.

Specification of the genealogical rela-

tionships between all individuals in a pop-

ulation is the most complete and

fundamental nonempirical genetic analy-

sis one can perform (Lacy et al. 1995).

Kinship, the probability that two individ-

uals share alleles identical by descent,

plays a central role in the study of these

relationships (Thompson 1976). Al-

though first utilized for human pedigrees,

it is also important for the genetic man-

agement of animals in captive or domes-

ticated settings for which exact paternity

information is available.

The kinship between two individuals is

equal to the inbreeding coefficient an

offspring of theirs would have regardless

of whether the two individuals have

actually mated. Boyce (1983) reviews

the two main computation approaches

for calculating inbreeding and kinship

coefficients: path analysis and recursive

algorithms. Path analysis algorithms lend

themselves to computational problems

on extended pedigrees owing to the large

number of paths that need to be gener-

ated, stored, and searched. For pedigrees

of substantial depth, programming of the

recursive algorithm is more straight-

forward.

The recursive algorithm utilizes the

fact that the kinship between two indi-

viduals, x and y, can be expressed in

terms of the kinship between one of

them, the elder individual, and the

mother and father of the younger. That

is to say, the kinship between two

individuals, x and y, denoted w(x, y),

can be defined by

wðx; yÞ ¼ 0:5ðwðx;/ðyÞÞ þ wðx; qðyÞÞ; ð1Þ

where x is the same age or older than y,

and /(y) and q(y) are the mother and

father of y, respectively. Kinship between

two individuals is a symmetrical relation-

ship, that is, w(x, y) 5 w(y, x); however,

the correct calculation using recursive

algorithms requires that the first individ-

ual, x, be the older in equation (1).

If x and y are the same individual, then

equation (1) becomes

wðx; xÞ ¼ 0:5ð1þ fxÞ; ð2Þ

where fx is the inbreeding coefficient of x.

Unless otherwise known, the initial indi-

viduals founding a pedigree are assumed

to be noninbred and have coefficients of

kinship equal to zero. This assumption,

along with equations (1) and (2), allows

the recursive calculation of w(x, y) to be

implemented in any computer language

that supports recursively defined func-

tions. It also permits a much faster

calculation assuming all the kinships of

older animals are stored; that is, if w(x, /
(y)) and w(x, q(y)) are accessible as

elements of a table or matrix, they can

be quickly retrieved and thereby directly

utilized to determine w(x, y).
There is a practical issue regarding the

use of kinship coefficients. The computer

resources necessary to recursively com-

pute w(x, y) values depend on the depth

of the pedigree and goes up roughly with

the power of the depth of the pedigree. A

different approach is to store the kinship

relationships in a symmetric square

matrix, termed the additive matrix (Bal-

lou 1983). The number of rows and

columns in the matrix are equal to the

number of animals in the pedigree. The

number of rows and columns scale

exactly with pedigree size, but the size

of the kinship matrix itself goes up with

the square of the size of the pedigree.

Both of these issues can lead to storage

or stack overflow problems inside digital

computers. We offer in this note an

efficient algorithm that avoids these two

issues.

Our algorithm is similar in concept to

the additive matrix approach, so there is

no problem with deep recursion. How-

ever, the method avoids having to store

all pairwise kinship coefficients because

it constantly discards all those corre-

sponding to dead animals. For most man-

agement or analysis considerations, only

the kinships between currently living

animals are required. That is, if y is

a newly born animal, its kinships with

all living animals x can be calculated as

the kinship between x and the mother of

y and between x and the father of y, all of

whom have to be living. This saves

a substantial amount of computer mem-

ory; for example, if in a pedigree of 1,000

individuals only 100 are currently alive,

then only a 100 3 100 matrix is required

(10,000 elements), not a 1,000 3 1,000

matrix (1,000,000 elements). We refer to

the kinship matrix of only the living

animals as the ‘‘compressed kinship

matrix’’ and our approach as the ‘‘com-

pressed kinship matrix algorithm,’’ even

though, as discussed below, its imple-

mentation does not involve traditional,

doubly subscripted arrays.

The technique of compressing the size

of the matrix by storing only the kinship

coefficients relating to living or breeding

453

individuals instead of the full pedigree

matrix itself is not new (e.g., Lacy

1993a,b). Implementation of any such

compression algorithm involves two pro-

gramming issues: indexing and matrix

manipulation. Additionally, depending on

the particular language, there can be

issues of memory allocation and deal-

location. Keeping track of only living

animals means the kinship in the ith

row and jth column of the compressed

kinship matrix will not necessarily be the

kinship between animals i and j, where i

and j are the birth order identification

numbers that begin with the founders of

the pedigree. Accessing kinship values in

the array will thus require a one-to-one

mapping between the living animals’

identification numbers and the com-

pressed kinship matrix indices. Keeping

track of only the living animals also

means the compressed kinship matrix

will have to be manipulated for each

birth and each death. New rows and

columns will need to be added when new

animals are born; this will not be difficult,

as these rows and columns will be added

at the far right and bottom edge of the

matrix. Deaths of animals, however,

necessitate the removal of internal rows

and columns. Removing internal rows

and columns means all elements with

higher index numbers in the matrix will

have to be shifted up, to the left, or both,

a very computer-resource intensive

manipulation.

Conventionally solving these two pro-

gramming issues involves writing explicit

programming code to manually adjust

the subscripts in a two-dimensional

array. Our object-oriented solution to

these programming issues avoids writing

code for the manipulation of individual

matrix elements by utilizing standard

classes and methods found in the pro-

gramming language Java 2 SDK, standard

edition, version 1.2.2. Other object-

oriented programming languages (OOPs)

would doubtlessly work in much the

same way. We have developed this

approach for use in individual-based

animal simulation studies of genetic

management strategies, and this will be

the context for our discussion below.

In object-oriented programming lan-

guages, ‘‘objects’’ are created or ‘‘instanti-

ated’’ from classes. In the most generic

sense, classes are similar in architecture

to subroutines of procedural languages,

since they contain both variables and

methods that perform some operation

on or with the variables. In Java, some

classes and their variables can be used

directly; however, for other classes, one

must create an instance of the class. This

instance is referred to as an object. OOPs

allow instantiation of numerous objects of

the same class. The Java language pro-

vides some classes and it likewise allows

individual programmers to construct

their own. We utilize two standard Java

classes,Vector andDouble, anddesign one

custom class, Animal, to construct our

‘‘compressed kinship matrix.’’

Tables in spreadsheet software pack-

ages and arrays in procedural program-

ming languages usually have fixed

dimensions and any manipulation of

their size and shape usually has to be

carried out with user-written code that

requires great computer resources. Java

has a dynamic array class, Vector. Vectors

are one-dimensional constructs that

store objects as indexed lists. Java

provides predefined methods for manip-

ulating the indexed lists. To form a two-

dimensional structure, one needs to have

a Vector object that contains other Vector

objects. While this can be done, we use

a different approach to construct our

‘‘compressed kinship matrix.’’ We let

each individual in a population keep

track of its kinship relationships with

other members of the population in its

own Vector object. By doing this, we de-

compose the additive kinship matrix—a

traditional, doubly subscribed array—

into individuals with indexed lists. To do

this, we first create an Animal class that

has the variables id, mom, dad, and

kinshipWith. The variable id is an integer

representing an Animal object’s identifi-

cation number, and the variables mom

and dad are integers representing the

identification numbers of its mother and

father, respectively. The variable kinship-

With is a Vector object containing the

kinship coefficients of the Animal object

with all the other currently living ani-

mals, including itself. Because Vectors

only store objects, each kinship coeffi-

cient in the kinshipWith Vector object is

stored as an instance of Java’s Double

class. You can think of kinshipWith as

being a single row in the conventional

additive kinship matrix. We instantiate

one Animal object and one kinshipWith

Vector object for each living animal. Next

we instantiate a Vector object called

livingAnimals that contains all the Animal

objects, denoted animal_0, animal_1,

etc., representing the current population.

It is worth noting that because the

livingAnimals Vector contains the current

population and each individual animal in

the population stores its parents’ identi-

fication numbers, the exact pedigree of

the current population can be known at

any time during the simulation.

To begin a simulation we create

a founding population of N animals. The

initial animals will be given identifica-

tions numbered sequentially based on

age. All new animals will have an index

number based on the order of their birth.

The elements of livingAnimals, will natu-

rally be arranged in ascending order,

from oldest to youngest. The Animal

object, animal_0, remains permanently

in the 0th position and represents an

animal outside the population. During

the simulation, livingAnimals is continu-

ally updated and only contains the

current living animals, for example,

something like {animal_0, animal_22,

animal_31, animal_44, animal_46, ani-

mal_102}, which shows that animal_22

is the oldest living animal in the popula-

tion. The length of this Vector is the size

of the compressed additive kinship ma-

trix. The kinship between, say, animals 31

and 44 in an additive matrix would be

stored in either the 31st row and the 44th

column or the 44th row and 31st column.

In our ‘‘compressed kinship matrix,’’

since animal_31 is the second element

of livingAnimals and animal_44 is the

third element, the kinship coefficient

between animal_31 and animal_44 will

be stored in the 3rd position of

animal_31’s kinshipWith and in the

2nd position of animal_44’s kinshipWith

objects. The one-to-one mapping neces-

sary to access kinship coefficients is

accomplished via the Vector methods

that are part of the Java language, the

indexOf() method and the elementAt()

method. In OOPs a ‘‘.’’ operator between

an object and a method means that that

method is applied to the particular ob-

ject. For example, livingAnimals.indexOf

(animal_31) returns 2 and livingAnimals.

elementAt(2) returns animal_31. Thus

the kinship between animal_31 and

animal_44 would be accessed by

animal�31:kinshipWith:elementAt

ðlivingAnimals:indexOfðanimal�44ÞÞ:

During simulation, animals will be born

and will die. The maintenance of all the

kinship relationships that occurs with

demographic events, the adding of

kinship coefficients associated with

newborns and the deleting of the

coefficients associated with deceased

454 The Journal of Heredity 2002:93(6)

animals, is handled by the two Vector

methods already discussed and four

additional methods, addElement(), in-

sertElementAt(), removeElement(),

and removeElementAt(). Death is han-

dled straightforwardly. For example, as-

sume animal_31 dies in the livingAnimals

Vector given above, one could do living-

Animals.removeElementAt(2) or living-

Animals.removeElement(animal_31), and

with either of these livingAnimals would

become {animal_0, animal_22, animal_44,

animal_46, animal_102} and it would be

one element smaller in size. The Java

language handles all lower-level compu-

tational tasks, such as adjustment of

indices and memory allocation, associat-

ed with such manipulations. Next, all the

kinship coefficients in the second posi-

tion of all the still living animals’ kinship-

With objects need to be removed. In

pseudo-code, this is carried out in the

loop:

for each animal object in the
livingAnimals Vector

use removeElement At() to
remove the element in the
animal’s kinshipWith Vector

at position 2

next animal

Finally, animal_31 has been utilizing

computer memory to store all of its

instance variables. These resources need

to be freed. The programmer executes

the statement

animal_31 5 null.

Java has what is termed run-time garbage

collection. That is, there is a process (a

thread) running in the background look-

ing for disposable objects. Disposable

objects are objects that have been set

equal to null or are no longer referenced

by any other objects. It automatically

returns the memory associated with such

objects.

Handling births is similarly straightfor-

ward. If a new animal is born, say, an

animal with id 5 103, a new object is

created from the Animal class. First, this

new object is added to the end of the

livingAnimals Vector with the statement

livingAnimals.addElement
(animal_103).

If the size of livingAnimals needs to be

increased, Java handles the task of

allocating additional memory. Next, its

kinship with all other animals in living-

Animals, including itself, is calculated

using equations (1) and (2). These calcu-

lations do not require recursive opera-

tions, but are directly obtained via

lookup once the position of animal_103’s

mother and father are obtained using the

indexOf() method as discussed above.

The kinship between an older animal_i

and animal_103 then becomes the aver-

age of the kinship between animal_i and

/(animal_103) and the kinship between

animal_i and q(animal_103). The values

are then entered subsequently as ele-

ments, in the appropriate position, in the

kinshipWith objects of all the animals

using the insertElementAt() method.

The pseudo-code looks like this:

use indexOf() to find the
index in livingAnimals Vector

of animal_103

for each animal object in the
livingAnimals Vector

use indexOf() to find the in-
dex of the animal object

use indexOf() to find the in-
dex of animal_103’s mother
and father

calculate the kinship coef-
ficient between the animal
object and animal_103, using
equations (1) and (2)

use insertElementAt() to in-
sert the calculated kinship
coefficient into ani-
mal_103’s
kinshipWith Vector at index
position of the animal object

use insertElementAt() to in-
sert the calculated kinship
coefficient into the animal
object’s kinshipWith Vector

at index position of the ani-
mal_103

next animal.

There are some concerns regarding the

speed of Java. In 1995, when Sun Micro-

systems, Inc., first introduced Java, it was

promoted as the ‘‘write once run any-

way’’ programming language. This versa-

tility is obtained by partially compiling

a Java program into bytecode that is not

computer or operating system specific.

The byte code then is ‘‘interpreted’’ by

Java’s Virtual Machine (JVM) into execut-

able instructions for a specific platform’s

CPU. Compilers for programming lan-

guages like C and C11, on the other

hand, translate programming code into

native machine language that is platform

specific. Interpretation is inherently slow

and is why Java initially obtained the

reputation of being a slow language.

However, more recent versions of the

JVM come with a ‘‘just-in-time’’ (JIT)

compiler. A JIT translates and stores

entire class files, eliminating the need to

repeatedly ‘‘interpret’’ the same byte

code to machine language. Tests show

that with the use of Java’s JIT compilers,

Java can be as fast as C11 (Mangione

1998).

Ignoring the relatively minor issue of

execution speed, our intent is to provide

object-oriented programmers with a tech-

nique that minimizes programming effort

by utilizing vendor-defined classes and

methods, as well as to provide individual-

based modelers with a technique that

is congruent with the individual-based

modeling perspective. For individual-

based modeling, it seems appropriate

that each individual should itself store

and maintain a record of its kinship

relationship to all other individuals in

a population.

This completes the discussion of the

compressed kinship matrix algorithm.

We used Java’s dynamic array class,

Vector, and its associated methods to

solve the indexing and matrix manipula-

tion issues necessary for its implementa-

tion. We have performed the kinship

coefficient calculations for a panmictic

population of 100 animals for 100 non-

overlapping generations and determined

the mean kinship and its variance for the

population in each generation. A Java

applet demonstrating our procedures for

a set number of individuals in a compara-

ble simulation is available at ourWeb site:

http://www.consbio.com/kinshipAlgorithm.

Detailed documentation of the actual Java

source code for our algorithm, together

with a simplified but similar simulation, is

likewise provided.

From the University of Utah, Department of Geogra-
phy, Salt Lake City, UT 84112, and Montana State
University, Department of Ecology and Evolution,
Bozeman, MT 59717. This work was supported by
a University of Utah Graduate Research Fellowship
and NSF Grant 58500721 to Vickie Backus. We would
like to thank Eric Ward, Chris Ray, and two
anonymous reviewers for helpful comments on the
manuscript. Address all correspondence to Vickie
Backus at the address above, or e-mail: vickie.
backus@geog.utah.edu.

� 2002 The American Genetic Association

Computer Notes 455

References

Ballou JD, 1983. Calculating inbreeding coefficients
from pedigrees. In: Genetics and conservation:
a reference for managing wild animal and plant
populations (Schonewald-Cox CM, Chambers SM,
MacBryde B, and Thomas WL, eds). Menlo Park,
CA: Benjamin/Cummings; 509–520.

Boyce AJ, 1983. Computation of inbreeding and
kinship coefficients on extended pedigrees. J Hered
74:400–404.

Lacy RC, 1993a. GENES: a computer program for the
analysis of pedigrees and genetic management.
Brookfield, IL: Chicago Zoological Society.

Lacy RC, 1993b. VORTEX: a computer simulation
model for population viability analysis. Wildlife Res
20:45–65.

Lacy RC, Ballou JD, Princée F, Starfield A, and
Thompson EA, 1995. Pedigree analysis for population
management. In: Population management for survival
and recovery (Ballou JD, Gilpin M, and Foose TJ, eds).
New York: Columbia University Press; 57–75.

Mangione C, 1998. Performance tests show Java
as fast as C11. Accessed at JavaWorld on
August 28, 2002, at www.javaworld.com/jw-02-1998/
jw-02-jperf.html.

Sun Microsystems, Inc. JavaTM 2 SDK, standard
edition, version 1.2.2. Accessed on August 28, 2002,
at http://java.sun.com/products.

Thompson EA, 1976. Inference of genealogical struc-
ture. Soc Sci Info 15:477–526.

Received May 11, 2002
Accepted October 1, 2002

Corresponding Editor: Stephen J. O’Brien

456 The Journal of Heredity 2002:93(6)

