qemu-devel
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [Qemu-devel] [PATCH v2 13/13] net: Introduce e1000e device emulation


From: Jason Wang
Subject: Re: [Qemu-devel] [PATCH v2 13/13] net: Introduce e1000e device emulation
Date: Tue, 8 Mar 2016 17:31:29 +0800
User-agent: Mozilla/5.0 (X11; Linux x86_64; rv:38.0) Gecko/20100101 Thunderbird/38.5.1


On 02/23/2016 01:37 AM, Leonid Bloch wrote:
> From: Dmitry Fleytman <address@hidden>
>
> This patch introduces emulation for the Intel 82574 adapter, AKA e1000e.
>
> This implementation is derived from the e1000 emulation code, and
> utilizes the TX/RX packet abstractions that were initially developed for
> the vmxnet3 device. Although some parts of the introduced code may be
> shared with e1000, the differences are substantial enough so that the
> only shared resources for the two devices are the definitions in
> hw/net/e1000_regs.h.
>
> Similarly to vmxnet3, the new device uses virtio headers for task
> offloads (for backends that support virtio extensions). Usage of
> virtio headers may be forcibly disabled via a boolean device property
> "vnet" (which is enabled by default). In such case task offloads
> will be performed in software, in the same way it is done on
> backends that do not support virtio headers.
>
> The device code is split into two parts:
>
>   1. hw/net/e1000e.c: QEMU-specific code for a network device;
>   2. hw/net/e1000e_core.[hc]: Device emulation according to the spec.
>
> The new device name is e1000e.
>
> Intel specifications for the 82574 controller are available at:
> http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
>
> Throughput measurement results (iperf2):
>
>                 Fedora 22 guest, TCP, RX
>     4 ++------------------------------------------+
>       |                                           |
>       |                           X   X   X   X   X
>   3.5 ++          X   X   X   X                   |
>       |       X                                   |
>       |                                           |
>     3 ++                                          |
> G     |   X                                       |
> b     |                                           |
> / 2.5 ++                                          |
> s     |                                           |
>       |                                           |
>     2 ++                                          |
>       |                                           |
>       |                                           |
>   1.5 X+                                          |
>       |                                           |
>       +   +   +   +   +   +   +   +   +   +   +   +
>     1 ++--+---+---+---+---+---+---+---+---+---+---+
>      32  64  128 256 512  1   2   4   8  16  32  64
>       B   B   B   B   B   KB  KB  KB  KB KB  KB  KB
>                        Buffer size
>
>                Fedora 22 guest, TCP, TX
>   18 ++-------------------------------------------+
>      |                        X                   |
>   16 ++                           X   X   X   X   X
>      |                   X                        |
>   14 ++                                           |
>      |                                            |
>   12 ++                                           |
> G    |               X                            |
> b 10 ++                                           |
> /    |                                            |
> s  8 ++                                           |
>      |                                            |
>    6 ++          X                                |
>      |                                            |
>    4 ++                                           |
>      |       X                                    |
>    2 ++  X                                        |
>      X   +   +   +   +   +    +   +   +   +   +   +
>    0 ++--+---+---+---+---+----+---+---+---+---+---+
>     32  64  128 256 512  1    2   4   8  16  32  64
>      B   B   B   B   B   KB   KB  KB  KB KB  KB  KB
>                        Buffer size
>
>                 Fedora 22 guest, UDP, RX
>     3 ++------------------------------------------+
>       |                                           X
>       |                                           |
>   2.5 ++                                          |
>       |                                           |
>       |                                           |
>     2 ++                                 X        |
> G     |                                           |
> b     |                                           |
> / 1.5 ++                                          |
> s     |                         X                 |
>       |                                           |
>     1 ++                                          |
>       |                                           |
>       |                 X                         |
>   0.5 ++                                          |
>       |        X                                  |
>       X        +        +       +        +        +
>     0 ++-------+--------+-------+--------+--------+
>      32       64       128     256      512       1
>       B        B         B       B        B      KB
>                        Datagram size
>
>                 Fedora 22 guest, UDP, TX
>     1 ++------------------------------------------+
>       |                                           X
>   0.9 ++                                          |
>       |                                           |
>   0.8 ++                                          |
>   0.7 ++                                          |
>       |                                           |
> G 0.6 ++                                          |
> b     |                                           |
> / 0.5 ++                                          |
> s     |                                  X        |
>   0.4 ++                                          |
>       |                                           |
>   0.3 ++                                          |
>   0.2 ++                        X                 |
>       |                                           |
>   0.1 ++                X                         |
>       X        X        +       +        +        +
>     0 ++-------+--------+-------+--------+--------+
>      32       64       128     256      512       1
>       B        B         B       B        B      KB
>                        Datagram size
>
>               Windows 2012R2 guest, TCP, RX
>   3.2 ++------------------------------------------+
>       |                                   X       |
>     3 ++                                          |
>       |                                           |
>   2.8 ++                                          |
>       |                                           |
>   2.6 ++                              X           |
> G     |   X                   X   X           X   X
> b 2.4 ++      X       X                           |
> /     |                                           |
> s 2.2 ++                                          |
>       |                                           |
>     2 ++                                          |
>       |           X       X                       |
>   1.8 ++                                          |
>       |                                           |
>   1.6 X+                                          |
>       +   +   +   +   +   +   +   +   +   +   +   +
>   1.4 ++--+---+---+---+---+---+---+---+---+---+---+
>      32  64  128 256 512  1   2   4   8  16  32  64
>       B   B   B   B   B   KB  KB  KB  KB KB  KB  KB
>                        Buffer size
>
>              Windows 2012R2 guest, TCP, TX
>   14 ++-------------------------------------------+
>      |                                            |
>      |                                        X   X
>   12 ++                                           |
>      |                                            |
>   10 ++                                           |
>      |                                            |
> G    |                                            |
> b  8 ++                                           |
> /    |                                    X       |
> s  6 ++                                           |
>      |                                            |
>      |                                            |
>    4 ++                               X           |
>      |                                            |
>    2 ++                                           |
>      |           X   X            X               |
>      +   X   X   +   +   X    X   +   +   +   +   +
>    0 X+--+---+---+---+---+----+---+---+---+---+---+
>     32  64  128 256 512  1    2   4   8  16  32  64
>      B   B   B   B   B   KB   KB  KB  KB KB  KB  KB
>                        Buffer size
>
>               Windows 2012R2 guest, UDP, RX
>   1.6 ++------------------------------------------X
>       |                                           |
>   1.4 ++                                          |
>       |                                           |
>   1.2 ++                                          |
>       |                                  X        |
>       |                                           |
> G   1 ++                                          |
> b     |                                           |
> / 0.8 ++                                          |
> s     |                                           |
>   0.6 ++                        X                 |
>       |                                           |
>   0.4 ++                                          |
>       |                 X                         |
>       |                                           |
>   0.2 ++       X                                  |
>       X        +        +       +        +        +
>     0 ++-------+--------+-------+--------+--------+
>      32       64       128     256      512       1
>       B        B         B       B        B      KB
>                        Datagram size
>
>               Windows 2012R2 guest, UDP, TX
>   0.6 ++------------------------------------------+
>       |                                           X
>       |                                           |
>   0.5 ++                                          |
>       |                                           |
>       |                                           |
>   0.4 ++                                          |
> G     |                                           |
> b     |                                           |
> / 0.3 ++                                 X        |
> s     |                                           |
>       |                                           |
>   0.2 ++                                          |
>       |                                           |
>       |                         X                 |
>   0.1 ++                                          |
>       |                 X                         |
>       X        X        +       +        +        +
>     0 ++-------+--------+-------+--------+--------+
>      32       64       128     256      512       1
>       B        B         B       B        B      KB
>                        Datagram size
>
> Signed-off-by: Dmitry Fleytman <address@hidden>
> Signed-off-by: Leonid Bloch <address@hidden>
> ---
>  MAINTAINERS                |    6 +
>  default-configs/pci.mak    |    1 +
>  docs/specs/e1000e-spec.txt |   17 +
>  hw/net/Makefile.objs       |    3 +-
>  hw/net/e1000_regs.h        |    6 +-
>  hw/net/e1000e.c            |  718 +++++++++
>  hw/net/e1000e_core.c       | 3673 
> ++++++++++++++++++++++++++++++++++++++++++++
>  hw/net/e1000e_core.h       |  230 +++
>  trace-events               |  170 ++
>  9 files changed, 4820 insertions(+), 4 deletions(-)
>  create mode 100644 docs/specs/e1000e-spec.txt
>  create mode 100644 hw/net/e1000e.c
>  create mode 100644 hw/net/e1000e_core.c
>  create mode 100644 hw/net/e1000e_core.h
>
> diff --git a/MAINTAINERS b/MAINTAINERS
> index 3a7c108..f98e8aa 100644
> --- a/MAINTAINERS
> +++ b/MAINTAINERS
> @@ -964,6 +964,12 @@ F: hw/acpi/nvdimm.c
>  F: hw/mem/nvdimm.c
>  F: include/hw/mem/nvdimm.h
>  
> +e1000e
> +M: Dmitry Fleytman <address@hidden>
> +S: Maintained
> +F: hw/net/e1000e*
> +F: docs/specs/e1000e-spec.txt

 Not sure this is really needed, keeping the spec out of the date with
code seems a burden.

> +
>  Subsystems
>  ----------
>  Audio
> diff --git a/default-configs/pci.mak b/default-configs/pci.mak
> index 4fa9a28..51411ae 100644
> --- a/default-configs/pci.mak
> +++ b/default-configs/pci.mak
> @@ -18,6 +18,7 @@ CONFIG_MEGASAS_SCSI_PCI=y
>  CONFIG_MPTSAS_SCSI_PCI=y
>  CONFIG_RTL8139_PCI=y
>  CONFIG_E1000_PCI=y
> +CONFIG_E1000E_PCI=y
>  CONFIG_VMXNET3_PCI=y
>  CONFIG_IDE_CORE=y
>  CONFIG_IDE_QDEV=y
> diff --git a/docs/specs/e1000e-spec.txt b/docs/specs/e1000e-spec.txt
> new file mode 100644
> index 0000000..6460a4d
> --- /dev/null
> +++ b/docs/specs/e1000e-spec.txt
> @@ -0,0 +1,17 @@
> +e1000e network device is Intel 82574 GbE NIC emulation
> +
> +Implemented according to Intel specification:
> +http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
> +
> +Device properties:
> +
> ++-------------------------------------------------+--------+---------+
> +| Propery name   |         Description            |  Type  | Default |
> ++--------------------------------------------------------------------|
> +|  subsys_ven    | PCI device Subsystem Vendor ID | UINT16 | 0x8086  |
> +|                |                                |        |         |
> +|  subsys        | PCI device Subsystem ID        | UINT16 | 0       |
> +|                |                                |        |         |
> +|  vnet          | Use virtio headers or perform  | BOOL   | TRUE    |
> +|                | SW offloads emulation          |        |         |
> ++----------------+--------------------------------+--------+---------+

You may using PropertyInfo which has a "description" field to do this
better (e.g qdev_prop_vlan). Then there's even no need for this file.

> diff --git a/hw/net/Makefile.objs b/hw/net/Makefile.objs
> index 527d264..4201115 100644
> --- a/hw/net/Makefile.objs
> +++ b/hw/net/Makefile.objs
> @@ -6,7 +6,8 @@ common-obj-$(CONFIG_NE2000_PCI) += ne2000.o
>  common-obj-$(CONFIG_EEPRO100_PCI) += eepro100.o
>  common-obj-$(CONFIG_PCNET_PCI) += pcnet-pci.o
>  common-obj-$(CONFIG_PCNET_COMMON) += pcnet.o
> -common-obj-$(CONFIG_E1000_PCI) += e1000.o
> +common-obj-$(CONFIG_E1000_PCI) += e1000.o e1000e_core.o
> +common-obj-$(CONFIG_E1000E_PCI) += e1000e.o e1000e_core.o
>  common-obj-$(CONFIG_RTL8139_PCI) += rtl8139.o
>  common-obj-$(CONFIG_VMXNET3_PCI) += net_tx_pkt.o net_rx_pkt.o
>  common-obj-$(CONFIG_VMXNET3_PCI) += vmxnet3.o
> diff --git a/hw/net/e1000_regs.h b/hw/net/e1000_regs.h
> index d62b3fa..0c56e78 100644
> --- a/hw/net/e1000_regs.h
> +++ b/hw/net/e1000_regs.h
> @@ -29,8 +29,8 @@
>   * Structures, enums, and macros for the MAC
>   */
>  
> -#ifndef _E1000_HW_H_
> -#define _E1000_HW_H_
> +#ifndef E1000_HW_H
> +#define E1000_HW_H

If there's no special reason, please do not do unnecessary changes like
this.

>  
>  
>  /* PCI Device IDs */
> @@ -1244,4 +1244,4 @@ struct e1000_data_desc {
>  #define E1000_IOADDR 0x00
>  #define E1000_IODATA 0x04
>  
> -#endif /* _E1000_HW_H_ */
> +#endif /* E1000_HW_H */
> diff --git a/hw/net/e1000e.c b/hw/net/e1000e.c
> new file mode 100644
> index 0000000..915d094
> --- /dev/null
> +++ b/hw/net/e1000e.c
> @@ -0,0 +1,718 @@
> +/*
> +* QEMU INTEL 82574 GbE NIC emulation
> +*
> +* Software developer's manuals:
> +* 
> http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
> +*
> +* Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
> +* Developed by Daynix Computing LTD (http://www.daynix.com)
> +*
> +* Authors:
> +* Dmitry Fleytman <address@hidden>
> +* Leonid Bloch <address@hidden>
> +* Yan Vugenfirer <address@hidden>
> +*
> +* Based on work done by:
> +* Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
> +* Copyright (c) 2008 Qumranet
> +* Based on work done by:
> +* Copyright (c) 2007 Dan Aloni
> +* Copyright (c) 2004 Antony T Curtis
> +*
> +* This library is free software; you can redistribute it and/or
> +* modify it under the terms of the GNU Lesser General Public
> +* License as published by the Free Software Foundation; either
> +* version 2 of the License, or (at your option) any later version.
> +*
> +* This library is distributed in the hope that it will be useful,
> +* but WITHOUT ANY WARRANTY; without even the implied warranty of
> +* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
> +* Lesser General Public License for more details.
> +*
> +* You should have received a copy of the GNU Lesser General Public
> +* License along with this library; if not, see 
> <http://www.gnu.org/licenses/>.
> +*/
> +#include "net/net.h"
> +#include "net/tap.h"
> +#include "sysemu/sysemu.h"
> +#include "hw/pci/msi.h"
> +#include "hw/pci/msix.h"
> +
> +#include "hw/net/e1000_regs.h"
> +
> +#include "e1000e_core.h"
> +
> +#include "trace.h"
> +
> +#define TYPE_E1000E "e1000e"
> +#define E1000E(obj) OBJECT_CHECK(E1000EState, (obj), TYPE_E1000E)
> +
> +typedef struct {
> +    PCIDevice parent_obj;
> +    NICState *nic;
> +    NICConf conf;
> +
> +    MemoryRegion mmio;
> +    MemoryRegion flash;

Looks there's no real implementation for flash. So is this really needed
(e.g did WHQL or other test check for this?).

> +    MemoryRegion io;
> +    MemoryRegion msix;
> +
> +    uint32_t ioaddr;
> +
> +    uint16_t subsys_ven;
> +    uint16_t subsys;
> +
> +    uint16_t subsys_ven_used;
> +    uint16_t subsys_used;
> +
> +    uint32_t intr_state;
> +    bool use_vnet;
> +
> +    E1000ECore core;

What's the advantages of introducing another indirection level here?
Looks like it causes lots of extra code overheads.

> +
> +} E1000EState;
> +
> +#define E1000E_MMIO_IDX     0
> +#define E1000E_FLASH_IDX    1
> +#define E1000E_IO_IDX       2
> +#define E1000E_MSIX_IDX     3
> +
> +#define E1000E_MMIO_SIZE    (128 * 1024)
> +#define E1000E_FLASH_SIZE   (128 * 1024)
> +#define E1000E_IO_SIZE      (32)
> +#define E1000E_MSIX_SIZE    (16 * 1024)
> +
> +#define E1000E_MSIX_TABLE   (0x0000)
> +#define E1000E_MSIX_PBA     (0x2000)
> +
> +#define E1000E_USE_MSI     BIT(0)
> +#define E1000E_USE_MSIX    BIT(1)
> +
> +static uint64_t
> +e1000e_mmio_read(void *opaque, hwaddr addr, unsigned size)
> +{
> +    E1000EState *s = opaque;
> +    return e1000e_core_read(&s->core, addr, size);
> +}
> +
> +static void
> +e1000e_mmio_write(void *opaque, hwaddr addr,
> +                   uint64_t val, unsigned size)
> +{
> +    E1000EState *s = opaque;
> +    e1000e_core_write(&s->core, addr, val, size);
> +}
> +
> +static uint64_t
> +e1000e_flash_read(void *opaque, hwaddr addr, unsigned size)
> +{
> +    trace_e1000e_wrn_flash_read(addr);
> +    return 0;
> +}
> +
> +static void
> +e1000e_flash_write(void *opaque, hwaddr addr,
> +                    uint64_t val, unsigned size)
> +{
> +    trace_e1000e_wrn_flash_write(addr, val);
> +}
> +
> +static bool
> +e1000e_io_get_reg_index(E1000EState *s, uint32_t *idx)
> +{
> +    if (s->ioaddr < 0x1FFFF) {
> +        *idx = s->ioaddr;
> +        return true;
> +    }
> +
> +    if (s->ioaddr < 0x7FFFF) {
> +        trace_e1000e_wrn_io_addr_undefined(s->ioaddr);
> +        return false;
> +    }
> +
> +    if (s->ioaddr < 0xFFFFF) {
> +        trace_e1000e_wrn_io_addr_flash(s->ioaddr);
> +        return false;
> +    }
> +
> +    trace_e1000e_wrn_io_addr_unknown(s->ioaddr);
> +    return false;
> +}
> +
> +static uint64_t
> +e1000e_io_read(void *opaque, hwaddr addr, unsigned size)
> +{
> +    E1000EState *s = opaque;
> +    uint32_t idx;
> +    uint64_t val;
> +
> +    switch (addr) {
> +    case E1000_IOADDR:
> +        trace_e1000e_io_read_addr(s->ioaddr);
> +        return s->ioaddr;
> +    case E1000_IODATA:
> +        if (e1000e_io_get_reg_index(s, &idx)) {
> +            val = e1000e_core_read(&s->core, idx, sizeof(val));
> +            trace_e1000e_io_read_data(idx, val);
> +            return val;
> +        }
> +        return 0;
> +    default:
> +        trace_e1000e_wrn_io_read_unknown(addr);
> +        return 0;
> +    }
> +}
> +
> +static void
> +e1000e_io_write(void *opaque, hwaddr addr,
> +                uint64_t val, unsigned size)
> +{
> +    E1000EState *s = opaque;
> +    uint32_t idx;
> +
> +    switch (addr) {
> +    case E1000_IOADDR:
> +        trace_e1000e_io_write_addr(val);
> +        s->ioaddr = (uint32_t) val;
> +        return;
> +    case E1000_IODATA:
> +        if (e1000e_io_get_reg_index(s, &idx)) {
> +            trace_e1000e_io_write_data(idx, val);
> +            e1000e_core_write(&s->core, idx, val, sizeof(val));
> +        }
> +        return;
> +    default:
> +        trace_e1000e_wrn_io_write_unknown(addr);
> +        return;
> +    }
> +}
> +
> +static const MemoryRegionOps mmio_ops = {
> +    .read = e1000e_mmio_read,
> +    .write = e1000e_mmio_write,
> +    .endianness = DEVICE_LITTLE_ENDIAN,
> +    .impl = {
> +        .min_access_size = 4,
> +        .max_access_size = 4,
> +    },
> +};
> +
> +static const MemoryRegionOps flash_ops = {
> +    .read = e1000e_flash_read,
> +    .write = e1000e_flash_write,
> +    .endianness = DEVICE_LITTLE_ENDIAN,
> +    .impl = {
> +        .min_access_size = 4,
> +        .max_access_size = 4,
> +    },
> +};
> +
> +static const MemoryRegionOps io_ops = {
> +    .read = e1000e_io_read,
> +    .write = e1000e_io_write,
> +    .endianness = DEVICE_LITTLE_ENDIAN,
> +    .impl = {
> +        .min_access_size = 4,
> +        .max_access_size = 4,
> +    },
> +};
> +
> +static int
> +e1000e_nc_can_receive(NetClientState *nc)
> +{
> +    E1000EState *s = qemu_get_nic_opaque(nc);
> +    return e1000e_can_receive(&s->core);
> +}
> +
> +static ssize_t
> +e1000e_nc_receive_iov(NetClientState *nc, const struct iovec *iov, int 
> iovcnt)
> +{
> +    E1000EState *s = qemu_get_nic_opaque(nc);
> +    return e1000e_receive_iov(&s->core, iov, iovcnt);
> +}
> +
> +static ssize_t
> +e1000e_nc_receive(NetClientState *nc, const uint8_t *buf, size_t size)
> +{
> +    E1000EState *s = qemu_get_nic_opaque(nc);
> +    return e1000e_receive(&s->core, buf, size);
> +}
> +
> +static void
> +e1000e_set_link_status(NetClientState *nc)
> +{
> +    E1000EState *s = qemu_get_nic_opaque(nc);
> +    e1000e_core_set_link_status(&s->core);
> +}
> +
> +static NetClientInfo net_e1000e_info = {
> +    .type = NET_CLIENT_OPTIONS_KIND_NIC,
> +    .size = sizeof(NICState),
> +    .can_receive = e1000e_nc_can_receive,
> +    .receive = e1000e_nc_receive,
> +    .receive_iov = e1000e_nc_receive_iov,

All of the above three functions has a NetClientState parameter, so
probably no need to have "nc" in their name.

> +    .link_status_changed = e1000e_set_link_status,
> +};
> +
> +/*
> +* EEPROM (NVM) contents documented in Table 36, section 6.1.
> +*/
> +static const uint16_t e1000e_eeprom_template[64] = {
> +  /*        Address        |    Compat.    | ImVer |   Compat.     */
> +    0x0000, 0x0000, 0x0000, 0x0420, 0xf746, 0x2010, 0xffff, 0xffff,
> +  /*      PBA      |ICtrl1 | SSID  | SVID  | DevID |-------|ICtrl2 */
> +    0x0000, 0x0000, 0x026b, 0x0000, 0x8086, 0x0000, 0x0000, 0x8058,
> +  /*    NVM words 1,2,3    |-------------------------------|PCI-EID*/
> +    0x0000, 0x2001, 0x7e7c, 0xffff, 0x1000, 0x00c8, 0x0000, 0x2704,
> +  /* PCIe Init. Conf 1,2,3 |PCICtrl|PHY|LD1|-------| RevID | LD0,2 */
> +    0x6cc9, 0x3150, 0x070e, 0x460b, 0x2d84, 0x0100, 0xf000, 0x0706,
> +  /* FLPAR |FLANADD|LAN-PWR|FlVndr |ICtrl3 |APTSMBA|APTRxEP|APTSMBC*/
> +    0x6000, 0x0080, 0x0f04, 0x7fff, 0x4f01, 0xc600, 0x0000, 0x20ff,
> +  /* APTIF | APTMC |APTuCP |LSWFWID|MSWFWID|NC-SIMC|NC-SIC | VPDP  */
> +    0x0028, 0x0003, 0x0000, 0x0000, 0x0000, 0x0003, 0x0000, 0xffff,
> +  /*                            SW Section                         */
> +    0x0100, 0xc000, 0x121c, 0xc007, 0xffff, 0xffff, 0xffff, 0xffff,
> +  /*                      SW Section                       |CHKSUM */
> +    0xffff, 0xffff, 0xffff, 0xffff, 0x0000, 0x0120, 0xffff, 0x0000,
> +};
> +
> +static void e1000e_core_reinitialize(E1000EState *s)
> +{
> +    s->core.owner = &s->parent_obj;
> +    s->core.owner_nic = s->nic;
> +}
> +
> +static void
> +e1000e_init_msi(E1000EState *s)
> +{
> +    int res;
> +
> +    res = msi_init(PCI_DEVICE(s),
> +                   0xD0,   /* MSI capability offset              */
> +                   1,      /* MAC MSI interrupts                 */
> +                   true,   /* 64-bit message addresses supported */
> +                   false); /* Per vector mask supported          */
> +
> +    if (res > 0) {
> +        s->intr_state |= E1000E_USE_MSI;
> +    } else {
> +        trace_e1000e_msi_init_fail(res);
> +    }
> +}
> +
> +static void
> +e1000e_cleanup_msi(E1000EState *s)
> +{
> +    if (s->intr_state & E1000E_USE_MSI) {
> +        msi_uninit(PCI_DEVICE(s));
> +    }
> +}
> +
> +static void
> +e1000e_unuse_msix_vectors(E1000EState *s, int num_vectors)
> +{
> +    int i;
> +    for (i = 0; i < num_vectors; i++) {
> +        msix_vector_unuse(PCI_DEVICE(s), i);
> +    }
> +}
> +
> +static bool
> +e1000e_use_msix_vectors(E1000EState *s, int num_vectors)
> +{
> +    int i;
> +    for (i = 0; i < num_vectors; i++) {
> +        int res = msix_vector_use(PCI_DEVICE(s), i);
> +        if (res < 0) {
> +            trace_e1000e_msix_use_vector_fail(i, res);
> +            e1000e_unuse_msix_vectors(s, i);
> +            return false;
> +        }
> +    }
> +    return true;
> +}
> +
> +static void
> +e1000e_init_msix(E1000EState *s)
> +{
> +    PCIDevice *d = PCI_DEVICE(s);
> +    int res = msix_init(PCI_DEVICE(s), E1000E_MSIX_VEC_NUM,
> +                        &s->msix,
> +                        E1000E_MSIX_IDX, E1000E_MSIX_TABLE,
> +                        &s->msix,
> +                        E1000E_MSIX_IDX, E1000E_MSIX_PBA,
> +                        0xA0);
> +
> +    if (0 > res) {

I see something like "res > 0" somewhere, please use a consistent style.

> +        trace_e1000e_msix_init_fail(res);
> +    } else {
> +        if (!e1000e_use_msix_vectors(s, E1000E_MSIX_VEC_NUM)) {
> +            msix_uninit(d, &s->msix, &s->msix);
> +        } else {
> +            s->intr_state |= E1000E_USE_MSIX;
> +        }
> +    }
> +}
> +
> +static void
> +e1000e_cleanup_msix(E1000EState *s)
> +{
> +    if (s->intr_state & E1000E_USE_MSIX) {
> +        e1000e_unuse_msix_vectors(s, E1000E_MSIX_VEC_NUM);
> +        msix_uninit(PCI_DEVICE(s), &s->msix, &s->msix);
> +    }
> +}
> +
> +static void
> +e1000e_init_net_peer(E1000EState *s, PCIDevice *pci_dev, uint8_t *macaddr)
> +{
> +    DeviceState *dev = DEVICE(pci_dev);
> +    NetClientState *nc;
> +    int i;
> +
> +    s->nic = qemu_new_nic(&net_e1000e_info, &s->conf,
> +        object_get_typename(OBJECT(s)), dev->id, s);
> +
> +    if (s->conf.peers.queues != E1000E_NUM_QUEUES) {
> +        fprintf(stderr,
> +            "WARNING: e1000e: Device requires %d network backend "
> +            "queues for optimal performance. Current number of "
> +            "queues is %d.\n", E1000E_NUM_QUEUES, s->conf.peers.queues);
> +    }

Consider:

- tap is the only backend that support multiqueue
- it's not easy to use tap for unit testing

There's probably no need for this warning.

> +
> +    s->core.max_queue_num = s->conf.peers.queues - 1;
> +
> +    trace_e1000e_mac_set_permanent(MAC_ARG(macaddr));
> +    memcpy(s->core.permanent_mac, macaddr, sizeof(s->core.permanent_mac));
> +
> +    qemu_format_nic_info_str(qemu_get_queue(s->nic), macaddr);
> +
> +    /* Setup virtio headers */
> +    if (s->use_vnet) {
> +        s->core.has_vnet = true;
> +    } else {
> +        s->core.has_vnet = false;
> +        trace_e1000e_cfg_support_virtio(false);
> +        return;
> +    }
> +
> +    for (i = 0; i < s->conf.peers.queues; i++) {
> +        nc = qemu_get_subqueue(s->nic, i);
> +        if (!nc->peer || !qemu_has_vnet_hdr(nc->peer)) {
> +            s->core.has_vnet = false;

So in fact we're probing the vnet support instead of doing vnet our own
if backend does not support it. It seems to me that there's no need to
having "vnet" property.

> +            trace_e1000e_cfg_support_virtio(false);
> +            return;
> +        }
> +    }
> +
> +    trace_e1000e_cfg_support_virtio(true);
> +
> +    for (i = 0; i < s->conf.peers.queues; i++) {
> +        nc = qemu_get_subqueue(s->nic, i);
> +        qemu_set_vnet_hdr_len(nc->peer, sizeof(struct virtio_net_hdr));
> +        qemu_using_vnet_hdr(nc->peer, true);
> +    }
> +}
> +
> +static inline uint64_t
> +e1000e_gen_dsn(uint8_t *mac)
> +{
> +    return (uint64_t)(mac[5])        |
> +           (uint64_t)(mac[4])  << 8  |
> +           (uint64_t)(mac[3])  << 16 |
> +           (uint64_t)(0x00FF)  << 24 |
> +           (uint64_t)(0x00FF)  << 32 |
> +           (uint64_t)(mac[2])  << 40 |
> +           (uint64_t)(mac[1])  << 48 |
> +           (uint64_t)(mac[0])  << 56;
> +}
> +
> +static int
> +e1000e_add_pm_capability(PCIDevice *pdev, uint8_t offset, uint16_t pmc)
> +{
> +    int ret = pci_add_capability(pdev, PCI_CAP_ID_PM, offset, PCI_PM_SIZEOF);
> +
> +    if (ret >= 0) {
> +        pci_set_word(pdev->config + offset + PCI_PM_PMC,
> +                     PCI_PM_CAP_VER_1_1 |
> +                     pmc);
> +
> +        pci_set_word(pdev->wmask + offset + PCI_PM_CTRL,
> +                     PCI_PM_CTRL_STATE_MASK |
> +                     PCI_PM_CTRL_PME_ENABLE |
> +                     PCI_PM_CTRL_DATA_SEL_MASK);
> +
> +        pci_set_word(pdev->w1cmask + offset + PCI_PM_CTRL,
> +                     PCI_PM_CTRL_PME_STATUS);
> +    }
> +
> +    return ret;
> +}
> +
> +static void e1000e_pci_realize(PCIDevice *pci_dev, Error **errp)
> +{
> +    static const uint16_t E1000E_PMRB_OFFSET = 0x0C8;
> +    static const uint16_t E1000E_PCIE_OFFSET = 0x0E0;
> +    static const uint16_t E1000E_AER_OFFSET =  0x100;
> +    static const uint16_t E1000E_DSN_OFFSET =  0x140;
> +
> +    E1000EState *s = E1000E(pci_dev);
> +    uint8_t *macaddr;
> +
> +    trace_e1000e_cb_pci_realize();
> +
> +    pci_dev->config[PCI_CACHE_LINE_SIZE] = 0x10;
> +    pci_dev->config[PCI_INTERRUPT_PIN] = 1;
> +
> +    pci_set_word(pci_dev->config + PCI_SUBSYSTEM_VENDOR_ID, s->subsys_ven);
> +    pci_set_word(pci_dev->config + PCI_SUBSYSTEM_ID, s->subsys);
> +
> +    s->subsys_ven_used = s->subsys_ven;
> +    s->subsys_used = s->subsys;
> +
> +    /* Define IO/MMIO regions */
> +    memory_region_init_io(&s->mmio, OBJECT(s), &mmio_ops, s,
> +                          "e1000e-mmio", E1000E_MMIO_SIZE);
> +    pci_register_bar(pci_dev, E1000E_MMIO_IDX,
> +                     PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mmio);
> +
> +    memory_region_init_io(&s->flash, OBJECT(s), &flash_ops, s,
> +                          "e1000e-flash", E1000E_FLASH_SIZE);
> +    pci_register_bar(pci_dev, E1000E_FLASH_IDX,
> +                     PCI_BASE_ADDRESS_SPACE_MEMORY, &s->flash);
> +
> +    memory_region_init_io(&s->io, OBJECT(s), &io_ops, s,
> +                          "e1000e-io", E1000E_IO_SIZE);
> +    pci_register_bar(pci_dev, E1000E_IO_IDX,
> +                     PCI_BASE_ADDRESS_SPACE_IO, &s->io);
> +
> +    memory_region_init(&s->msix, OBJECT(s), "e1000e-msix",
> +                       E1000E_MSIX_SIZE);
> +    pci_register_bar(pci_dev, E1000E_MSIX_IDX,
> +                     PCI_BASE_ADDRESS_SPACE_MEMORY, &s->msix);
> +
> +    /* Create networking backend */
> +    qemu_macaddr_default_if_unset(&s->conf.macaddr);
> +    macaddr = s->conf.macaddr.a;
> +
> +    e1000e_init_msix(s);
> +
> +    if (pcie_endpoint_cap_v1_init(pci_dev, E1000E_PCIE_OFFSET) < 0) {
> +        hw_error("Failed to initialize PCIe capability");
> +    }
> +
> +    e1000e_init_msi(s);
> +
> +    if (e1000e_add_pm_capability(pci_dev, E1000E_PMRB_OFFSET,
> +                                  PCI_PM_CAP_DSI) < 0) {
> +        hw_error("Failed to initialize PM capability");
> +    }
> +
> +    if (pcie_aer_init(pci_dev, E1000E_AER_OFFSET) < 0) {
> +        hw_error("Failed to initialize AER capability");
> +    }
> +
> +    pcie_dev_ser_num_init(pci_dev, E1000E_DSN_OFFSET,
> +                          e1000e_gen_dsn(macaddr));
> +
> +    e1000e_init_net_peer(s, pci_dev, macaddr);
> +
> +    /* Initialize core */
> +    e1000e_core_reinitialize(s);

The name "reinitialize" looks odd here.

> +
> +    e1000e_core_pci_realize(&s->core,
> +                            e1000e_eeprom_template,
> +                            sizeof(e1000e_eeprom_template),
> +                            macaddr);
> +}
> +
> +static void e1000e_pci_uninit(PCIDevice *pci_dev)
> +{
> +    E1000EState *s = E1000E(pci_dev);
> +
> +    trace_e1000e_cb_pci_uninit();
> +
> +    e1000e_core_pci_uninit(&s->core);
> +
> +    pcie_aer_exit(pci_dev);
> +    pcie_cap_exit(pci_dev);
> +
> +    qemu_del_nic(s->nic);
> +
> +    e1000e_cleanup_msix(s);
> +    e1000e_cleanup_msi(s);
> +}
> +
> +static void e1000e_qdev_reset(DeviceState *dev)
> +{
> +    E1000EState *s = E1000E(dev);
> +
> +    trace_e1000e_cb_qdev_reset();
> +
> +    e1000e_core_reset(&s->core);
> +}
> +
> +static void e1000e_pre_save(void *opaque)
> +{
> +    E1000EState *s = opaque;
> +
> +    trace_e1000e_cb_pre_save();
> +
> +    e1000e_core_pre_save(&s->core);
> +}
> +
> +static int e1000e_post_load(void *opaque, int version_id)
> +{
> +    E1000EState *s = opaque;
> +
> +    trace_e1000e_cb_post_load();
> +
> +    if ((s->subsys != s->subsys_used) ||
> +        (s->subsys_ven != s->subsys_ven_used)) {
> +        fprintf(stderr,
> +            "ERROR: Cannot migrate while device properties "
> +            "(subsys/subsys_ven) differ");
> +        return -1;
> +    }
> +
> +    return e1000e_core_post_load(&s->core);
> +}
> +
> +static const VMStateDescription e1000e_vmstate = {
> +    .name = "e1000e",
> +    .version_id = 1,
> +    .minimum_version_id = 1,
> +    .pre_save = e1000e_pre_save,
> +    .post_load = e1000e_post_load,
> +    .fields = (VMStateField[]) {
> +        VMSTATE_PCIE_DEVICE(parent_obj, E1000EState),
> +        VMSTATE_MSIX(parent_obj, E1000EState),
> +
> +        VMSTATE_UINT32(ioaddr, E1000EState),
> +        VMSTATE_UINT32(intr_state, E1000EState),
> +        VMSTATE_UINT32(core.rxbuf_min_shift, E1000EState),
> +        VMSTATE_UINT8(core.rx_desc_len, E1000EState),
> +        VMSTATE_UINT32_ARRAY(core.rxbuf_sizes, E1000EState,
> +                             E1000_PSRCTL_BUFFS_PER_DESC),
> +        VMSTATE_UINT32(core.rx_desc_buf_size, E1000EState),
> +        VMSTATE_UINT16_ARRAY(core.eeprom, E1000EState, E1000E_EEPROM_SIZE),
> +        VMSTATE_UINT16_2DARRAY(core.phy, E1000EState,
> +                               E1000E_PHY_PAGES, E1000E_PHY_PAGE_SIZE),
> +        VMSTATE_UINT32_ARRAY(core.mac, E1000EState, E1000E_MAC_SIZE),
> +        VMSTATE_UINT8_ARRAY(core.permanent_mac, E1000EState, ETH_ALEN),
> +
> +        VMSTATE_UINT32(core.delayed_causes, E1000EState),
> +
> +        VMSTATE_UINT16(subsys, E1000EState),
> +        VMSTATE_UINT16(subsys_ven, E1000EState),
> +
> +        VMSTATE_E1000_INTR_DELAY_TIMER(core.rdtr, E1000EState),
> +        VMSTATE_E1000_INTR_DELAY_TIMER(core.radv, E1000EState),
> +        VMSTATE_E1000_INTR_DELAY_TIMER(core.raid, E1000EState),
> +        VMSTATE_E1000_INTR_DELAY_TIMER(core.tadv, E1000EState),
> +        VMSTATE_E1000_INTR_DELAY_TIMER(core.tidv, E1000EState),
> +
> +        VMSTATE_E1000_INTR_DELAY_TIMER(core.itr, E1000EState),
> +        VMSTATE_BOOL(core.itr_intr_pending, E1000EState),
> +
> +        VMSTATE_E1000_INTR_DELAY_TIMER(core.eitr[0], E1000EState),
> +        VMSTATE_E1000_INTR_DELAY_TIMER(core.eitr[1], E1000EState),
> +        VMSTATE_E1000_INTR_DELAY_TIMER(core.eitr[2], E1000EState),
> +        VMSTATE_E1000_INTR_DELAY_TIMER(core.eitr[3], E1000EState),
> +        VMSTATE_E1000_INTR_DELAY_TIMER(core.eitr[4], E1000EState),
> +        VMSTATE_BOOL_ARRAY(core.eitr_intr_pending, E1000EState,
> +                           E1000E_MSIX_VEC_NUM),
> +
> +        VMSTATE_UINT32(core.itr_guest_value, E1000EState),
> +        VMSTATE_UINT32_ARRAY(core.eitr_guest_value, E1000EState,
> +                             E1000E_MSIX_VEC_NUM),
> +
> +        VMSTATE_UINT16(core.vet, E1000EState),
> +
> +        VMSTATE_UINT8(core.tx[0].sum_needed, E1000EState),
> +        VMSTATE_UINT8(core.tx[0].ipcss, E1000EState),
> +        VMSTATE_UINT8(core.tx[0].ipcso, E1000EState),
> +        VMSTATE_UINT16(core.tx[0].ipcse, E1000EState),
> +        VMSTATE_UINT8(core.tx[0].tucss, E1000EState),
> +        VMSTATE_UINT8(core.tx[0].tucso, E1000EState),
> +        VMSTATE_UINT16(core.tx[0].tucse, E1000EState),
> +        VMSTATE_UINT8(core.tx[0].hdr_len, E1000EState),
> +        VMSTATE_UINT16(core.tx[0].mss, E1000EState),
> +        VMSTATE_UINT32(core.tx[0].paylen, E1000EState),
> +        VMSTATE_INT8(core.tx[0].ip, E1000EState),
> +        VMSTATE_INT8(core.tx[0].tcp, E1000EState),
> +        VMSTATE_BOOL(core.tx[0].tse, E1000EState),
> +        VMSTATE_BOOL(core.tx[0].cptse, E1000EState),
> +        VMSTATE_BOOL(core.tx[0].skip_cp, E1000EState),
> +
> +        VMSTATE_UINT8(core.tx[1].sum_needed, E1000EState),
> +        VMSTATE_UINT8(core.tx[1].ipcss, E1000EState),
> +        VMSTATE_UINT8(core.tx[1].ipcso, E1000EState),
> +        VMSTATE_UINT16(core.tx[1].ipcse, E1000EState),
> +        VMSTATE_UINT8(core.tx[1].tucss, E1000EState),
> +        VMSTATE_UINT8(core.tx[1].tucso, E1000EState),
> +        VMSTATE_UINT16(core.tx[1].tucse, E1000EState),
> +        VMSTATE_UINT8(core.tx[1].hdr_len, E1000EState),
> +        VMSTATE_UINT16(core.tx[1].mss, E1000EState),
> +        VMSTATE_UINT32(core.tx[1].paylen, E1000EState),
> +        VMSTATE_INT8(core.tx[1].ip, E1000EState),
> +        VMSTATE_INT8(core.tx[1].tcp, E1000EState),
> +        VMSTATE_BOOL(core.tx[1].tse, E1000EState),
> +        VMSTATE_BOOL(core.tx[1].cptse, E1000EState),
> +        VMSTATE_BOOL(core.tx[1].skip_cp, E1000EState),

You can move the tx state into another structure and use VMSTATE_ARRAY()
here.

> +        VMSTATE_END_OF_LIST()
> +    }
> +};
> +
> +static Property e1000e_properties[] = {
> +    DEFINE_NIC_PROPERTIES(E1000EState, conf),
> +    DEFINE_PROP_BOOL("vnet", E1000EState, use_vnet, true),
> +    DEFINE_PROP_UINT16("subsys_ven", E1000EState,
> +                       subsys_ven, PCI_VENDOR_ID_INTEL),
> +    DEFINE_PROP_UINT16("subsys", E1000EState, subsys, 0),

I'm not quite sure the reason we need subsys_ven and subsys here?

> +    DEFINE_PROP_END_OF_LIST(),
> +};
> +
> +static void e1000e_class_init(ObjectClass *class, void *data)
> +{
> +    DeviceClass *dc = DEVICE_CLASS(class);
> +    PCIDeviceClass *c = PCI_DEVICE_CLASS(class);
> +
> +    c->realize = e1000e_pci_realize;
> +    c->exit = e1000e_pci_uninit;
> +    c->vendor_id = PCI_VENDOR_ID_INTEL;
> +    c->device_id = E1000_DEV_ID_82574L;
> +    c->revision = 0;
> +    c->class_id = PCI_CLASS_NETWORK_ETHERNET;
> +    c->is_express = 1;
> +
> +    dc->desc = "Intel 82574L GbE Controller";
> +    dc->reset = e1000e_qdev_reset;
> +    dc->vmsd = &e1000e_vmstate;
> +    dc->props = e1000e_properties;
> +
> +    set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
> +}
> +
> +static void e1000e_instance_init(Object *obj)
> +{
> +    E1000EState *s = E1000E(obj);
> +    device_add_bootindex_property(obj, &s->conf.bootindex,
> +                                  "bootindex", "/address@hidden",
> +                                  DEVICE(obj), NULL);
> +}
> +
> +static const TypeInfo e1000e_info = {
> +    .name = TYPE_E1000E,
> +    .parent = TYPE_PCI_DEVICE,
> +    .instance_size = sizeof(E1000EState),
> +    .class_init = e1000e_class_init,
> +    .instance_init = e1000e_instance_init,
> +};
> +
> +static void e1000e_register_types(void)
> +{
> +    type_register_static(&e1000e_info);
> +}
> +
> +type_init(e1000e_register_types)
> diff --git a/hw/net/e1000e_core.c b/hw/net/e1000e_core.c
> new file mode 100644
> index 0000000..c15c58f
> --- /dev/null
> +++ b/hw/net/e1000e_core.c
> @@ -0,0 +1,3673 @@
> +/*
> +* Core code for QEMU e1000e emulation
> +*
> +* Software developer's manuals:
> +* 
> http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
> +*
> +* Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
> +* Developed by Daynix Computing LTD (http://www.daynix.com)
> +*
> +* Authors:
> +* Dmitry Fleytman <address@hidden>
> +* Leonid Bloch <address@hidden>
> +* Yan Vugenfirer <address@hidden>
> +*
> +* Based on work done by:
> +* Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
> +* Copyright (c) 2008 Qumranet
> +* Based on work done by:
> +* Copyright (c) 2007 Dan Aloni
> +* Copyright (c) 2004 Antony T Curtis
> +*
> +* This library is free software; you can redistribute it and/or
> +* modify it under the terms of the GNU Lesser General Public
> +* License as published by the Free Software Foundation; either
> +* version 2 of the License, or (at your option) any later version.
> +*
> +* This library is distributed in the hope that it will be useful,
> +* but WITHOUT ANY WARRANTY; without even the implied warranty of
> +* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
> +* Lesser General Public License for more details.
> +*
> +* You should have received a copy of the GNU Lesser General Public
> +* License along with this library; if not, see 
> <http://www.gnu.org/licenses/>.
> +*/
> +
> +#include "net/net.h"
> +#include "net/tap.h"
> +#include "hw/pci/msi.h"
> +#include "hw/pci/msix.h"
> +
> +#include "net_tx_pkt.h"
> +#include "net_rx_pkt.h"
> +
> +#include "e1000_regs.h"
> +#include "e1000e_core.h"
> +
> +#include "trace.h"
> +
> +#define E1000E_MIN_XITR (500) /* No more then 7813 interrupts per
> +                                  second according to spec 10.2.4.2 */
> +
> +static const uint8_t E1000E_MAX_TX_FRAGS = 64;
> +
> +static void
> +e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val);
> +
> +static inline int
> +e1000e_vlan_enabled(E1000ECore *core)
> +{
> +    return ((core->mac[CTRL] & E1000_CTRL_VME) != 0);
> +}
> +
> +static inline int
> +e1000e_is_vlan_txd(uint32_t txd_lower)
> +{
> +    return ((txd_lower & E1000_TXD_CMD_VLE) != 0);
> +}
> +
> +static inline void
> +e1000e_inc_reg_if_not_full(E1000ECore *core, int index)
> +{
> +    if (core->mac[index] != 0xffffffff) {
> +        core->mac[index]++;
> +    }
> +}
> +
> +static void
> +e1000e_grow_8reg_if_not_full(E1000ECore *core, int index, int size)
> +{
> +    uint64_t sum = core->mac[index] | (uint64_t)core->mac[index + 1] << 32;
> +
> +    if (sum + size < sum) {
> +        sum = ~0ULL;
> +    } else {
> +        sum += size;
> +    }
> +    core->mac[index] = sum;
> +    core->mac[index + 1] = sum >> 32;
> +}
> +
> +static void
> +e1000e_increase_size_stats(E1000ECore *core, const int *size_regs, int size)
> +{
> +    if (size > 1023) {
> +        e1000e_inc_reg_if_not_full(core, size_regs[5]);
> +    } else if (size > 511) {
> +        e1000e_inc_reg_if_not_full(core, size_regs[4]);
> +    } else if (size > 255) {
> +        e1000e_inc_reg_if_not_full(core, size_regs[3]);
> +    } else if (size > 127) {
> +        e1000e_inc_reg_if_not_full(core, size_regs[2]);
> +    } else if (size > 64) {
> +        e1000e_inc_reg_if_not_full(core, size_regs[1]);
> +    } else if (size == 64) {
> +        e1000e_inc_reg_if_not_full(core, size_regs[0]);
> +    }
> +}
> +
> +static inline void
> +e1000e_process_ts_option(E1000ECore *core, struct e1000_tx_desc *dp)
> +{
> +    if (le32_to_cpu(dp->upper.data) & E1000_TXD_EXTCMD_TSTAMP) {
> +        trace_e1000e_wrn_no_ts_support();
> +    }
> +}
> +
> +static inline void
> +e1000e_process_snap_option(E1000ECore *core, uint32_t cmd_and_length)
> +{
> +    if (cmd_and_length & E1000_TXD_CMD_SNAP) {
> +        trace_e1000e_wrn_no_snap_support();
> +    }
> +}
> +
> +static inline void
> +e1000e_raise_legacy_irq(E1000ECore *core)
> +{
> +    trace_e1000e_irq_legacy_notify(true);
> +    e1000e_inc_reg_if_not_full(core, IAC);
> +    pci_set_irq(core->owner, 1);
> +}
> +
> +static inline void
> +e1000e_lower_legacy_irq(E1000ECore *core)
> +{
> +    trace_e1000e_irq_legacy_notify(false);
> +    pci_set_irq(core->owner, 0);
> +}
> +
> +static inline void
> +e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer *timer)
> +{
> +    int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
> +                                 timer->delay_resolution_ns;
> +
> +    trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
> +
> +    timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 
> delay_ns);
> +
> +    timer->running = true;
> +}
> +
> +static void
> +e1000e_intmgr_timer_post_load(E1000IntrDelayTimer *timer)
> +{
> +    if (timer->running) {
> +        e1000e_intrmgr_rearm_timer(timer);
> +    }
> +}
> +
> +static inline void
> +e1000e_intrmgr_stop_timer(E1000IntrDelayTimer *timer)
> +{
> +    if (timer->running) {
> +        timer_del(timer->timer);
> +        timer->running = false;
> +    }
> +}
> +
> +static inline void
> +e1000e_intrmgr_fire_delayed_interrupts(E1000ECore *core)
> +{
> +    trace_e1000e_irq_fire_delayed_interrupts();
> +    e1000e_set_interrupt_cause(core, 0);
> +}
> +
> +static void
> +e1000e_intrmgr_on_timer(void *opaque)
> +{
> +    E1000IntrDelayTimer *timer = opaque;
> +
> +    trace_e1000e_irq_throttling_timer(timer->delay_reg << 2);
> +
> +    timer->running = false;
> +    e1000e_intrmgr_fire_delayed_interrupts(timer->core);
> +}
> +
> +static void
> +e1000e_intrmgr_on_throttling_timer(void *opaque)
> +{
> +    E1000IntrDelayTimer *timer = opaque;
> +
> +    assert(!msix_enabled(timer->core->owner));

Can this assert be triggered by guest? If yes, let's remove this.

> +
> +    timer->running = false;
> +
> +    if (!timer->core->itr_intr_pending) {
> +        trace_e1000e_irq_throttling_no_pending_interrupts();
> +        return;
> +    }
> +
> +    if (msi_enabled(timer->core->owner)) {
> +        trace_e1000e_irq_msi_notify_postponed();
> +        e1000e_set_interrupt_cause(timer->core, 0);
> +    } else {
> +        trace_e1000e_irq_legacy_notify_postponed();
> +        e1000e_set_interrupt_cause(timer->core, 0);
> +    }
> +}
> +
> +static void
> +e1000e_intrmgr_on_msix_throttling_timer(void *opaque)
> +{
> +    E1000IntrDelayTimer *timer = opaque;
> +    int idx = timer - &timer->core->eitr[0];
> +
> +    assert(msix_enabled(timer->core->owner));

Same question as above.

> +
> +    timer->running = false;
> +
> +    if (!timer->core->eitr_intr_pending[idx]) {
> +        trace_e1000e_irq_throttling_no_pending_vec(idx);
> +        return;
> +    }
> +
> +    trace_e1000e_irq_msix_notify_postponed_vec(idx);
> +    msix_notify(timer->core->owner, idx);
> +}
> +
> +static void
> +e1000e_intrmgr_initialize_all_timers(E1000ECore *core, bool create)
> +{
> +    int i;
> +
> +    core->radv.delay_reg = RADV;
> +    core->rdtr.delay_reg = RDTR;
> +    core->raid.delay_reg = RAID;
> +    core->tadv.delay_reg = TADV;
> +    core->tidv.delay_reg = TIDV;
> +
> +    core->radv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
> +    core->rdtr.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
> +    core->raid.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
> +    core->tadv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
> +    core->tidv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
> +
> +    core->radv.core = core;
> +    core->rdtr.core = core;
> +    core->raid.core = core;
> +    core->tadv.core = core;
> +    core->tidv.core = core;
> +
> +    core->itr.core = core;

Couldn't we simply get core pointer through container_of() ?

> +    core->itr.delay_reg = ITR;
> +    core->itr.delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
> +
> +    for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
> +        core->eitr[i].core = core;
> +        core->eitr[i].delay_reg = EITR + i;
> +        core->eitr[i].delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
> +    }
> +
> +    if (!create) {
> +        return;
> +    }
> +
> +    core->radv.timer =
> +        timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, 
> &core->radv);
> +    core->rdtr.timer =
> +        timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, 
> &core->rdtr);
> +    core->raid.timer =
> +        timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, 
> &core->raid);
> +
> +    core->tadv.timer =
> +        timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, 
> &core->tadv);
> +    core->tidv.timer =
> +        timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, 
> &core->tidv);
> +
> +    core->itr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
> +                                   e1000e_intrmgr_on_throttling_timer,
> +                                   &core->itr);

Should we stop/start the above timers during vm stop/start through vm
state change handler?

> +
> +    for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
> +        core->eitr[i].timer =
> +            timer_new_ns(QEMU_CLOCK_VIRTUAL,
> +                         e1000e_intrmgr_on_msix_throttling_timer,
> +                         &core->eitr[i]);
> +    }
> +}
> +
> +static inline void
> +e1000e_intrmgr_stop_delay_timers(E1000ECore *core)
> +{
> +    e1000e_intrmgr_stop_timer(&core->radv);
> +    e1000e_intrmgr_stop_timer(&core->rdtr);
> +    e1000e_intrmgr_stop_timer(&core->raid);
> +    e1000e_intrmgr_stop_timer(&core->tidv);
> +    e1000e_intrmgr_stop_timer(&core->tadv);
> +}
> +
> +static bool
> +e1000e_intrmgr_delay_rx_causes(E1000ECore *core, uint32_t *causes)
> +{
> +    uint32_t delayable_causes;
> +    uint32_t rdtr = core->mac[RDTR];
> +    uint32_t radv = core->mac[RADV];
> +    uint32_t raid = core->mac[RAID];
> +
> +    if (msix_enabled(core->owner)) {
> +        return false;
> +    }
> +
> +    delayable_causes = E1000_ICR_RXQ0 |
> +                       E1000_ICR_RXQ1 |
> +                       E1000_ICR_RXT0;
> +
> +    if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS)) {
> +        delayable_causes |= E1000_ICR_ACK;
> +    }
> +
> +    /* Clean up all causes that may be delayed */
> +    core->delayed_causes |= *causes & delayable_causes;
> +    *causes &= ~delayable_causes;
> +
> +    /* Check if delayed RX interrupts disabled by client
> +       or if there are causes that cannot be delayed */
> +    if ((rdtr == 0) || (causes != 0)) {
> +        return false;
> +    }
> +
> +    /* Check if delayed RX ACK interrupts disabled by client
> +       and there is an ACK packet received */
> +    if ((raid == 0) && (core->delayed_causes & E1000_ICR_ACK)) {
> +        return false;
> +    }
> +
> +    /* All causes delayed */
> +    e1000e_intrmgr_rearm_timer(&core->rdtr);
> +
> +    if (!core->radv.running && (radv != 0)) {
> +        e1000e_intrmgr_rearm_timer(&core->radv);
> +    }
> +
> +    if (!core->raid.running && (core->delayed_causes & E1000_ICR_ACK)) {
> +        e1000e_intrmgr_rearm_timer(&core->raid);
> +    }
> +
> +    return true;
> +}
> +
> +static bool
> +e1000e_intrmgr_delay_tx_causes(E1000ECore *core, uint32_t *causes)
> +{
> +    static const uint32_t delayable_causes = E1000_ICR_TXQ0 |
> +                                             E1000_ICR_TXQ1 |
> +                                             E1000_ICR_TXQE |
> +                                             E1000_ICR_TXDW;
> +
> +    if (msix_enabled(core->owner)) {
> +        return false;
> +    }
> +
> +    /* Clean up all causes that may be delayed */
> +    core->delayed_causes |= *causes & delayable_causes;
> +    *causes &= ~delayable_causes;
> +
> +    /* If there are causes that cannot be delayed */
> +    if (causes != 0) {
> +        return false;
> +    }
> +
> +    /* All causes delayed */
> +    e1000e_intrmgr_rearm_timer(&core->tidv);
> +
> +    if (!core->tadv.running && (core->mac[TADV] != 0)) {
> +        e1000e_intrmgr_rearm_timer(&core->tadv);
> +    }
> +
> +    return true;
> +}
> +
> +static uint32_t
> +e1000e_intmgr_collect_delayed_causes(E1000ECore *core)
> +{
> +    uint32_t res;
> +
> +    if (msix_enabled(core->owner)) {
> +        assert(core->delayed_causes == 0);
> +        return 0;
> +    }
> +
> +    res = core->delayed_causes;
> +    core->delayed_causes = 0;
> +
> +    e1000e_intrmgr_stop_delay_timers(core);
> +
> +    return res;
> +}
> +
> +static void
> +e1000e_intrmgr_fire_all_timers(E1000ECore *core)
> +{
> +    int i;
> +    uint32_t val = e1000e_intmgr_collect_delayed_causes(core);
> +
> +    trace_e1000e_irq_adding_delayed_causes(val, core->mac[ICR]);
> +    core->mac[ICR] |= val;
> +
> +    if (core->itr.running) {
> +        timer_del(core->itr.timer);
> +        e1000e_intrmgr_on_throttling_timer(&core->itr);
> +    }
> +
> +    for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
> +        if (core->eitr[i].running) {
> +            timer_del(core->eitr[i].timer);
> +            e1000e_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
> +        }
> +    }
> +}
> +
> +static void
> +e1000e_intrmgr_post_load(E1000ECore *core)
> +{
> +    int i;
> +
> +    e1000e_intmgr_timer_post_load(&core->radv);
> +    e1000e_intmgr_timer_post_load(&core->rdtr);
> +    e1000e_intmgr_timer_post_load(&core->raid);
> +    e1000e_intmgr_timer_post_load(&core->tidv);
> +    e1000e_intmgr_timer_post_load(&core->tadv);
> +
> +    e1000e_intmgr_timer_post_load(&core->itr);
> +
> +    for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
> +        e1000e_intmgr_timer_post_load(&core->eitr[i]);
> +    }
> +}
> +
> +static void
> +e1000e_intrmgr_reset(E1000ECore *core)
> +{
> +    int i;
> +
> +    core->delayed_causes = 0;
> +
> +    e1000e_intrmgr_stop_delay_timers(core);
> +
> +    e1000e_intrmgr_stop_timer(&core->itr);
> +
> +    for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
> +        e1000e_intrmgr_stop_timer(&core->eitr[i]);
> +    }
> +}
> +
> +static void
> +e1000e_intrmgr_pci_unint(E1000ECore *core)
> +{
> +    int i;
> +
> +    timer_del(core->radv.timer);
> +    timer_free(core->radv.timer);
> +    timer_del(core->rdtr.timer);
> +    timer_free(core->rdtr.timer);
> +    timer_del(core->raid.timer);
> +    timer_free(core->raid.timer);
> +
> +    timer_del(core->tadv.timer);
> +    timer_free(core->tadv.timer);
> +    timer_del(core->tidv.timer);
> +    timer_free(core->tidv.timer);
> +
> +    timer_del(core->itr.timer);
> +    timer_free(core->itr.timer);
> +
> +    for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
> +        timer_del(core->eitr[i].timer);
> +        timer_free(core->eitr[i].timer);
> +    }
> +}
> +
> +static void
> +e1000e_intrmgr_pci_realize(E1000ECore *core)
> +{
> +    e1000e_intrmgr_initialize_all_timers(core, true);
> +}
> +
> +static inline bool
> +e1000e_rx_csum_enabled(E1000ECore *core)
> +{
> +    return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
> +}
> +
> +static inline bool
> +e1000e_rx_use_legacy_descriptor(E1000ECore *core)
> +{
> +    return (core->mac[RFCTL] & E1000_RFCTL_EXTEN) ? false : true;
> +}
> +
> +static inline bool
> +e1000e_rx_use_ps_descriptor(E1000ECore *core)
> +{
> +    return !e1000e_rx_use_legacy_descriptor(core) &&
> +           (core->mac[RCTL] & E1000_RCTL_DTYP_PS);
> +}
> +
> +static inline bool
> +e1000e_rss_enabled(E1000ECore *core)
> +{
> +    return E1000_MRQC_ENABLED(core->mac[MRQC]) &&
> +           !e1000e_rx_csum_enabled(core) &&
> +           !e1000e_rx_use_legacy_descriptor(core);
> +}
> +
> +typedef struct E1000E_RSSInfo_st {
> +    bool enabled;
> +    uint32_t hash;
> +    uint32_t queue;
> +    uint32_t type;
> +} E1000E_RSSInfo;
> +
> +static uint32_t
> +e1000e_rss_get_hash_type(E1000ECore *core, struct NetRxPkt *pkt)
> +{
> +    bool isip4, isip6, isudp, istcp;
> +
> +    assert(e1000e_rss_enabled(core));
> +
> +    net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
> +
> +    if (isip4) {
> +        bool fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
> +
> +        trace_e1000e_rx_rss_ip4(fragment, istcp, core->mac[MRQC],
> +                                E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
> +                                E1000_MRQC_EN_IPV4(core->mac[MRQC]));
> +
> +        if (!fragment && istcp && E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
> +            return E1000_MRQ_RSS_TYPE_IPV4TCP;
> +        }
> +
> +        if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
> +            return E1000_MRQ_RSS_TYPE_IPV4;
> +        }
> +    } else if (isip6) {
> +        eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
> +
> +        bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
> +        bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
> +
> +        trace_e1000e_rx_rss_ip6(core->mac[RFCTL],
> +                                ex_dis, new_ex_dis, istcp,
> +                                ip6info->has_ext_hdrs,
> +                                ip6info->rss_ex_dst_valid,
> +                                ip6info->rss_ex_src_valid,
> +                                core->mac[MRQC],
> +                                E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]),
> +                                E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
> +                                E1000_MRQC_EN_IPV6(core->mac[MRQC]));
> +
> +        if ((!ex_dis || !ip6info->has_ext_hdrs) &&
> +            (!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
> +                              ip6info->rss_ex_src_valid))) {
> +
> +            if (istcp && !ip6info->fragment &&
> +                E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) {
> +                return E1000_MRQ_RSS_TYPE_IPV6TCP;
> +            }
> +
> +            if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
> +                return E1000_MRQ_RSS_TYPE_IPV6EX;
> +            }
> +
> +        }
> +
> +        if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
> +            return E1000_MRQ_RSS_TYPE_IPV6;
> +        }
> +
> +    }
> +
> +    return E1000_MRQ_RSS_TYPE_NONE;
> +}
> +
> +static uint32_t
> +e1000e_rss_calc_hash(E1000ECore *core,
> +                     struct NetRxPkt *pkt,
> +                     E1000E_RSSInfo *info)
> +{
> +    NetRxPktRssType type;
> +
> +    assert(e1000e_rss_enabled(core));
> +
> +    switch (info->type) {
> +    case E1000_MRQ_RSS_TYPE_IPV4:
> +        type = NetPktRssIpV4;
> +        break;
> +    case E1000_MRQ_RSS_TYPE_IPV4TCP:
> +        type = NetPktRssIpV4Tcp;
> +        break;
> +    case E1000_MRQ_RSS_TYPE_IPV6TCP:
> +        type = NetPktRssIpV6Tcp;
> +        break;
> +    case E1000_MRQ_RSS_TYPE_IPV6:
> +        type = NetPktRssIpV6;
> +        break;
> +    case E1000_MRQ_RSS_TYPE_IPV6EX:
> +        type = NetPktRssIpV6Ex;
> +        break;
> +    default:
> +        assert(false);
> +        return 0;
> +    }
> +
> +    return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) 
> &core->mac[RSSRK]);
> +}
> +
> +static void
> +e1000e_rss_parse_packet(E1000ECore *core,
> +                        struct NetRxPkt *pkt,
> +                        E1000E_RSSInfo *info)
> +{
> +    trace_e1000e_rx_rss_started();
> +
> +    if (!e1000e_rss_enabled(core)) {
> +        info->enabled = false;
> +        info->hash = 0;
> +        info->queue = 0;
> +        info->type = 0;
> +        trace_e1000e_rx_rss_disabled();
> +        return;
> +    }
> +
> +    info->enabled = true;
> +
> +    info->type = e1000e_rss_get_hash_type(core, pkt);
> +
> +    trace_e1000e_rx_rss_type(info->type);
> +
> +    if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
> +        info->hash = 0;
> +        info->queue = 0;
> +        return;
> +    }
> +
> +    info->hash = e1000e_rss_calc_hash(core, pkt, info);
> +    info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
> +}
> +
> +static void
> +e1000e_setup_tx_offloads(E1000ECore *core, struct e1000_tx *tx)
> +{
> +    if (tx->tse && tx->cptse) {
> +        net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->mss);
> +        net_tx_pkt_update_ip_checksums(tx->tx_pkt);
> +        e1000e_inc_reg_if_not_full(core, TSCTC);
> +        return;
> +    }
> +
> +    if (tx->sum_needed & E1000_TXD_POPTS_TXSM) {
> +        net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0);
> +    }
> +
> +    if (tx->sum_needed & E1000_TXD_POPTS_IXSM) {
> +        net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
> +    }
> +}
> +
> +static bool
> +e1000e_tx_pkt_send(E1000ECore *core, struct e1000_tx *tx, int queue_index)
> +{
> +    int target_queue = MIN(core->max_queue_num, queue_index);
> +    NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
> +
> +    e1000e_setup_tx_offloads(core, tx);
> +
> +    net_tx_pkt_dump(tx->tx_pkt);
> +
> +    if ((core->phy[0][PHY_CTRL] & MII_CR_LOOPBACK) ||
> +        ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
> +        return net_tx_pkt_send_loopback(tx->tx_pkt, queue);
> +    } else {
> +        return net_tx_pkt_send(tx->tx_pkt, queue);
> +    }
> +}
> +
> +static void
> +e1000e_on_tx_done_update_stats(E1000ECore *core, struct NetTxPkt *tx_pkt)
> +{
> +    static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
> +                                    PTC1023, PTC1522 };
> +
> +    size_t tot_len = net_tx_pkt_get_total_len(tx_pkt);
> +
> +    e1000e_increase_size_stats(core, PTCregs, tot_len);
> +    e1000e_inc_reg_if_not_full(core, TPT);
> +    e1000e_grow_8reg_if_not_full(core, TOTL, tot_len);
> +
> +    switch (net_tx_pkt_get_packet_type(tx_pkt)) {
> +    case ETH_PKT_BCAST:
> +        e1000e_inc_reg_if_not_full(core, BPTC);
> +        break;
> +    case ETH_PKT_MCAST:
> +        e1000e_inc_reg_if_not_full(core, MPTC);
> +        break;
> +    case ETH_PKT_UCAST:
> +        break;
> +    default:
> +        g_assert_not_reached();
> +    }
> +
> +    core->mac[GPTC] = core->mac[TPT];
> +    core->mac[GOTCL] = core->mac[TOTL];
> +    core->mac[GOTCH] = core->mac[TOTH];
> +}
> +
> +static void
> +e1000e_process_tx_desc(E1000ECore *core,
> +                       struct e1000_tx *tx,
> +                       struct e1000_tx_desc *dp,
> +                       int queue_index)
> +{
> +    uint32_t txd_lower = le32_to_cpu(dp->lower.data);
> +    uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
> +    unsigned int split_size = txd_lower & 0xffff, op;
> +    uint64_t addr;
> +    struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
> +    bool eop = txd_lower & E1000_TXD_CMD_EOP;
> +
> +    if (dtype == E1000_TXD_CMD_DEXT) {    /* context descriptor */
> +        op = le32_to_cpu(xp->cmd_and_length);
> +        tx->ipcss = xp->lower_setup.ip_fields.ipcss;
> +        tx->ipcso = xp->lower_setup.ip_fields.ipcso;
> +        tx->ipcse = le16_to_cpu(xp->lower_setup.ip_fields.ipcse);
> +        tx->tucss = xp->upper_setup.tcp_fields.tucss;
> +        tx->tucso = xp->upper_setup.tcp_fields.tucso;
> +        tx->tucse = le16_to_cpu(xp->upper_setup.tcp_fields.tucse);
> +        tx->paylen = op & 0xfffff;
> +        tx->hdr_len = xp->tcp_seg_setup.fields.hdr_len;
> +        tx->mss = le16_to_cpu(xp->tcp_seg_setup.fields.mss);
> +        tx->ip = (op & E1000_TXD_CMD_IP) ? 1 : 0;
> +        tx->tcp = (op & E1000_TXD_CMD_TCP) ? 1 : 0;
> +        tx->tse = (op & E1000_TXD_CMD_TSE) ? 1 : 0;
> +        if (tx->tucso == 0) { /* this is probably wrong */
> +            trace_e1000e_tx_cso_zero();
> +            tx->tucso = tx->tucss + (tx->tcp ? 16 : 6);
> +        }
> +        e1000e_process_snap_option(core, op);
> +        return;
> +    } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
> +        /* data descriptor */
> +        tx->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
> +        tx->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
> +        e1000e_process_ts_option(core, dp);
> +    } else {
> +        /* legacy descriptor */
> +        e1000e_process_ts_option(core, dp);
> +        tx->cptse = 0;
> +    }
> +
> +    addr = le64_to_cpu(dp->buffer_addr);
> +
> +    if (!tx->skip_cp) {
> +        if (!net_tx_pkt_add_raw_fragment(tx->tx_pkt, addr, split_size)) {
> +            tx->skip_cp = true;
> +        }
> +    }
> +
> +    if (eop) {
> +        if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
> +            if (e1000e_vlan_enabled(core) && e1000e_is_vlan_txd(txd_lower)) {
> +                net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt,
> +                    le16_to_cpu(dp->upper.fields.special), core->vet);
> +            }
> +            if (e1000e_tx_pkt_send(core, tx, queue_index)) {
> +                e1000e_on_tx_done_update_stats(core, tx->tx_pkt);
> +            }
> +        }
> +
> +        tx->skip_cp = false;
> +        net_tx_pkt_reset(tx->tx_pkt);
> +
> +        tx->sum_needed = 0;
> +        tx->cptse = 0;
> +    }
> +}
> +
> +static inline uint32_t
> +e1000e_tx_wb_interrupt_cause(E1000ECore *core, int queue_idx)
> +{
> +    if (!msix_enabled(core->owner)) {
> +        return E1000_ICR_TXDW;
> +    }
> +
> +    return (queue_idx == 0) ? E1000_ICR_TXQ0 : E1000_ICR_TXQ1;
> +}
> +
> +static inline uint32_t
> +e1000e_rx_wb_interrupt_cause(E1000ECore *core, int queue_idx,
> +                             bool min_threshold_hit)
> +{
> +    if (!msix_enabled(core->owner)) {
> +        return E1000_ICS_RXT0 | (min_threshold_hit ? E1000_ICS_RXDMT0 : 0);
> +    }
> +
> +    return (queue_idx == 0) ? E1000_ICR_RXQ0 : E1000_ICR_RXQ1;
> +}
> +
> +static uint32_t
> +e1000e_txdesc_writeback(E1000ECore *core, dma_addr_t base,
> +                        struct e1000_tx_desc *dp, bool *ide, int queue_idx)
> +{
> +    uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
> +
> +    if (!(txd_lower & E1000_TXD_CMD_RS) &&
> +        !(core->mac[IVAR] & E1000_IVAR_TX_INT_EVERY_WB)) {
> +        return 0;
> +    }
> +
> +    *ide = (txd_lower & E1000_TXD_CMD_IDE) ? true : false;
> +
> +    txd_upper = le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD;
> +
> +    dp->upper.data = cpu_to_le32(txd_upper);
> +    pci_dma_write(core->owner, base + ((char *)&dp->upper - (char *)dp),
> +                  &dp->upper, sizeof(dp->upper));
> +    return e1000e_tx_wb_interrupt_cause(core, queue_idx);
> +}
> +
> +typedef struct E1000E_RingInfo_st {
> +    int dbah;
> +    int dbal;
> +    int dlen;
> +    int dh;
> +    int dt;
> +    int idx;
> +} E1000E_RingInfo;
> +
> +static inline bool
> +e1000e_ring_empty(E1000ECore *core, const E1000E_RingInfo *r)
> +{
> +    return core->mac[r->dh] == core->mac[r->dt];
> +}
> +
> +static inline uint64_t
> +e1000e_ring_base(E1000ECore *core, const E1000E_RingInfo *r)
> +{
> +    uint64_t bah = core->mac[r->dbah];
> +    uint64_t bal = core->mac[r->dbal] & ~0xf;
> +
> +    return (bah << 32) + bal;
> +}
> +
> +static inline uint64_t
> +e1000e_ring_head_descr(E1000ECore *core, const E1000E_RingInfo *r)
> +{
> +    return e1000e_ring_base(core, r) + E1000_RING_DESC_LEN * 
> core->mac[r->dh];
> +}
> +
> +static inline void
> +e1000e_ring_advance(E1000ECore *core, const E1000E_RingInfo *r, uint32_t 
> count)
> +{
> +    core->mac[r->dh] += count;
> +
> +    if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
> +        core->mac[r->dh] = 0;
> +    }
> +}
> +
> +static inline uint32_t
> +e1000e_ring_free_descr_num(E1000ECore *core, const E1000E_RingInfo *r)
> +{
> +    trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
> +                                 core->mac[r->dh],  core->mac[r->dt]);
> +
> +    if (core->mac[r->dh] <= core->mac[r->dt]) {
> +        return core->mac[r->dt] - core->mac[r->dh];
> +    }
> +
> +    if (core->mac[r->dh] > core->mac[r->dt]) {
> +        return core->mac[r->dlen] / E1000_RING_DESC_LEN +
> +               core->mac[r->dt] - core->mac[r->dh];
> +    }
> +
> +    g_assert_not_reached();
> +    return 0;
> +}
> +
> +static inline bool
> +e1000e_ring_enabled(E1000ECore *core, const E1000E_RingInfo *r)
> +{
> +    return core->mac[r->dlen] > 0;
> +}
> +
> +static inline uint32_t
> +e1000e_ring_len(E1000ECore *core, const E1000E_RingInfo *r)
> +{
> +    return core->mac[r->dlen];
> +}
> +
> +typedef struct E1000E_TxRing_st {
> +    const E1000E_RingInfo *i;
> +    struct e1000_tx *tx;
> +} E1000E_TxRing;
> +
> +static inline int
> +e1000e_mq_queue_idx(int base_reg_idx, int reg_idx)
> +{
> +    return (reg_idx - base_reg_idx) / (0x100 >> 2);
> +}
> +
> +static inline void
> +e1000e_tx_ring_init(E1000ECore *core, E1000E_TxRing *txr, int idx)
> +{
> +    static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
> +        { TDBAH,  TDBAL,  TDLEN,  TDH,  TDT, 0 },
> +        { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 }
> +    };

Instead of using static inside a function, why not just use a global
array and then there's no need for this function and caller can access
it directly?

> +
> +    assert(idx < ARRAY_SIZE(i));
> +
> +    txr->i     = &i[idx];
> +    txr->tx    = &core->tx[idx];
> +}
> +
> +typedef struct E1000E_RxRing_st {
> +    const E1000E_RingInfo *i;
> +} E1000E_RxRing;
> +
> +static inline void
> +e1000e_rx_ring_init(E1000ECore *core, E1000E_RxRing *rxr, int idx)
> +{
> +    static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
> +        { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
> +        { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 }
> +    };

Similar issue with above.

> +
> +    assert(idx < ARRAY_SIZE(i));
> +
> +    rxr->i      = &i[idx];
> +}
> +
> +static void
> +e1000e_start_xmit(E1000ECore *core, const E1000E_TxRing *txr)
> +{
> +    dma_addr_t base;
> +    struct e1000_tx_desc desc;
> +    bool ide = false;
> +    const E1000E_RingInfo *txi = txr->i;
> +    uint32_t cause = E1000_ICS_TXQE;
> +
> +    if (!(core->mac[TCTL] & E1000_TCTL_EN)) {
> +        trace_e1000e_tx_disabled();
> +        return;
> +    }
> +
> +    while (!e1000e_ring_empty(core, txi)) {
> +        base = e1000e_ring_head_descr(core, txi);
> +
> +        pci_dma_read(core->owner, base, &desc, sizeof(desc));
> +
> +        trace_e1000e_tx_descr((void *)(intptr_t)desc.buffer_addr,
> +                              desc.lower.data, desc.upper.data);
> +
> +        e1000e_process_tx_desc(core, txr->tx, &desc, txi->idx);
> +        cause |= e1000e_txdesc_writeback(core, base, &desc, &ide, txi->idx);
> +
> +        e1000e_ring_advance(core, txi, 1);
> +    }
> +
> +    if (!ide || !e1000e_intrmgr_delay_tx_causes(core, &cause)) {
> +        e1000e_set_interrupt_cause(core, cause);
> +    }
> +}
> +
> +static bool
> +e1000e_has_rxbufs(E1000ECore *core, const E1000E_RingInfo *r,
> +                  size_t total_size)
> +{
> +    uint32_t bufs = e1000e_ring_free_descr_num(core, r);
> +
> +    trace_e1000e_rx_has_buffers(r->idx, bufs, total_size,
> +                                core->rx_desc_buf_size);
> +
> +    return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
> +                         core->rx_desc_buf_size;
> +}
> +
> +static inline void
> +e1000e_start_recv(E1000ECore *core)
> +{
> +    int i;
> +
> +    trace_e1000e_rx_start_recv();
> +
> +    for (i = 0; i <= core->max_queue_num; i++) {
> +        qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));

Is this the hardware behavior, I mean setting rdt of queue 0 will also
flush queue 1? Looks like the correct behavior is to calculate the queue
index and flush it.

> +    }
> +}
> +
> +int
> +e1000e_can_receive(E1000ECore *core)
> +{
> +    int i;
> +
> +    bool link_up = core->mac[STATUS] & E1000_STATUS_LU;
> +    bool rx_enabled = core->mac[RCTL] & E1000_RCTL_EN;
> +    bool pci_master = core->owner->config[PCI_COMMAND] & PCI_COMMAND_MASTER;

Should we flush the queue packets when guest enable bus master? (like
what we did in e1000_write_config)?

> +
> +    if (!link_up || !rx_enabled || !pci_master) {
> +        trace_e1000e_rx_can_recv_disabled(link_up, rx_enabled, pci_master);
> +        return false;
> +    }
> +
> +    for (i = 0; i < E1000E_NUM_QUEUES; i++) {
> +        E1000E_RxRing rxr;
> +
> +        e1000e_rx_ring_init(core, &rxr, i);
> +        if (e1000e_ring_enabled(core, rxr.i) &&
> +            e1000e_has_rxbufs(core, rxr.i, 1)) {
> +            trace_e1000e_rx_can_recv();
> +            return true;

Similar issue, this will return true if anyone of the queue has
available buffer. This seems wrong.

> +        }
> +    }
> +
> +    trace_e1000e_rx_can_recv_rings_full();
> +    return false;
> +}
> +
> +ssize_t
> +e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size)
> +{
> +    const struct iovec iov = {
> +        .iov_base = (uint8_t *)buf,
> +        .iov_len = size
> +    };
> +
> +    return e1000e_receive_iov(core, &iov, 1);
> +}
> +
> +static inline int
> +e1000e_vlan_rx_filter_enabled(E1000ECore *core)
> +{
> +    return ((core->mac[RCTL] & E1000_RCTL_VFE) != 0);
> +}
> +
> +static inline bool
> +e1000e_rx_l3_cso_enabled(E1000ECore *core)
> +{
> +    return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
> +}
> +
> +static inline bool
> +e1000e_rx_l4_cso_enabled(E1000ECore *core)
> +{
> +    return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
> +}
> +
> +static inline bool
> +e1000e_is_vlan_packet(E1000ECore *core, const uint8_t *buf)
> +{
> +    uint16_t eth_proto = be16_to_cpup((uint16_t *)(buf + 12));
> +    bool res = (eth_proto == core->vet);
> +
> +    trace_e1000e_vlan_is_vlan_pkt(res, eth_proto, core->vet);
> +
> +    return res;
> +}
> +
> +static bool
> +e1000e_receive_filter(E1000ECore *core, const uint8_t *buf, int size)
> +{
> +    static const int mta_shift[] = {4, 3, 2, 0};
> +    uint32_t f, rctl = core->mac[RCTL], ra[2], *rp;
> +
> +    if (e1000e_is_vlan_packet(core, buf) &&
> +        e1000e_vlan_rx_filter_enabled(core)) {
> +        uint16_t vid = be16_to_cpup((uint16_t *)(buf + 14));
> +        uint32_t vfta = le32_to_cpup((uint32_t *)(core->mac + VFTA) +
> +                                     ((vid >> 5) & 0x7f));
> +        if ((vfta & (1 << (vid & 0x1f))) == 0) {
> +            trace_e1000e_rx_flt_vlan_mismatch(vid);
> +            return 0;

false?

> +        } else {
> +            trace_e1000e_rx_flt_vlan_match(vid);
> +        }
> +    }
> +
> +    switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
> +    case ETH_PKT_UCAST:
> +        if (rctl & E1000_RCTL_UPE) {
> +            return true; /* promiscuous ucast */
> +        }
> +        break;
> +
> +    case ETH_PKT_BCAST:
> +        if (rctl & E1000_RCTL_BAM) {
> +            return true; /* broadcast enabled */
> +        }
> +        break;
> +
> +    case ETH_PKT_MCAST:
> +        if (rctl & E1000_RCTL_MPE) {
> +            return true; /* promiscuous mcast */
> +        }
> +        break;
> +
> +    default:
> +        g_assert_not_reached();
> +    }
> +
> +    for (rp = core->mac + RA; rp < core->mac + RA + 32; rp += 2) {
> +        if (!(rp[1] & E1000_RAH_AV)) {
> +            continue;
> +        }
> +        ra[0] = cpu_to_le32(rp[0]);
> +        ra[1] = cpu_to_le32(rp[1]);
> +        if (!memcmp(buf, (uint8_t *)ra, 6)) {
> +            trace_e1000e_rx_flt_ucast_match((int)(rp - core->mac - RA) / 2,
> +                                            MAC_ARG(buf));
> +            return 1;
> +        }
> +    }
> +    trace_e1000e_rx_flt_ucast_mismatch(MAC_ARG(buf));
> +
> +    f = mta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3];
> +    f = (((buf[5] << 8) | buf[4]) >> f) & 0xfff;
> +    if (core->mac[MTA + (f >> 5)] & (1 << (f & 0x1f))) {
> +        e1000e_inc_reg_if_not_full(core, MPRC);
> +        return 1;
> +    }
> +
> +    trace_e1000e_rx_flt_inexact_mismatch(MAC_ARG(buf),
> +                                         (rctl >> E1000_RCTL_MO_SHIFT) & 3,
> +                                         f >> 5,
> +                                         core->mac[MTA + (f >> 5)]);
> +
> +    return 0;
> +}
> +
> +/* FCS aka Ethernet CRC-32. We don't get it from backends and can't
> + * fill it in, just pad descriptor length by 4 bytes unless guest
> + * told us to strip it off the packet. */
> +static inline int
> +e1000e_fcs_len(E1000ECore *core)
> +{
> +    return (core->mac[RCTL] & E1000_RCTL_SECRC) ? 0 : 4;
> +}
> +
> +static inline void
> +e1000e_read_lgcy_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr)
> +{
> +    struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
> +    *buff_addr = le64_to_cpu(d->buffer_addr);
> +}
> +
> +static inline void
> +e1000e_read_ext_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr)
> +{
> +    union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc;
> +    *buff_addr = le64_to_cpu(d->read.buffer_addr);
> +}
> +
> +static inline void
> +e1000e_read_ps_rx_descr(E1000ECore *core, uint8_t *desc,
> +                        hwaddr (*buff_addr)[MAX_PS_BUFFERS])
> +{
> +    int i;
> +    union e1000_rx_desc_packet_split *d =
> +        (union e1000_rx_desc_packet_split *) desc;
> +
> +    for (i = 0; i < MAX_PS_BUFFERS; i++) {
> +        (*buff_addr)[i] = le64_to_cpu(d->read.buffer_addr[i]);
> +    }
> +
> +    trace_e1000e_rx_desc_ps_read((*buff_addr)[0], (*buff_addr)[1],
> +                                 (*buff_addr)[2], (*buff_addr)[3]);
> +}
> +
> +static inline void
> +e1000e_read_rx_descr(E1000ECore *core, uint8_t *desc,
> +                     hwaddr (*buff_addr)[MAX_PS_BUFFERS])
> +{
> +    if (e1000e_rx_use_legacy_descriptor(core)) {
> +        e1000e_read_lgcy_rx_descr(core, desc, &(*buff_addr)[0]);
> +        (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0;
> +    } else {
> +        if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
> +            e1000e_read_ps_rx_descr(core, desc, buff_addr);
> +        } else {
> +            e1000e_read_ext_rx_descr(core, desc, &(*buff_addr)[0]);
> +            (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0;
> +        }
> +    }
> +}
> +
> +static void
> +e1000e_verify_csum_in_sw(E1000ECore *core,
> +                         struct NetRxPkt *pkt,
> +                         uint32_t *status_flags,
> +                         bool istcp, bool isudp)
> +{
> +    bool csum_valid;
> +    uint32_t csum_error;
> +
> +    if (e1000e_rx_l3_cso_enabled(core)) {
> +        if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
> +            trace_e1000e_rx_metadata_l3_csum_validation_failed();
> +        } else {
> +            csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
> +            *status_flags |= E1000_RXD_STAT_IPCS | csum_error;
> +        }
> +    } else {
> +        trace_e1000e_rx_metadata_l3_cso_disabled();
> +    }
> +
> +    if (!e1000e_rx_l4_cso_enabled(core)) {
> +        trace_e1000e_rx_metadata_l4_cso_disabled();
> +        return;
> +    }
> +
> +    if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
> +        trace_e1000e_rx_metadata_l4_csum_validation_failed();
> +        return;
> +    }
> +
> +    csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
> +
> +    if (istcp) {
> +        *status_flags |= E1000_RXD_STAT_TCPCS |
> +                         csum_error;
> +    } else if (isudp) {
> +        *status_flags |= E1000_RXD_STAT_TCPCS |
> +                         E1000_RXD_STAT_UDPCS |
> +                         csum_error;
> +    }
> +}
> +
> +static inline bool
> +e1000e_is_tcp_ack(E1000ECore *core, struct NetRxPkt *rx_pkt)
> +{
> +    if (!net_rx_pkt_is_tcp_ack(rx_pkt)) {
> +        return false;
> +    }
> +
> +    if (core->mac[RFCTL] & E1000_RFCTL_ACK_DATA_DIS) {
> +        return !net_rx_pkt_has_tcp_data(rx_pkt);
> +    }
> +
> +    return true;
> +}
> +
> +static void
> +e1000e_build_rx_metadata(E1000ECore *core,
> +                         struct NetRxPkt *pkt,
> +                         bool is_eop,
> +                         const E1000E_RSSInfo *rss_info,
> +                         uint32_t *rss, uint32_t *mrq,
> +                         uint32_t *status_flags,
> +                         uint16_t *ip_id,
> +                         uint16_t *vlan_tag)
> +{
> +    struct virtio_net_hdr *vhdr;
> +    bool isip4, isip6, istcp, isudp;
> +    uint32_t pkt_type;
> +
> +    *status_flags = E1000_RXD_STAT_DD;
> +
> +    /* No additional metadata needed for non-EOP descriptors */
> +    if (!is_eop) {
> +        goto func_exit;
> +    }
> +
> +    *status_flags |= E1000_RXD_STAT_EOP;
> +
> +    net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
> +    trace_e1000e_rx_metadata_protocols(isip4, isip6, isudp, istcp);
> +
> +    /* VLAN state */
> +    if (net_rx_pkt_is_vlan_stripped(pkt)) {
> +        *status_flags |= E1000_RXD_STAT_VP;
> +        *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
> +        trace_e1000e_rx_metadata_vlan(*vlan_tag);
> +    }
> +
> +    /* Packet parsing results */
> +    if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
> +        if (rss_info->enabled) {
> +            *rss = cpu_to_le32(rss_info->hash);
> +            *mrq = cpu_to_le32(rss_info->type | (rss_info->queue << 8));
> +            trace_e1000e_rx_metadata_rss(*rss, *mrq);
> +        }
> +    } else if (isip4) {
> +            *status_flags |= E1000_RXD_STAT_IPIDV;
> +            *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
> +            trace_e1000e_rx_metadata_ip_id(*ip_id);
> +    }
> +
> +    if (istcp && e1000e_is_tcp_ack(core, pkt)) {
> +        *status_flags |= E1000_RXD_STAT_ACK;
> +        trace_e1000e_rx_metadata_ack();
> +    }
> +
> +    if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) {
> +        trace_e1000e_rx_metadata_ipv6_filtering_disabled();
> +        pkt_type = E1000_RXD_PKT_MAC;
> +    } else if (istcp || isudp) {
> +        pkt_type = isip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP;
> +    } else if (isip4 || isip6) {
> +        pkt_type = isip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6;
> +    } else {
> +        pkt_type = E1000_RXD_PKT_MAC;
> +    }
> +
> +    *status_flags |= E1000_RXD_PKT_TYPE(pkt_type);
> +    trace_e1000e_rx_metadata_pkt_type(pkt_type);
> +
> +    /* RX CSO information */
> +    if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
> +        trace_e1000e_rx_metadata_ipv6_sum_disabled();
> +        goto func_exit;
> +    }
> +
> +    if (!net_rx_pkt_has_virt_hdr(pkt)) {
> +        trace_e1000e_rx_metadata_no_virthdr();
> +        e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp);
> +        goto func_exit;
> +    }
> +
> +    vhdr = net_rx_pkt_get_vhdr(pkt);
> +
> +    if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
> +        !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
> +        trace_e1000e_rx_metadata_virthdr_no_csum_info();
> +        e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp);
> +        goto func_exit;
> +    }
> +
> +    if (e1000e_rx_l3_cso_enabled(core)) {
> +        *status_flags |= isip4 ? E1000_RXD_STAT_IPCS : 0;
> +    } else {
> +        trace_e1000e_rx_metadata_l3_cso_disabled();
> +    }
> +
> +    if (e1000e_rx_l4_cso_enabled(core)) {
> +        if (istcp) {
> +            *status_flags |= E1000_RXD_STAT_TCPCS;
> +        } else if (isudp) {
> +            *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
> +        }
> +    } else {
> +        trace_e1000e_rx_metadata_l4_cso_disabled();
> +    }
> +
> +    trace_e1000e_rx_metadata_status_flags(*status_flags);
> +
> +func_exit:
> +    *status_flags = cpu_to_le32(*status_flags);
> +}
> +
> +static inline void
> +e1000e_write_lgcy_rx_descr(E1000ECore *core, uint8_t *desc,
> +                           struct NetRxPkt *pkt,
> +                           const E1000E_RSSInfo *rss_info,
> +                           uint16_t length)
> +{
> +    uint32_t status_flags, rss, mrq;
> +    uint16_t ip_id;
> +
> +    struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
> +
> +    memset(d, 0, sizeof(*d));
> +
> +    assert(!rss_info->enabled);
> +
> +    d->length = cpu_to_le16(length);
> +
> +    e1000e_build_rx_metadata(core, pkt, pkt != NULL,
> +                             rss_info,
> +                             &rss, &mrq,
> +                             &status_flags, &ip_id,
> +                             &d->special);
> +    d->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
> +    d->status = (uint8_t) le32_to_cpu(status_flags);
> +}
> +
> +static inline void
> +e1000e_write_ext_rx_descr(E1000ECore *core, uint8_t *desc,
> +                          struct NetRxPkt *pkt,
> +                          const E1000E_RSSInfo *rss_info,
> +                          uint16_t length)
> +{
> +    union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc;
> +
> +    memset(d, 0, sizeof(*d));
> +
> +    d->wb.upper.length = cpu_to_le16(length);
> +
> +    e1000e_build_rx_metadata(core, pkt, pkt != NULL,
> +                             rss_info,
> +                             &d->wb.lower.hi_dword.rss,
> +                             &d->wb.lower.mrq,
> +                             &d->wb.upper.status_error,
> +                             &d->wb.lower.hi_dword.csum_ip.ip_id,
> +                             &d->wb.upper.vlan);
> +}
> +
> +static inline void
> +e1000e_write_ps_rx_descr(E1000ECore *core, uint8_t *desc,
> +                         struct NetRxPkt *pkt,
> +                         const E1000E_RSSInfo *rss_info,
> +                         size_t ps_hdr_len,
> +                         uint16_t(*written)[MAX_PS_BUFFERS])
> +{
> +    int i;
> +    union e1000_rx_desc_packet_split *d =
> +        (union e1000_rx_desc_packet_split *) desc;
> +
> +    memset(d, 0, sizeof(*d));
> +
> +    d->wb.middle.length0 = cpu_to_le16((*written)[0]);
> +
> +    for (i = 0; i < PS_PAGE_BUFFERS; i++) {
> +        d->wb.upper.length[i] = cpu_to_le16((*written)[i + 1]);
> +    }
> +
> +    e1000e_build_rx_metadata(core, pkt, pkt != NULL,
> +                             rss_info,
> +                             &d->wb.lower.hi_dword.rss,
> +                             &d->wb.lower.mrq,
> +                             &d->wb.middle.status_error,
> +                             &d->wb.lower.hi_dword.csum_ip.ip_id,
> +                             &d->wb.middle.vlan);
> +
> +    d->wb.upper.header_status =
> +        cpu_to_le16(ps_hdr_len | (ps_hdr_len ? E1000_RXDPS_HDRSTAT_HDRSP : 
> 0));
> +
> +    trace_e1000e_rx_desc_ps_write((*written)[0], (*written)[1],
> +                                  (*written)[2], (*written)[3]);
> +}
> +
> +static inline void
> +e1000e_write_rx_descr(E1000ECore *core, uint8_t *desc,
> +struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info,
> +    size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS])
> +{
> +    if (e1000e_rx_use_legacy_descriptor(core)) {
> +        assert(ps_hdr_len == 0);
> +        e1000e_write_lgcy_rx_descr(core, desc, pkt, rss_info, (*written)[0]);
> +    } else {
> +        if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
> +            e1000e_write_ps_rx_descr(core, desc, pkt, rss_info,
> +                                      ps_hdr_len, written);
> +        } else {
> +            assert(ps_hdr_len == 0);
> +            e1000e_write_ext_rx_descr(core, desc, pkt, rss_info,
> +                                       (*written)[0]);
> +        }
> +    }
> +}
> +
> +typedef struct e1000e_ba_state_st {
> +    uint16_t written[MAX_PS_BUFFERS];
> +    uint8_t cur_idx;
> +} e1000e_ba_state;
> +
> +static inline void
> +e1000e_write_hdr_to_rx_buffers(E1000ECore *core,
> +                               hwaddr (*ba)[MAX_PS_BUFFERS],
> +                               e1000e_ba_state *bastate,
> +                               const char *data,
> +                               dma_addr_t data_len)
> +{
> +    assert(data_len <= core->rxbuf_sizes[0] - bastate->written[0]);
> +
> +    pci_dma_write(core->owner, (*ba)[0] + bastate->written[0], data, 
> data_len);
> +    bastate->written[0] += data_len;
> +
> +    bastate->cur_idx = 1;
> +}
> +
> +static void
> +e1000e_write_to_rx_buffers(E1000ECore *core,
> +                           hwaddr (*ba)[MAX_PS_BUFFERS],
> +                           e1000e_ba_state *bastate,
> +                           const char *data,
> +                           dma_addr_t data_len)
> +{
> +    while (data_len > 0) {
> +        uint32_t cur_buf_len = core->rxbuf_sizes[bastate->cur_idx];
> +        uint32_t cur_buf_bytes_left = cur_buf_len -
> +                                      bastate->written[bastate->cur_idx];
> +        uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left);
> +
> +        trace_e1000e_rx_desc_buff_write(bastate->cur_idx,
> +                                        (*ba)[bastate->cur_idx],
> +                                        bastate->written[bastate->cur_idx],
> +                                        data,
> +                                        bytes_to_write);
> +
> +        pci_dma_write(core->owner,
> +            (*ba)[bastate->cur_idx] + bastate->written[bastate->cur_idx],
> +            data, bytes_to_write);
> +
> +        bastate->written[bastate->cur_idx] += bytes_to_write;
> +        data += bytes_to_write;
> +        data_len -= bytes_to_write;
> +
> +        if (bastate->written[bastate->cur_idx] == cur_buf_len) {
> +            bastate->cur_idx++;
> +        }
> +
> +        assert(bastate->cur_idx < MAX_PS_BUFFERS);
> +    }
> +}
> +
> +static void
> +e1000e_update_rx_stats(E1000ECore *core,
> +                       size_t data_size,
> +                       size_t data_fcs_size)
> +{
> +    static const int PRCregs[6] = { PRC64, PRC127, PRC255, PRC511,
> +                                    PRC1023, PRC1522 };
> +
> +    e1000e_increase_size_stats(core, PRCregs, data_fcs_size);
> +    e1000e_inc_reg_if_not_full(core, TPR);
> +    core->mac[GPRC] = core->mac[TPR];
> +    /* TOR - Total Octets Received:
> +    * This register includes bytes received in a packet from the <Destination
> +    * Address> field through the <CRC> field, inclusively.
> +    * Always include FCS length (4) in size.
> +    */
> +    e1000e_grow_8reg_if_not_full(core, TORL, data_size + 4);
> +    core->mac[GORCL] = core->mac[TORL];
> +    core->mac[GORCH] = core->mac[TORH];
> +
> +    switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
> +    case ETH_PKT_BCAST:
> +        e1000e_inc_reg_if_not_full(core, BPRC);
> +        break;
> +
> +    case ETH_PKT_MCAST:
> +        e1000e_inc_reg_if_not_full(core, MPRC);
> +        break;
> +
> +    default:
> +        break;
> +    }
> +}
> +
> +static inline bool
> +e1000e_rx_descr_threshold_hit(E1000ECore *core, const E1000E_RingInfo *rxi)
> +{
> +    return e1000e_ring_free_descr_num(core, rxi) ==
> +           e1000e_ring_len(core, rxi) >> core->rxbuf_min_shift;
> +}
> +
> +static bool
> +e1000e_do_ps(E1000ECore *core, struct NetRxPkt *pkt, size_t *hdr_len)
> +{
> +    bool isip4, isip6, isudp, istcp;
> +    bool fragment;
> +
> +    if (!e1000e_rx_use_ps_descriptor(core)) {
> +        return false;
> +    }
> +
> +    net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
> +
> +    if (isip4) {
> +        fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
> +    } else if (isip6) {
> +        fragment = net_rx_pkt_get_ip6_info(pkt)->fragment;
> +    } else {
> +        return false;
> +    }
> +
> +    if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) {
> +        return false;
> +    }
> +
> +    if (!fragment && (isudp || istcp)) {
> +        *hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt);
> +    } else {
> +        *hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt);
> +    }
> +
> +    if ((*hdr_len > core->rxbuf_sizes[0]) ||
> +        (*hdr_len > net_rx_pkt_get_total_len(pkt))) {
> +        return false;
> +    }
> +
> +    return true;
> +}
> +
> +static void
> +e1000e_write_paket_to_guest(E1000ECore *core, struct NetRxPkt *pkt,

typo here, should be packet?

> +                            const E1000E_RxRing *rxr,
> +                            const E1000E_RSSInfo *rss_info)
> +{
> +    PCIDevice *d = core->owner;
> +    dma_addr_t base;
> +    uint8_t desc[E1000_MAX_RX_DESC_LEN];
> +    size_t desc_size;
> +    size_t desc_offset = 0;
> +    size_t iov_ofs = 0;
> +
> +    struct iovec *iov = net_rx_pkt_get_iovec(pkt);
> +    size_t size = net_rx_pkt_get_total_len(pkt);
> +    size_t total_size = size + e1000e_fcs_len(core);
> +    const E1000E_RingInfo *rxi;
> +    size_t ps_hdr_len = 0;
> +    bool do_ps = e1000e_do_ps(core, pkt, &ps_hdr_len);
> +
> +    rxi = rxr->i;
> +
> +    do {
> +        hwaddr ba[MAX_PS_BUFFERS];
> +        e1000e_ba_state bastate = { { 0 } };
> +        bool is_last = false;
> +        bool is_first = true;
> +
> +        desc_size = total_size - desc_offset;
> +
> +        if (desc_size > core->rx_desc_buf_size) {
> +            desc_size = core->rx_desc_buf_size;
> +        }
> +
> +        base = e1000e_ring_head_descr(core, rxi);
> +
> +        pci_dma_read(d, base, &desc, core->rx_desc_len);
> +
> +        trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
> +
> +        e1000e_read_rx_descr(core, desc, &ba);
> +
> +        if (ba[0]) {
> +            if (desc_offset < size) {
> +                static const uint32_t fcs_pad;
> +                size_t iov_copy;
> +                size_t copy_size = size - desc_offset;
> +                if (copy_size > core->rx_desc_buf_size) {
> +                    copy_size = core->rx_desc_buf_size;
> +                }
> +
> +                /* For PS mode copy the packet header first */
> +                if (do_ps) {
> +                    if (is_first) {
> +                        size_t ps_hdr_copied = 0;
> +                        do {
> +                            iov_copy = MIN(ps_hdr_len - ps_hdr_copied,
> +                                           iov->iov_len - iov_ofs);
> +
> +                            e1000e_write_hdr_to_rx_buffers(core, &ba, 
> &bastate,
> +                                                      iov->iov_base, 
> iov_copy);
> +
> +                            copy_size -= iov_copy;
> +                            ps_hdr_copied += iov_copy;
> +
> +                            iov_ofs += iov_copy;
> +                            if (iov_ofs == iov->iov_len) {
> +                                iov++;
> +                                iov_ofs = 0;
> +                            }
> +                        } while (ps_hdr_copied < ps_hdr_len);
> +
> +                        is_first = false;
> +                    } else {
> +                        /* Leave buffer 0 of each descriptor except first */
> +                        /* empty as per spec 7.1.5.1                      */
> +                        e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate,
> +                                                       NULL, 0);
> +                    }
> +                }
> +
> +                /* Copy packet payload */
> +                while (copy_size) {
> +                    iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
> +
> +                    e1000e_write_to_rx_buffers(core, &ba, &bastate,
> +                                            iov->iov_base + iov_ofs, 
> iov_copy);
> +
> +                    copy_size -= iov_copy;
> +                    iov_ofs += iov_copy;
> +                    if (iov_ofs == iov->iov_len) {
> +                        iov++;
> +                        iov_ofs = 0;
> +                    }
> +                }
> +
> +                if (desc_offset + desc_size >= total_size) {
> +                    /* Simulate FCS checksum presence in the last descriptor 
> */
> +                    e1000e_write_to_rx_buffers(core, &ba, &bastate,
> +                                (const char *) &fcs_pad, 
> e1000e_fcs_len(core));
> +                }
> +            }
> +            desc_offset += desc_size;
> +            if (desc_offset >= total_size) {
> +                is_last = true;
> +            }
> +        } else { /* as per intel docs; skip descriptors with null buf addr */
> +            trace_e1000e_rx_null_descriptor();
> +        }
> +
> +        e1000e_write_rx_descr(core, desc, is_last ? core->rx_pkt : NULL,
> +                           rss_info, do_ps ? ps_hdr_len : 0, 
> &bastate.written);
> +        pci_dma_write(d, base, &desc, core->rx_desc_len);
> +
> +        e1000e_ring_advance(core, rxi,
> +                            core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
> +
> +    } while (desc_offset < total_size);
> +
> +    e1000e_update_rx_stats(core, size, total_size);
> +}
> +
> +static inline void
> +e1000e_rx_fix_l4_csum(E1000ECore *core, struct NetRxPkt *pkt)
> +{
> +    if (net_rx_pkt_has_virt_hdr(pkt)) {
> +        struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
> +
> +        if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
> +            net_rx_pkt_fix_l4_csum(pkt);
> +        }
> +    }
> +}
> +
> +ssize_t
> +e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt)
> +{
> +    /* this is the size past which hardware will
> +       drop packets when setting LPE=0 */
> +    static const int MAXIMUM_ETHERNET_VLAN_SIZE = 1522;
> +    /* this is the size past which hardware will
> +       drop packets when setting LPE=1 */
> +    static const int MAXIMUM_ETHERNET_LPE_SIZE = 16384;
> +
> +    static const int MAXIMUM_ETHERNET_HDR_LEN = (14 + 4);
> +
> +    /* Min. octets in an ethernet frame sans FCS */
> +    static const int MIN_BUF_SIZE = 60;
> +
> +    uint32_t n = 0;
> +    uint8_t min_buf[MIN_BUF_SIZE];
> +    struct iovec min_iov;
> +    uint8_t *filter_buf;
> +    size_t size, orig_size;
> +    size_t iov_ofs = 0;
> +    E1000E_RxRing rxr;
> +    E1000E_RSSInfo rss_info;
> +    size_t total_size;
> +    ssize_t retval;
> +    bool rdmts_hit;
> +
> +    trace_e1000e_rx_receive_iov(iovcnt);
> +
> +    if (!(core->mac[STATUS] & E1000_STATUS_LU)) {
> +        trace_e1000e_rx_link_down(core->mac[STATUS]);

Interesting, you don't trace the link status during
e1000e_core_set_link_status but here.

> +        return -1;
> +    }
> +
> +    if (!(core->mac[RCTL] & E1000_RCTL_EN)) {
> +        trace_e1000e_rx_disabled(core->mac[RCTL]);
> +        return 0;
> +    }
> +
> +    /* Pull virtio header in */
> +    if (core->has_vnet) {
> +        net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
> +        iov_ofs = sizeof(struct virtio_net_hdr);
> +    }
> +
> +    filter_buf = iov->iov_base + iov_ofs;
> +    orig_size = iov_size(iov, iovcnt);
> +    size = orig_size - iov_ofs;
> +
> +    /* Pad to minimum Ethernet frame length */
> +    if (size < sizeof(min_buf)) {
> +        iov_to_buf(iov, iovcnt, iov_ofs, min_buf, size);
> +        memset(&min_buf[size], 0, sizeof(min_buf) - size);
> +        e1000e_inc_reg_if_not_full(core, RUC);
> +        min_iov.iov_base = filter_buf = min_buf;
> +        min_iov.iov_len = size = sizeof(min_buf);
> +        iovcnt = 1;
> +        iov = &min_iov;
> +        iov_ofs = 0;
> +    } else if (iov->iov_len < MAXIMUM_ETHERNET_HDR_LEN) {
> +        /* This is very unlikely, but may happen. */
> +        iov_to_buf(iov, iovcnt, iov_ofs, min_buf, MAXIMUM_ETHERNET_HDR_LEN);
> +        filter_buf = min_buf;
> +    }
> +
> +    /* Discard oversized packets if !LPE and !SBP. */
> +    if ((size > MAXIMUM_ETHERNET_LPE_SIZE ||
> +        (size > MAXIMUM_ETHERNET_VLAN_SIZE
> +        && !(core->mac[RCTL] & E1000_RCTL_LPE)))
> +        && !(core->mac[RCTL] & E1000_RCTL_SBP)) {
> +        e1000e_inc_reg_if_not_full(core, ROC);
> +        trace_e1000e_rx_oversized(size);
> +        return orig_size;
> +    }
> +
> +    net_rx_pkt_set_packet_type(core->rx_pkt,
> +        get_eth_packet_type(PKT_GET_ETH_HDR(filter_buf)));
> +
> +    if (!e1000e_receive_filter(core, filter_buf, size)) {
> +        trace_e1000e_rx_flt_dropped();
> +        return orig_size;
> +    }
> +
> +    net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
> +                               e1000e_vlan_enabled(core), core->vet);
> +
> +    e1000e_rss_parse_packet(core, core->rx_pkt, &rss_info);
> +    e1000e_rx_ring_init(core, &rxr, rss_info.queue);
> +
> +    trace_e1000e_rx_rss_dispatched_to_queue(rxr.i->idx);
> +
> +    total_size = net_rx_pkt_get_total_len(core->rx_pkt) + 
> e1000e_fcs_len(core);
> +
> +    if (e1000e_has_rxbufs(core, rxr.i, total_size)) {
> +        e1000e_rx_fix_l4_csum(core, core->rx_pkt);
> +
> +        e1000e_write_paket_to_guest(core, core->rx_pkt, &rxr, &rss_info);
> +
> +        retval = orig_size;
> +
> +        /* Perform small receive detection (RSRPD) */
> +        if (total_size < core->mac[RSRPD]) {
> +            n |= E1000_ICS_SRPD;
> +        }
> +
> +        /* Perform ACK receive detection */
> +        if (e1000e_is_tcp_ack(core, core->rx_pkt)) {
> +            n |= E1000_ICS_ACK;
> +        }
> +
> +        /* Check if receive descriptor minimum threshold hit */
> +        rdmts_hit = e1000e_rx_descr_threshold_hit(core, rxr.i);
> +        n |= e1000e_rx_wb_interrupt_cause(core, rxr.i->idx, rdmts_hit);
> +
> +        trace_e1000e_rx_written_to_guest(n);
> +    } else {
> +        n |= E1000_ICS_RXO;
> +        retval = 0;
> +
> +        trace_e1000e_rx_not_written_to_guest(n);
> +    }
> +
> +    if (!e1000e_intrmgr_delay_rx_causes(core, &n)) {
> +        trace_e1000e_rx_interrupt_set(n);
> +        e1000e_set_interrupt_cause(core, n);
> +    } else {
> +        trace_e1000e_rx_interrupt_delayed(n);
> +    }
> +
> +    return retval;
> +}
> +
> +static inline bool
> +e1000e_have_autoneg(E1000ECore *core)
> +{
> +    return core->phy[0][PHY_CTRL] & MII_CR_AUTO_NEG_EN;
> +}
> +
> +static void e1000e_update_flowctl_status(E1000ECore *core)
> +{
> +    if (e1000e_have_autoneg(core) &&
> +        core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE) {
> +        trace_e1000e_link_autoneg_flowctl(true);
> +        core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
> +    } else {
> +        trace_e1000e_link_autoneg_flowctl(false);
> +    }
> +}
> +
> +static inline void
> +e1000e_link_down(E1000ECore *core)
> +{
> +    core->mac[STATUS] &= ~E1000_STATUS_LU;
> +    core->phy[0][PHY_STATUS] &= ~MII_SR_LINK_STATUS;
> +    core->phy[0][PHY_STATUS] &= ~MII_SR_AUTONEG_COMPLETE;
> +    core->phy[0][PHY_LP_ABILITY] &= ~MII_LPAR_LPACK;
> +
> +    e1000e_update_flowctl_status(core);
> +}
> +
> +static void
> +e1000e_link_up(E1000ECore *core)
> +{
> +    core->mac[STATUS] |= E1000_STATUS_LU;
> +    core->phy[0][PHY_STATUS] |= MII_SR_LINK_STATUS;
> +}
> +
> +static inline void
> +e1000e_restart_autoneg(E1000ECore *core)
> +{
> +    if (e1000e_have_autoneg(core)) {
> +        e1000e_link_down(core);
> +        trace_e1000e_link_negotiation_start();
> +        timer_mod(core->autoneg_timer,
> +                  qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
> +    }
> +}
> +
> +static inline void
> +e1000e_set_phy_ctrl(E1000ECore *core, int index, uint16_t val)
> +{
> +    /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing 
> */
> +    core->phy[0][PHY_CTRL] = val & ~(0x3f |
> +                             MII_CR_RESET |
> +                             MII_CR_RESTART_AUTO_NEG);
> +
> +    if (val & MII_CR_RESTART_AUTO_NEG) {
> +        e1000e_restart_autoneg(core);
> +    }
> +}
> +
> +static void
> +e1000e_set_phy_oem_bits(E1000ECore *core, int index, uint16_t val)
> +{
> +    core->phy[0][PHY_OEM_BITS] = val & ~BIT(10);
> +
> +    if (val & BIT(10)) {
> +        e1000e_restart_autoneg(core);
> +    }
> +}
> +
> +static void
> +e1000e_set_phy_page(E1000ECore *core, int index, uint16_t val)
> +{
> +    core->phy[0][PHY_PAGE] = val & PHY_PAGE_RW_MASK;
> +}
> +
> +void
> +e1000e_core_set_link_status(E1000ECore *core)
> +{
> +    NetClientState *nc = qemu_get_queue(core->owner_nic);
> +    uint32_t old_status = core->mac[STATUS];
> +
> +    if (nc->link_down) {
> +        e1000e_link_down(core);
> +    } else {
> +        if (e1000e_have_autoneg(core) &&
> +            !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
> +            /* emulate auto-negotiation if supported */
> +            timer_mod(core->autoneg_timer,
> +                      qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
> +        } else {
> +            e1000e_link_up(core);
> +        }
> +    }
> +
> +    if (core->mac[STATUS] != old_status) {
> +        e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
> +    }
> +}
> +
> +static void
> +e1000e_core_reset_mac(E1000ECore *core)
> +{
> +    int i;
> +
> +    core->mac[RA] = 0;
> +    core->mac[RA + 1] = E1000_RAH_AV;
> +    for (i = 0; i < 4; i++) {
> +        core->mac[RA] |= core->permanent_mac[i] << (8 * i);
> +        core->mac[RA + 1] |=
> +            (i < 2) ? core->permanent_mac[i + 4] << (8 * i) : 0;
> +    }
> +
> +    qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
> +                             core->permanent_mac);
> +
> +    trace_e1000e_mac_indicate(MAC_ARG(core->permanent_mac));
> +}
> +
> +static void
> +e1000e_set_ctrl(E1000ECore *core, int index, uint32_t val)
> +{
> +    trace_e1000e_core_ctrl_write(index, val);
> +
> +    /* RST is self clearing */
> +    core->mac[CTRL] = val & ~E1000_CTRL_RST;
> +    core->mac[CTRL_DUP] = core->mac[CTRL];
> +
> +    trace_e1000e_link_set_params(
> +        !!(val & E1000_CTRL_ASDE),
> +        (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
> +        !!(val & E1000_CTRL_FRCSPD),
> +        !!(val & E1000_CTRL_FRCDPX),
> +        !!(val & E1000_CTRL_RFCE),
> +        !!(val & E1000_CTRL_TFCE));
> +
> +    if (val & E1000_CTRL_RST) {
> +        trace_e1000e_core_ctrl_sw_reset();
> +        e1000e_core_reset_mac(core);
> +    }
> +
> +    if (val & E1000_CTRL_PHY_RST) {
> +        trace_e1000e_core_ctrl_phy_reset();
> +        core->mac[STATUS] |= E1000_STATUS_PHYRA;
> +    }
> +}
> +
> +static void
> +e1000e_set_rfctl(E1000ECore *core, int index, uint32_t val)
> +{
> +    trace_e1000e_rx_set_rfctl(val);
> +
> +    if (!(val & E1000_RFCTL_ISCSI_DIS)) {
> +        trace_e1000e_wrn_iscsi_filtering_not_supported();
> +    }
> +
> +    if (!(val & E1000_RFCTL_NFSW_DIS)) {
> +        trace_e1000e_wrn_nfsw_filtering_not_supported();
> +    }
> +
> +    if (!(val & E1000_RFCTL_NFSR_DIS)) {
> +        trace_e1000e_wrn_nfsr_filtering_not_supported();
> +    }
> +
> +    core->mac[RFCTL] = val;
> +}
> +
> +static inline uint32_t
> +e1000e_parse_rxbufsize_lgcy(uint32_t rctl)
> +{
> +    rctl &= E1000_RCTL_BSEX | E1000_RCTL_SZ_16384 | E1000_RCTL_SZ_8192 |
> +            E1000_RCTL_SZ_4096 | E1000_RCTL_SZ_2048 | E1000_RCTL_SZ_1024 |
> +            E1000_RCTL_SZ_512 | E1000_RCTL_SZ_256;
> +    switch (rctl) {
> +    case E1000_RCTL_BSEX | E1000_RCTL_SZ_16384:
> +        return 16384;
> +    case E1000_RCTL_BSEX | E1000_RCTL_SZ_8192:
> +        return 8192;
> +    case E1000_RCTL_BSEX | E1000_RCTL_SZ_4096:
> +        return 4096;
> +    case E1000_RCTL_SZ_1024:
> +        return 1024;
> +    case E1000_RCTL_SZ_512:
> +        return 512;
> +    case E1000_RCTL_SZ_256:
> +        return 256;
> +    }
> +    return 2048;
> +}
> +
> +static void
> +e1000e_calc_per_desc_buf_size(E1000ECore *core)
> +{
> +    int i;
> +    core->rx_desc_buf_size = 0;
> +
> +    for (i = 0; i < ARRAY_SIZE(core->rxbuf_sizes); i++) {
> +        core->rx_desc_buf_size += core->rxbuf_sizes[i];
> +    }
> +}
> +
> +static void
> +e1000e_parse_rxbufsize(E1000ECore *core)
> +{
> +    uint32_t rctl = core->mac[RCTL];
> +
> +    memset(core->rxbuf_sizes, 0, sizeof(core->rxbuf_sizes));
> +
> +    if (rctl & E1000_RCTL_DTYP_MASK) {
> +        uint32_t bsize;
> +
> +        bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE0_MASK;
> +        core->rxbuf_sizes[0] = (bsize >> E1000_PSRCTL_BSIZE0_SHIFT) * 128;
> +
> +        bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE1_MASK;
> +        core->rxbuf_sizes[1] = (bsize >> E1000_PSRCTL_BSIZE1_SHIFT) * 1024;
> +
> +        bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE2_MASK;
> +        core->rxbuf_sizes[2] = (bsize >> E1000_PSRCTL_BSIZE2_SHIFT) * 1024;
> +
> +        bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE3_MASK;
> +        core->rxbuf_sizes[3] = (bsize >> E1000_PSRCTL_BSIZE3_SHIFT) * 1024;
> +    } else if (rctl & E1000_RCTL_FLXBUF_MASK) {
> +        int flxbuf = rctl & E1000_RCTL_FLXBUF_MASK;
> +        core->rxbuf_sizes[0] = (flxbuf >> E1000_RCTL_FLXBUF_SHIFT) * 1024;
> +    } else {
> +        core->rxbuf_sizes[0] = e1000e_parse_rxbufsize_lgcy(rctl);
> +    }
> +
> +    trace_e1000e_rx_desc_buff_sizes(core->rxbuf_sizes[0], 
> core->rxbuf_sizes[1],
> +                                    core->rxbuf_sizes[2], 
> core->rxbuf_sizes[3]);
> +
> +    e1000e_calc_per_desc_buf_size(core);
> +}
> +
> +static void
> +e1000e_calc_rxdesclen(E1000ECore *core)
> +{
> +    if (e1000e_rx_use_legacy_descriptor(core)) {
> +        core->rx_desc_len = sizeof(struct e1000_rx_desc);
> +    } else {
> +        if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
> +            core->rx_desc_len = sizeof(union e1000_rx_desc_packet_split);
> +        } else {
> +            core->rx_desc_len = sizeof(union e1000_rx_desc_extended);
> +        }
> +    }
> +    trace_e1000e_rx_desc_len(core->rx_desc_len);
> +}
> +
> +static void
> +e1000e_set_rx_control(E1000ECore *core, int index, uint32_t val)
> +{
> +    core->mac[RCTL] = val;
> +    trace_e1000e_rx_set_rctl(core->mac[RCTL]);
> +
> +    if (val & E1000_RCTL_EN) {
> +        e1000e_parse_rxbufsize(core);
> +        e1000e_calc_rxdesclen(core);
> +        core->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1 +
> +                                E1000_RING_DESC_LEN_SHIFT;
> +
> +        e1000e_start_recv(core);
> +    }
> +}
> +
> +static
> +void(*e1000e_phyreg_writeops[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE])
> +(E1000ECore *, int, uint16_t) = {
> +    [0] = {
> +        [PHY_CTRL]     = e1000e_set_phy_ctrl,
> +        [PHY_PAGE]     = e1000e_set_phy_page,
> +        [PHY_OEM_BITS] = e1000e_set_phy_oem_bits
> +    }
> +};
> +
> +static inline void
> +e1000e_clear_ims_bits(E1000ECore *core, uint32_t bits)
> +{
> +    trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits);
> +    core->mac[IMS] &= ~bits;
> +}
> +
> +static inline bool
> +e1000e_postpone_interrupt(bool *interrupt_pending,
> +                           E1000IntrDelayTimer *timer)
> +{
> +    if (timer->running) {
> +        trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
> +
> +        *interrupt_pending = true;
> +        return true;
> +    }
> +
> +    if (timer->core->mac[timer->delay_reg] != 0) {
> +        e1000e_intrmgr_rearm_timer(timer);
> +    }
> +
> +    return false;
> +}
> +
> +static inline bool
> +e1000e_itr_should_postpone(E1000ECore *core)
> +{
> +    return e1000e_postpone_interrupt(&core->itr_intr_pending, &core->itr);
> +}
> +
> +static inline bool
> +e1000e_eitr_should_postpone(E1000ECore *core, int idx)
> +{
> +    return e1000e_postpone_interrupt(&core->eitr_intr_pending[idx],
> +                                     &core->eitr[idx]);
> +}
> +
> +static void
> +e1000e_msix_notify_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
> +{
> +    if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
> +        uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
> +        if (vec < E1000E_MSIX_VEC_NUM) {
> +            if (!e1000e_eitr_should_postpone(core, vec)) {
> +                trace_e1000e_irq_msix_notify_vec(vec);
> +                msix_notify(core->owner, vec);
> +            }
> +        } else {
> +            trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
> +        }
> +    } else {
> +        trace_e1000e_wrn_msix_invalid(cause, int_cfg);
> +    }
> +
> +    if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_EIAME) {
> +        trace_e1000e_irq_ims_clear_eiame(core->mac[IAM], cause);
> +        e1000e_clear_ims_bits(core, core->mac[IAM] & cause);
> +    }
> +
> +    core->mac[ICR] &= ~(core->mac[EIAC] & E1000_EIAC_MASK);
> +}
> +
> +static void
> +e1000e_msix_notify(E1000ECore *core, uint32_t causes)
> +{
> +    if (causes & E1000_ICR_RXQ0) {
> +        e1000e_msix_notify_one(core, E1000_ICR_RXQ0,
> +                               E1000_IVAR_RXQ0(core->mac[IVAR]));
> +    }
> +
> +    if (causes & E1000_ICR_RXQ1) {
> +        e1000e_msix_notify_one(core, E1000_ICR_RXQ1,
> +                               E1000_IVAR_RXQ1(core->mac[IVAR]));
> +    }
> +
> +    if (causes & E1000_ICR_TXQ0) {
> +        e1000e_msix_notify_one(core, E1000_ICR_TXQ0,
> +                               E1000_IVAR_TXQ0(core->mac[IVAR]));
> +    }
> +
> +    if (causes & E1000_ICR_TXQ1) {
> +        e1000e_msix_notify_one(core, E1000_ICR_TXQ1,
> +                               E1000_IVAR_TXQ1(core->mac[IVAR]));
> +    }
> +
> +    if (causes & E1000_ICR_OTHER) {
> +        e1000e_msix_notify_one(core, E1000_ICR_OTHER,
> +                               E1000_IVAR_OTHER(core->mac[IVAR]));
> +    }
> +}
> +
> +static void
> +e1000e_msix_clear_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
> +{
> +    if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
> +        uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
> +        if (vec < E1000E_MSIX_VEC_NUM) {
> +            trace_e1000e_irq_msix_pending_clearing(cause, int_cfg, vec);
> +            msix_clr_pending(core->owner, vec);
> +        } else {
> +            trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
> +        }
> +    } else {
> +        trace_e1000e_wrn_msix_invalid(cause, int_cfg);
> +    }
> +}
> +
> +static void
> +e1000e_msix_clear(E1000ECore *core, uint32_t causes)
> +{
> +    if (causes & E1000_ICR_RXQ0) {
> +        e1000e_msix_clear_one(core, E1000_ICR_RXQ0,
> +                              E1000_IVAR_RXQ0(core->mac[IVAR]));
> +    }
> +
> +    if (causes & E1000_ICR_RXQ1) {
> +        e1000e_msix_clear_one(core, E1000_ICR_RXQ1,
> +                              E1000_IVAR_RXQ1(core->mac[IVAR]));
> +    }
> +
> +    if (causes & E1000_ICR_TXQ0) {
> +        e1000e_msix_clear_one(core, E1000_ICR_TXQ0,
> +                              E1000_IVAR_TXQ0(core->mac[IVAR]));
> +    }
> +
> +    if (causes & E1000_ICR_TXQ1) {
> +        e1000e_msix_clear_one(core, E1000_ICR_TXQ1,
> +                              E1000_IVAR_TXQ1(core->mac[IVAR]));
> +    }
> +
> +    if (causes & E1000_ICR_OTHER) {
> +        e1000e_msix_clear_one(core, E1000_ICR_OTHER,
> +                              E1000_IVAR_OTHER(core->mac[IVAR]));
> +    }
> +}
> +
> +static inline void
> +e1000e_fix_icr_asserted(E1000ECore *core)
> +{
> +    core->mac[ICR] &= ~E1000_ICR_ASSERTED;
> +    if (core->mac[ICR]) {
> +        core->mac[ICR] |= E1000_ICR_ASSERTED;
> +    }
> +
> +    trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
> +}
> +
> +static void
> +e1000e_send_msi(E1000ECore *core, bool msix)
> +{
> +    uint32_t causes = core->mac[ICR] & core->mac[IMS] & ~E1000_ICR_ASSERTED;
> +
> +    if (msix) {
> +        e1000e_msix_notify(core, causes);
> +    } else {
> +        if (!e1000e_itr_should_postpone(core)) {
> +            trace_e1000e_irq_msi_notify(causes);
> +            msi_notify(core->owner, 0);
> +        }
> +    }
> +}
> +
> +static void
> +e1000e_update_interrupt_state(E1000ECore *core)
> +{
> +    bool interrupts_pending;
> +    bool is_msix = msix_enabled(core->owner);
> +
> +    /* Set ICR[OTHER] for MSI-X */
> +    if (is_msix) {
> +        if (core->mac[ICR] & core->mac[IMS] & E1000_ICR_OTHER_CAUSES) {
> +            core->mac[ICR] |= E1000_ICR_OTHER;
> +            trace_e1000e_irq_add_msi_other(core->mac[ICR]);
> +        }
> +    }
> +
> +    e1000e_fix_icr_asserted(core);
> +
> +    /*
> +     * Make sure ICR and ICS registers have the same value.
> +     * The spec says that the ICS register is write-only.  However in 
> practice,
> +     * on real hardware ICS is readable, and for reads it has the same value 
> as
> +     * ICR (except that ICS does not have the clear on read behaviour of 
> ICR).
> +     *
> +     * The VxWorks PRO/1000 driver uses this behaviour.
> +     */
> +    core->mac[ICS] = core->mac[ICR];
> +
> +    interrupts_pending = (core->mac[IMS] & core->mac[ICR]) ? true : false;
> +
> +    trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
> +                                        core->mac[ICR], core->mac[IMS]);
> +
> +    if (is_msix || msi_enabled(core->owner)) {
> +        if (interrupts_pending) {
> +            e1000e_send_msi(core, is_msix);
> +        }
> +    } else {
> +        if (interrupts_pending) {
> +            if (!e1000e_itr_should_postpone(core)) {
> +                e1000e_raise_legacy_irq(core);
> +            }
> +        } else {
> +            e1000e_lower_legacy_irq(core);
> +        }
> +    }
> +}
> +
> +static inline void
> +e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val)
> +{
> +    trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]);
> +
> +    val |= e1000e_intmgr_collect_delayed_causes(core);
> +    core->mac[ICR] |= val;
> +
> +    trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]);
> +
> +    e1000e_update_interrupt_state(core);
> +}
> +
> +static inline void
> +e1000e_autoneg_timer(void *opaque)
> +{
> +    E1000ECore *core = opaque;
> +    if (!qemu_get_queue(core->owner_nic)->link_down) {
> +        e1000e_link_up(core);
> +        core->phy[0][PHY_LP_ABILITY] |= MII_LPAR_LPACK;
> +        core->phy[0][PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
> +        e1000e_update_flowctl_status(core);
> +        trace_e1000e_link_negotiation_done();
> +
> +        /* signal link status change
> +         * to the guest
> +         */
> +        e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
> +    }
> +}
> +
> +static inline uint16_t
> +e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
> +{
> +    uint16_t index = (addr & 0x1ffff) >> 2;
> +    return index + (mac_reg_access[index] & 0xfffe);
> +}
> +
> +static const char e1000e_phy_regcap[E1000E_PHY_PAGES][0x20] = {
> +    [0] = {
> +        [PHY_CTRL]          = PHY_ANYPAGE | PHY_RW,
> +        [PHY_STATUS]        = PHY_ANYPAGE | PHY_R,
> +        [PHY_ID1]           = PHY_ANYPAGE | PHY_R,
> +        [PHY_ID2]           = PHY_ANYPAGE | PHY_R,
> +        [PHY_AUTONEG_ADV]   = PHY_ANYPAGE | PHY_RW,
> +        [PHY_LP_ABILITY]    = PHY_ANYPAGE | PHY_R,
> +        [PHY_AUTONEG_EXP]   = PHY_ANYPAGE | PHY_R,
> +        [PHY_NEXT_PAGE_TX]  = PHY_ANYPAGE | PHY_RW,
> +        [PHY_LP_NEXT_PAGE]  = PHY_ANYPAGE | PHY_R,
> +        [PHY_1000T_CTRL]    = PHY_ANYPAGE | PHY_RW,
> +        [PHY_1000T_STATUS]  = PHY_ANYPAGE | PHY_R,
> +        [PHY_EXT_STATUS]    = PHY_ANYPAGE | PHY_R,
> +        [PHY_PAGE]          = PHY_ANYPAGE | PHY_RW,
> +
> +        [PHY_COPPER_CTRL1]      = PHY_RW,
> +        [PHY_COPPER_STAT1]      = PHY_R,
> +        [PHY_COPPER_CTRL3]      = PHY_RW,
> +        [PHY_RX_ERR_CNTR]       = PHY_R,
> +        [PHY_OEM_BITS]          = PHY_RW,
> +        [PHY_BIAS_1]            = PHY_RW,
> +        [PHY_BIAS_2]            = PHY_RW,
> +        [PHY_COPPER_INT_ENABLE] = PHY_RW,
> +        [PHY_COPPER_STAT2]      = PHY_R,
> +        [PHY_COPPER_CTRL2]      = PHY_RW
> +    },
> +    [2] = {
> +        [PHY_MAC_CTRL1]         = PHY_RW,
> +        [PHY_MAC_INT_ENABLE]    = PHY_RW,
> +        [PHY_MAC_STAT]          = PHY_R,
> +        [PHY_MAC_CTRL2]         = PHY_RW
> +    },
> +    [3] = {
> +        [PHY_LED_03_FUNC_CTRL1] = PHY_RW,
> +        [PHY_LED_03_POL_CTRL]   = PHY_RW,
> +        [PHY_LED_TIMER_CTRL]    = PHY_RW,
> +        [PHY_LED_45_CTRL]       = PHY_RW
> +    },
> +    [5] = {
> +        [PHY_1000T_SKEW]        = PHY_R,
> +        [PHY_1000T_SWAP]        = PHY_R
> +    },
> +    [6] = {
> +        [PHY_CRC_COUNTERS]      = PHY_R
> +    }
> +};
> +
> +static bool
> +e1000e_phy_reg_check_cap(E1000ECore *core, uint32_t addr,
> +                         char cap, uint8_t *page)
> +{
> +    *page =
> +        (e1000e_phy_regcap[0][addr] & PHY_ANYPAGE) ? 0
> +                                                    : core->phy[0][PHY_PAGE];
> +
> +    if (*page >= E1000E_PHY_PAGES) {
> +        return false;
> +    }
> +
> +    return e1000e_phy_regcap[*page][addr] & cap;
> +}
> +
> +static void
> +e1000e_phy_reg_write(E1000ECore *core, uint8_t page,
> +                     uint32_t addr, uint16_t data)
> +{
> +    assert(page < E1000E_PHY_PAGES);
> +    assert(addr < E1000E_PHY_PAGE_SIZE);
> +
> +    if (e1000e_phyreg_writeops[page][addr]) {
> +        e1000e_phyreg_writeops[page][addr](core, addr, data);
> +    } else {
> +        core->phy[page][addr] = data;
> +    }
> +}
> +
> +static void
> +e1000e_set_mdic(E1000ECore *core, int index, uint32_t val)
> +{
> +    uint32_t data = val & E1000_MDIC_DATA_MASK;
> +    uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
> +    uint8_t page;
> +
> +    if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # 
> */
> +        val = core->mac[MDIC] | E1000_MDIC_ERROR;
> +    } else if (val & E1000_MDIC_OP_READ) {
> +        if (!e1000e_phy_reg_check_cap(core, addr, PHY_R, &page)) {
> +            trace_e1000e_core_mdic_read_unhandled(page, addr);
> +            val |= E1000_MDIC_ERROR;
> +        } else {
> +            val = (val ^ data) | core->phy[page][addr];
> +            trace_e1000e_core_mdic_read(page, addr, val);
> +        }
> +    } else if (val & E1000_MDIC_OP_WRITE) {
> +        if (!e1000e_phy_reg_check_cap(core, addr, PHY_W, &page)) {
> +            trace_e1000e_core_mdic_write_unhandled(page, addr);
> +            val |= E1000_MDIC_ERROR;
> +        } else {
> +            trace_e1000e_core_mdic_write(page, addr, data);
> +            e1000e_phy_reg_write(core, page, addr, data);
> +        }
> +    }
> +    core->mac[MDIC] = val | E1000_MDIC_READY;
> +
> +    if (val & E1000_MDIC_INT_EN) {
> +        e1000e_set_interrupt_cause(core, E1000_ICR_MDAC);
> +    }
> +}
> +
> +static void
> +e1000e_set_rdt(E1000ECore *core, int index, uint32_t val)
> +{
> +    core->mac[index] = val & 0xffff;
> +    trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0, index), val);
> +    e1000e_start_recv(core);
> +}
> +
> +static void
> +e1000e_set_status(E1000ECore *core, int index, uint32_t val)
> +{
> +    if ((val & E1000_STATUS_PHYRA) == 0) {
> +        core->mac[index] &= ~E1000_STATUS_PHYRA;
> +    }
> +}
> +
> +static void
> +e1000e_set_ctrlext(E1000ECore *core, int index, uint32_t val)
> +{
> +    trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
> +                                     !!(val & E1000_CTRL_EXT_SPD_BYPS));
> +
> +    /* Zero self-clearing bits */
> +    val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
> +    core->mac[CTRL_EXT] = val;
> +}
> +
> +static void
> +e1000e_set_pbaclr(E1000ECore *core, int index, uint32_t val)
> +{
> +    int i;
> +
> +    core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
> +
> +    if (msix_enabled(core->owner)) {
> +        return;
> +    }
> +
> +    for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
> +        if (core->mac[PBACLR] & BIT(i)) {
> +            msix_clr_pending(core->owner, i);
> +        }
> +    }
> +}
> +
> +static void
> +e1000e_set_fcrth(E1000ECore *core, int index, uint32_t val)
> +{
> +    core->mac[FCRTH] = val & 0xFFF8;
> +}
> +
> +static void
> +e1000e_set_fcrtl(E1000ECore *core, int index, uint32_t val)
> +{
> +    core->mac[FCRTL] = val & 0x8000FFF8;
> +}
> +
> +static inline void
> +e1000e_set_16bit(E1000ECore *core, int index, uint32_t val)
> +{
> +    core->mac[index] = val & 0xffff;
> +}
> +
> +static void
> +e1000e_set_12bit(E1000ECore *core, int index, uint32_t val)
> +{
> +    core->mac[index] = val & 0xfff;
> +}
> +
> +static void
> +e1000e_set_vet(E1000ECore *core, int index, uint32_t val)
> +{
> +    core->mac[VET] = val & 0xffff;
> +    core->vet = le16_to_cpu(core->mac[VET]);
> +    trace_e1000e_vlan_vet(core->vet);
> +}
> +
> +static void
> +e1000e_set_dlen(E1000ECore *core, int index, uint32_t val)
> +{
> +    core->mac[index] = val & 0xfff80;
> +}
> +
> +static void
> +e1000e_set_tctl(E1000ECore *core, int index, uint32_t val)
> +{
> +    E1000E_TxRing txr;
> +    core->mac[index] = val;
> +
> +    e1000e_tx_ring_init(core, &txr, 0);
> +    e1000e_start_xmit(core, &txr);

Should we check en bit instead of doing this unconditionally?

> +
> +    if (core->mac[TARC1] & E1000_TARC_ENABLE) {
> +            e1000e_tx_ring_init(core, &txr, 1);
> +            e1000e_start_xmit(core, &txr);
> +    }
> +}
> +
> +static void
> +e1000e_set_tdt(E1000ECore *core, int index, uint32_t val)
> +{
> +    E1000E_TxRing txr;
> +
> +    core->mac[index] = val & 0xffff;
> +
> +    e1000e_tx_ring_init(core, &txr, e1000e_mq_queue_idx(TDT, index));
> +    e1000e_start_xmit(core, &txr);
> +}
> +
> +static void
> +e1000e_set_ics(E1000ECore *core, int index, uint32_t val)
> +{
> +    trace_e1000e_irq_write_ics(val);
> +    e1000e_set_interrupt_cause(core, val);
> +}
> +
> +static void
> +e1000e_set_icr(E1000ECore *core, int index, uint32_t val)
> +{
> +    if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
> +        (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
> +        trace_e1000e_irq_icr_process_iame();
> +        e1000e_clear_ims_bits(core, core->mac[IAM]);
> +    }
> +
> +    trace_e1000e_irq_icr_write(val, core->mac[ICR], core->mac[ICR] & ~val);
> +    core->mac[ICR] &= ~val;
> +    e1000e_update_interrupt_state(core);
> +}
> +
> +static void
> +e1000e_set_imc(E1000ECore *core, int index, uint32_t val)
> +{
> +    trace_e1000e_irq_ims_clear_set_imc(val);
> +    e1000e_clear_ims_bits(core, val);
> +    e1000e_update_interrupt_state(core);
> +}
> +
> +static void
> +e1000e_set_ims(E1000ECore *core, int index, uint32_t val)
> +{
> +    static const uint32_t IMS_EXT_MASK =
> +        E1000_IMS_RXQ0 | E1000_IMS_RXQ1 |
> +        E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
> +        E1000_IMS_OTHER;
> +
> +    static const uint32_t IMS_VALID_MASK =
> +        E1000_IMS_TXDW      | E1000_IMS_TXQE    | E1000_IMS_LSC  |
> +        E1000_IMS_RXDMT0    | E1000_IMS_RXO     | E1000_IMS_RXT0 |
> +        E1000_IMS_MDAC      | E1000_IMS_TXD_LOW | E1000_IMS_SRPD |
> +        E1000_IMS_ACK       | E1000_IMS_MNG     | E1000_IMS_RXQ0 |
> +        E1000_IMS_RXQ1      | E1000_IMS_TXQ0    | E1000_IMS_TXQ1 |
> +        E1000_IMS_OTHER;
> +
> +    uint32_t valid_val = val & IMS_VALID_MASK;
> +
> +    trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | 
> valid_val);
> +    core->mac[IMS] |= valid_val;
> +
> +    if ((valid_val & IMS_EXT_MASK) &&
> +        (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PBA_CLR) &&
> +        msix_enabled(core->owner)) {
> +        e1000e_msix_clear(core, valid_val);
> +    }
> +
> +    if ((valid_val == IMS_VALID_MASK) &&
> +        (core->mac[CTRL_EXT] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA)) {
> +        trace_e1000e_irq_fire_all_timers(val);
> +        e1000e_intrmgr_fire_all_timers(core);
> +    }
> +
> +    e1000e_update_interrupt_state(core);
> +}
> +
> +static void
> +e1000e_set_rdtr(E1000ECore *core, int index, uint32_t val)
> +{
> +    e1000e_set_16bit(core, index, val);
> +
> +    if ((val & E1000_RDTR_FPD) && (core->rdtr.running)) {
> +        trace_e1000e_irq_rdtr_fpd_running();
> +        e1000e_intrmgr_fire_delayed_interrupts(core);
> +    } else {
> +        trace_e1000e_irq_rdtr_fpd_not_running();
> +    }
> +}
> +
> +static void
> +e1000e_set_tidv(E1000ECore *core, int index, uint32_t val)
> +{
> +    e1000e_set_16bit(core, index, val);
> +
> +    if ((val & E1000_TIDV_FPD) && (core->tidv.running)) {
> +        trace_e1000e_irq_tidv_fpd_running();
> +        e1000e_intrmgr_fire_delayed_interrupts(core);
> +    } else {
> +        trace_e1000e_irq_tidv_fpd_not_running();
> +    }
> +}
> +
> +static uint32_t
> +e1000e_mac_readreg(E1000ECore *core, int index)
> +{
> +    return core->mac[index];
> +}
> +
> +static uint32_t
> +e1000e_mac_ics_read(E1000ECore *core, int index)
> +{
> +    trace_e1000e_irq_read_ics(core->mac[ICS]);
> +    return core->mac[ICS];
> +}
> +
> +static uint32_t
> +e1000e_mac_ims_read(E1000ECore *core, int index)
> +{
> +    trace_e1000e_irq_read_ims(core->mac[IMS]);
> +    return core->mac[IMS];
> +}
> +
> +static uint32_t
> +e1000e_mac_low4_read(E1000ECore *core, int index)
> +{
> +    return core->mac[index] & 0xf;
> +}
> +
> +static uint32_t
> +e1000e_mac_low6_read(E1000ECore *core, int index)
> +{
> +    return core->mac[index] & 0x3f;
> +}
> +
> +static uint32_t
> +e1000e_mac_low11_read(E1000ECore *core, int index)
> +{
> +    return core->mac[index] & 0x7ff;
> +}
> +
> +static uint32_t
> +e1000e_mac_low13_read(E1000ECore *core, int index)
> +{
> +    return core->mac[index] & 0x1fff;
> +}
> +
> +static uint32_t
> +e1000e_mac_low16_read(E1000ECore *core, int index)
> +{
> +    return core->mac[index] & 0xffff;
> +}

I wonder whether or not we could use function template macros to avoid
such kinds of duplication.

> +
> +static uint32_t
> +e1000e_mac_swsm_read(E1000ECore *core, int index)
> +{
> +    uint32_t val = core->mac[SWSM];
> +    core->mac[SWSM] = val | 1;
> +    return val;
> +}
> +
> +static uint32_t
> +e1000e_mac_itr_read(E1000ECore *core, int index)
> +{
> +    return core->itr_guest_value;
> +}
> +
> +static uint32_t
> +e1000e_mac_eitr_read(E1000ECore *core, int index)
> +{
> +    return core->eitr_guest_value[index - EITR];
> +}
> +
> +static uint32_t
> +e1000e_mac_icr_read(E1000ECore *core, int index)
> +{
> +    uint32_t ret = core->mac[ICR];
> +    trace_e1000e_irq_icr_read_entry(ret);
> +
> +    if (core->mac[IMS] == 0) {
> +        trace_e1000e_irq_icr_clear_zero_ims();
> +        core->mac[ICR] = 0;
> +    }
> +
> +    if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
> +        (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
> +        trace_e1000e_irq_icr_clear_iame();
> +        core->mac[ICR] = 0;
> +        trace_e1000e_irq_icr_process_iame();
> +        e1000e_clear_ims_bits(core, core->mac[IAM]);
> +    }
> +
> +    trace_e1000e_irq_icr_read_exit(core->mac[ICR]);
> +    e1000e_update_interrupt_state(core);
> +    return ret;
> +}
> +
> +static uint32_t
> +e1000e_mac_read_clr4(E1000ECore *core, int index)
> +{
> +    uint32_t ret = core->mac[index];
> +
> +    core->mac[index] = 0;
> +    return ret;
> +}
> +
> +static uint32_t
> +e1000e_mac_read_clr8(E1000ECore *core, int index)
> +{
> +    uint32_t ret = core->mac[index];
> +
> +    core->mac[index] = 0;
> +    core->mac[index - 1] = 0;
> +    return ret;
> +}
> +
> +static uint32_t
> +e1000e_get_ctrl(E1000ECore *core, int index)
> +{
> +    uint32_t val = core->mac[CTRL];
> +
> +    trace_e1000e_link_read_params(
> +        !!(val & E1000_CTRL_ASDE),
> +        (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
> +        !!(val & E1000_CTRL_FRCSPD),
> +        !!(val & E1000_CTRL_FRCDPX),
> +        !!(val & E1000_CTRL_RFCE),
> +        !!(val & E1000_CTRL_TFCE));
> +
> +    return val;
> +}
> +
> +static uint32_t
> +e1000e_get_status(E1000ECore *core, int index)
> +{
> +    uint32_t res = core->mac[STATUS];
> +
> +    if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) {
> +        res |= E1000_STATUS_GIO_MASTER_ENABLE;
> +    }
> +
> +    if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
> +        res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
> +    } else {
> +        res |= E1000_STATUS_FD;
> +    }
> +
> +    if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
> +        (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
> +        switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
> +        case E1000_CTRL_SPD_10:
> +            res |= E1000_STATUS_SPEED_10;
> +            break;
> +        case E1000_CTRL_SPD_100:
> +            res |= E1000_STATUS_SPEED_100;
> +            break;
> +        case E1000_CTRL_SPD_1000:
> +        default:
> +            res |= E1000_STATUS_SPEED_1000;
> +            break;
> +        }
> +    } else {
> +        res |= E1000_STATUS_SPEED_1000;
> +    }
> +
> +    trace_e1000e_link_status(
> +        !!(res & E1000_STATUS_LU),
> +        !!(res & E1000_STATUS_FD),
> +        (res & E1000_STATUS_SPEED_MASK) >> E1000_STATUS_SPEED_SHIFT,
> +        (res & E1000_STATUS_ASDV) >> E1000_STATUS_ASDV_SHIFT);
> +
> +    return res;
> +}
> +
> +static uint32_t
> +e1000e_get_tarc(E1000ECore *core, int index)
> +{
> +    return core->mac[index] & ((BIT(11) - 1) |
> +                                BIT(27)      |
> +                                BIT(28)      |
> +                                BIT(29)      |
> +                                BIT(30));
> +}
> +
> +static void
> +e1000e_mac_writereg(E1000ECore *core, int index, uint32_t val)
> +{
> +    core->mac[index] = val;
> +}
> +
> +static void
> +e1000e_mac_setmacaddr(E1000ECore *core, int index, uint32_t val)
> +{
> +    uint32_t macaddr[2];
> +
> +    core->mac[index] = val;
> +
> +    macaddr[0] = cpu_to_le32(core->mac[RA]);
> +    macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
> +    qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
> +        (uint8_t *) macaddr);
> +
> +    trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
> +}
> +
> +static void
> +e1000e_set_eecd(E1000ECore *core, int index, uint32_t val)
> +{
> +    static const uint32_t ro_bits = E1000_EECD_PRES          |
> +                                    E1000_EECD_AUTO_RD       |
> +                                    E1000_EECD_SIZE_EX_MASK;
> +
> +    core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
> +}
> +
> +static void
> +e1000e_set_eerd(E1000ECore *core, int index, uint32_t val)
> +{
> +    uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
> +    uint32_t flags = 0;
> +    uint32_t data = 0;
> +
> +    if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
> +        data = core->eeprom[addr];
> +        flags = E1000_EERW_DONE;
> +    }
> +
> +    core->mac[EERD] = flags                           |
> +                      (addr << E1000_EERW_ADDR_SHIFT) |
> +                      (data << E1000_EERW_DATA_SHIFT);
> +}
> +
> +static void
> +e1000e_set_eewr(E1000ECore *core, int index, uint32_t val)
> +{
> +    uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
> +    uint32_t data = (val >> E1000_EERW_DATA_SHIFT) & E1000_EERW_DATA_MASK;
> +    uint32_t flags = 0;
> +
> +    if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
> +        core->eeprom[addr] = data;
> +        flags = E1000_EERW_DONE;
> +    }
> +
> +    core->mac[EERD] = flags                           |
> +                      (addr << E1000_EERW_ADDR_SHIFT) |
> +                      (data << E1000_EERW_DATA_SHIFT);
> +}
> +
> +static void
> +e1000e_set_rxdctl(E1000ECore *core, int index, uint32_t val)
> +{
> +    core->mac[RXDCTL] = core->mac[RXDCTL1] = val;
> +}
> +
> +static void
> +e1000e_set_itr(E1000ECore *core, int index, uint32_t val)
> +{
> +    uint32_t interval = val & 0xffff;
> +
> +    trace_e1000e_irq_itr_set(val);
> +
> +    core->itr_guest_value = interval;
> +    core->mac[index] = MAX(interval, E1000E_MIN_XITR);
> +}
> +
> +static void
> +e1000e_set_eitr(E1000ECore *core, int index, uint32_t val)
> +{
> +    uint32_t interval = val & 0xffff;
> +    uint32_t eitr_num = index - EITR;
> +
> +    trace_e1000e_irq_eitr_set(eitr_num, val);
> +
> +    core->eitr_guest_value[eitr_num] = interval;
> +    core->mac[index] = MAX(interval, E1000E_MIN_XITR);
> +}
> +
> +static void
> +e1000e_set_psrctl(E1000ECore *core, int index, uint32_t val)
> +{
> +    if ((val & E1000_PSRCTL_BSIZE0_MASK) == 0) {
> +        hw_error("e1000e: PSRCTL.BSIZE0 cannot be zero");
> +    }
> +
> +    if ((val & E1000_PSRCTL_BSIZE1_MASK) == 0) {
> +        hw_error("e1000e: PSRCTL.BSIZE1 cannot be zero");
> +    }
> +
> +    core->mac[PSRCTL] = val;
> +}
> +
> +static void
> +e1000e_update_rx_offloads(E1000ECore *core)
> +{
> +    int cso_state = e1000e_rx_l4_cso_enabled(core);
> +
> +    trace_e1000e_rx_set_cso(cso_state);
> +
> +    if (core->has_vnet) {
> +        qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
> +                         cso_state, 0, 0, 0, 0);
> +    }
> +}
> +
> +static void
> +e1000e_set_rxcsum(E1000ECore *core, int index, uint32_t val)
> +{
> +    core->mac[RXCSUM] = val;
> +    e1000e_update_rx_offloads(core);
> +}
> +
> +static void
> +e1000e_set_gcr(E1000ECore *core, int index, uint32_t val)
> +{
> +    uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
> +    core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
> +}
> +
> +
> +#define e1000e_getreg(x)    [x] = e1000e_mac_readreg
> +static uint32_t (*e1000e_macreg_readops[])(E1000ECore *, int) = {
> +    e1000e_getreg(PBA),
> +    e1000e_getreg(WUFC),
> +    e1000e_getreg(MANC),
> +    e1000e_getreg(TOTL),
> +    e1000e_getreg(RDT0),
> +    e1000e_getreg(RDBAH0),
> +    e1000e_getreg(TDBAL1),
> +    e1000e_getreg(RDLEN0),
> +    e1000e_getreg(RDH1),
> +    e1000e_getreg(LATECOL),
> +    e1000e_getreg(SEC),
> +    e1000e_getreg(XONTXC),
> +    e1000e_getreg(WUS),
> +    e1000e_getreg(GORCL),
> +    e1000e_getreg(MGTPRC),
> +    e1000e_getreg(EERD),
> +    e1000e_getreg(EIAC),
> +    e1000e_getreg(PSRCTL),
> +    e1000e_getreg(MANC2H),
> +    e1000e_getreg(RXCSUM),
> +    e1000e_getreg(GSCL_3),
> +    e1000e_getreg(GSCN_2),
> +    e1000e_getreg(RSRPD),
> +    e1000e_getreg(RDBAL1),
> +    e1000e_getreg(FCAH),
> +    e1000e_getreg(FCRTH),
> +    e1000e_getreg(FLOP),
> +    e1000e_getreg(FLASHT),
> +    e1000e_getreg(RXSTMPH),
> +    e1000e_getreg(TXSTMPL),
> +    e1000e_getreg(TIMADJL),
> +    e1000e_getreg(TXDCTL),
> +    e1000e_getreg(RDH0),
> +    e1000e_getreg(TDT1),
> +    e1000e_getreg(TNCRS),
> +    e1000e_getreg(RJC),
> +    e1000e_getreg(IAM),
> +    e1000e_getreg(GSCL_2),
> +    e1000e_getreg(RDBAH1),
> +    e1000e_getreg(FLSWDATA),
> +    e1000e_getreg(RXSATRH),
> +    e1000e_getreg(TIPG),
> +    e1000e_getreg(FLMNGCTL),
> +    e1000e_getreg(FLMNGCNT),
> +    e1000e_getreg(TSYNCTXCTL),
> +    e1000e_getreg(EXTCNF_SIZE),
> +    e1000e_getreg(EXTCNF_CTRL),
> +    e1000e_getreg(EEMNGDATA),
> +    e1000e_getreg(CTRL_EXT),
> +    e1000e_getreg(SYSTIMH),
> +    e1000e_getreg(EEMNGCTL),
> +    e1000e_getreg(FLMNGDATA),
> +    e1000e_getreg(TSYNCRXCTL),
> +    e1000e_getreg(TDH),
> +    e1000e_getreg(LEDCTL),
> +    e1000e_getreg(STATUS),
> +    e1000e_getreg(TCTL),
> +    e1000e_getreg(TDBAL),
> +    e1000e_getreg(TDLEN),
> +    e1000e_getreg(TDH1),
> +    e1000e_getreg(RADV),
> +    e1000e_getreg(ECOL),
> +    e1000e_getreg(DC),
> +    e1000e_getreg(RLEC),
> +    e1000e_getreg(XOFFTXC),
> +    e1000e_getreg(RFC),
> +    e1000e_getreg(RNBC),
> +    e1000e_getreg(MGTPTC),
> +    e1000e_getreg(TIMINCA),
> +    e1000e_getreg(RXCFGL),
> +    e1000e_getreg(MFUTP01),
> +    e1000e_getreg(FACTPS),
> +    e1000e_getreg(GSCL_1),
> +    e1000e_getreg(GSCN_0),
> +    e1000e_getreg(GCR2),
> +    e1000e_getreg(RDT1),
> +    e1000e_getreg(PBACLR),
> +    e1000e_getreg(FCTTV),
> +    e1000e_getreg(EEWR),
> +    e1000e_getreg(FLSWCTL),
> +    e1000e_getreg(RXDCTL1),
> +    e1000e_getreg(RXSATRL),
> +    e1000e_getreg(SYSTIML),
> +    e1000e_getreg(RXUDP),
> +    e1000e_getreg(TORL),
> +    e1000e_getreg(TDLEN1),
> +    e1000e_getreg(MCC),
> +    e1000e_getreg(WUC),
> +    e1000e_getreg(EECD),
> +    e1000e_getreg(MFUTP23),
> +    e1000e_getreg(RAID),
> +    e1000e_getreg(FCRTV),
> +    e1000e_getreg(TXDCTL1),
> +    e1000e_getreg(RCTL),
> +    e1000e_getreg(TDT),
> +    e1000e_getreg(MDIC),
> +    e1000e_getreg(FCRUC),
> +    e1000e_getreg(VET),
> +    e1000e_getreg(RDBAL0),
> +    e1000e_getreg(TDBAH1),
> +    e1000e_getreg(RDTR),
> +    e1000e_getreg(SCC),
> +    e1000e_getreg(COLC),
> +    e1000e_getreg(CEXTERR),
> +    e1000e_getreg(XOFFRXC),
> +    e1000e_getreg(IPAV),
> +    e1000e_getreg(GOTCL),
> +    e1000e_getreg(MGTPDC),
> +    e1000e_getreg(GCR),
> +    e1000e_getreg(IVAR),
> +    e1000e_getreg(POEMB),
> +    e1000e_getreg(MFVAL),
> +    e1000e_getreg(FUNCTAG),
> +    e1000e_getreg(GSCL_4),
> +    e1000e_getreg(GSCN_3),
> +    e1000e_getreg(MRQC),
> +    e1000e_getreg(RDLEN1),
> +    e1000e_getreg(FCT),
> +    e1000e_getreg(FLA),
> +    e1000e_getreg(FLOL),
> +    e1000e_getreg(RXDCTL),
> +    e1000e_getreg(RXSTMPL),
> +    e1000e_getreg(TXSTMPH),
> +    e1000e_getreg(TIMADJH),
> +    e1000e_getreg(FCRTL),
> +    e1000e_getreg(TDBAH),
> +    e1000e_getreg(TADV),
> +    e1000e_getreg(XONRXC),
> +    e1000e_getreg(TSCTFC),
> +    e1000e_getreg(RFCTL),
> +    e1000e_getreg(GSCN_1),
> +    e1000e_getreg(FCAL),
> +    e1000e_getreg(FLSWCNT),
> +
> +    [TOTH]    = e1000e_mac_read_clr8,
> +    [GOTCH]   = e1000e_mac_read_clr8,
> +    [PRC64]   = e1000e_mac_read_clr4,
> +    [PRC255]  = e1000e_mac_read_clr4,
> +    [PRC1023] = e1000e_mac_read_clr4,
> +    [PTC64]   = e1000e_mac_read_clr4,
> +    [PTC255]  = e1000e_mac_read_clr4,
> +    [PTC1023] = e1000e_mac_read_clr4,
> +    [GPRC]    = e1000e_mac_read_clr4,
> +    [TPT]     = e1000e_mac_read_clr4,
> +    [RUC]     = e1000e_mac_read_clr4,
> +    [BPRC]    = e1000e_mac_read_clr4,
> +    [MPTC]    = e1000e_mac_read_clr4,
> +    [IAC]     = e1000e_mac_read_clr4,
> +    [ICR]     = e1000e_mac_icr_read,
> +    [RDFH]    = e1000e_mac_low13_read,
> +    [RDFHS]   = e1000e_mac_low13_read,
> +    [RDFPC]   = e1000e_mac_low13_read,
> +    [TDFH]    = e1000e_mac_low13_read,
> +    [TDFHS]   = e1000e_mac_low13_read,
> +    [STATUS]  = e1000e_get_status,
> +    [TARC0]   = e1000e_get_tarc,
> +    [PBS]     = e1000e_mac_low6_read,
> +    [ICS]     = e1000e_mac_ics_read,
> +    [AIT]     = e1000e_mac_low16_read,
> +    [TORH]    = e1000e_mac_read_clr8,
> +    [GORCH]   = e1000e_mac_read_clr8,
> +    [PRC127]  = e1000e_mac_read_clr4,
> +    [PRC511]  = e1000e_mac_read_clr4,
> +    [PRC1522] = e1000e_mac_read_clr4,
> +    [PTC127]  = e1000e_mac_read_clr4,
> +    [PTC511]  = e1000e_mac_read_clr4,
> +    [PTC1522] = e1000e_mac_read_clr4,
> +    [GPTC]    = e1000e_mac_read_clr4,
> +    [TPR]     = e1000e_mac_read_clr4,
> +    [ROC]     = e1000e_mac_read_clr4,
> +    [MPRC]    = e1000e_mac_read_clr4,
> +    [BPTC]    = e1000e_mac_read_clr4,
> +    [TSCTC]   = e1000e_mac_read_clr4,
> +    [ITR]     = e1000e_mac_itr_read,
> +    [RDFT]    = e1000e_mac_low13_read,
> +    [RDFTS]   = e1000e_mac_low13_read,
> +    [TDFPC]   = e1000e_mac_low13_read,
> +    [TDFT]    = e1000e_mac_low13_read,
> +    [TDFTS]   = e1000e_mac_low13_read,
> +    [CTRL]    = e1000e_get_ctrl,
> +    [TARC1]   = e1000e_get_tarc,
> +    [SWSM]    = e1000e_mac_swsm_read,
> +    [IMS]     = e1000e_mac_ims_read,
> +
> +    [CRCERRS ... MPC]      = e1000e_mac_readreg,
> +    [IP6AT ... IP6AT + 3]  = e1000e_mac_readreg,
> +    [IP4AT ... IP4AT + 6]  = e1000e_mac_readreg,
> +    [RA ... RA + 31]       = e1000e_mac_readreg,
> +    [WUPM ... WUPM + 31]   = e1000e_mac_readreg,
> +    [MTA ... MTA + 127]    = e1000e_mac_readreg,
> +    [VFTA ... VFTA + 127]  = e1000e_mac_readreg,
> +    [FFMT ... FFMT + 254]  = e1000e_mac_low4_read,
> +    [FFVT ... FFVT + 254]  = e1000e_mac_readreg,
> +    [MDEF ... MDEF + 7]    = e1000e_mac_readreg,
> +    [FFLT ... FFLT + 10]   = e1000e_mac_low11_read,
> +    [FTFT ... FTFT + 254]  = e1000e_mac_readreg,
> +    [PBM ... PBM + 10239]  = e1000e_mac_readreg,
> +    [RETA ... RETA + 31]   = e1000e_mac_readreg,
> +    [RSSRK ... RSSRK + 31] = e1000e_mac_readreg,
> +    [MAVTV0 ... MAVTV3]    = e1000e_mac_readreg,
> +    [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_mac_eitr_read
> +};
> +enum { E1000E_NREADOPS = ARRAY_SIZE(e1000e_macreg_readops) };
> +
> +#define e1000e_putreg(x)    [x] = e1000e_mac_writereg
> +static void (*e1000e_macreg_writeops[])(E1000ECore *, int, uint32_t) = {
> +    e1000e_putreg(PBA),
> +    e1000e_putreg(SWSM),
> +    e1000e_putreg(WUFC),
> +    e1000e_putreg(RDBAH1),
> +    e1000e_putreg(TDBAL),
> +    e1000e_putreg(TDBAH),
> +    e1000e_putreg(TXDCTL),
> +    e1000e_putreg(RDBAH0),
> +    e1000e_putreg(RDBAL0),
> +    e1000e_putreg(LEDCTL),
> +    e1000e_putreg(FCAL),
> +    e1000e_putreg(FCRUC),
> +    e1000e_putreg(AIT),
> +    e1000e_putreg(TDFH),
> +    e1000e_putreg(TDFT),
> +    e1000e_putreg(TDFHS),
> +    e1000e_putreg(TDFTS),
> +    e1000e_putreg(TDFPC),
> +    e1000e_putreg(WUC),
> +    e1000e_putreg(WUS),
> +    e1000e_putreg(RDFH),
> +    e1000e_putreg(RDFT),
> +    e1000e_putreg(RDFHS),
> +    e1000e_putreg(RDFTS),
> +    e1000e_putreg(RDFPC),
> +    e1000e_putreg(IPAV),
> +    e1000e_putreg(TDBAL1),
> +    e1000e_putreg(TDBAH1),
> +    e1000e_putreg(TIMINCA),
> +    e1000e_putreg(IAM),
> +    e1000e_putreg(EIAC),
> +    e1000e_putreg(IVAR),
> +    e1000e_putreg(RDBAL1),
> +    e1000e_putreg(TARC0),
> +    e1000e_putreg(TARC1),
> +    e1000e_putreg(FLSWDATA),
> +    e1000e_putreg(POEMB),
> +    e1000e_putreg(PBS),
> +    e1000e_putreg(MFUTP01),
> +    e1000e_putreg(MFUTP23),
> +    e1000e_putreg(MANC),
> +    e1000e_putreg(MANC2H),
> +    e1000e_putreg(MFVAL),
> +    e1000e_putreg(EXTCNF_CTRL),
> +    e1000e_putreg(FACTPS),
> +    e1000e_putreg(FUNCTAG),
> +    e1000e_putreg(GSCL_1),
> +    e1000e_putreg(GSCL_2),
> +    e1000e_putreg(GSCL_3),
> +    e1000e_putreg(GSCL_4),
> +    e1000e_putreg(GSCN_0),
> +    e1000e_putreg(GSCN_1),
> +    e1000e_putreg(GSCN_2),
> +    e1000e_putreg(GSCN_3),
> +    e1000e_putreg(GCR2),
> +    e1000e_putreg(MRQC),
> +    e1000e_putreg(FLOP),
> +    e1000e_putreg(FLOL),
> +    e1000e_putreg(FLSWCTL),
> +    e1000e_putreg(FLSWCNT),
> +    e1000e_putreg(FLA),
> +    e1000e_putreg(RXDCTL1),
> +    e1000e_putreg(TXDCTL1),
> +    e1000e_putreg(TIPG),
> +    e1000e_putreg(RXSTMPH),
> +    e1000e_putreg(RXSTMPL),
> +    e1000e_putreg(RXSATRL),
> +    e1000e_putreg(RXSATRH),
> +    e1000e_putreg(TXSTMPL),
> +    e1000e_putreg(TXSTMPH),
> +    e1000e_putreg(SYSTIML),
> +    e1000e_putreg(SYSTIMH),
> +    e1000e_putreg(TIMADJL),
> +    e1000e_putreg(TIMADJH),
> +    e1000e_putreg(RXUDP),
> +    e1000e_putreg(RXCFGL),
> +    e1000e_putreg(TSYNCRXCTL),
> +    e1000e_putreg(TSYNCTXCTL),
> +    e1000e_putreg(FLSWDATA),
> +    e1000e_putreg(EXTCNF_SIZE),
> +    e1000e_putreg(EEMNGCTL),
> +    e1000e_putreg(RA),
> +
> +    [TDLEN1]   = e1000e_set_dlen,
> +    [TDH1]     = e1000e_set_16bit,
> +    [TDT1]     = e1000e_set_tdt,
> +    [TDLEN]    = e1000e_set_dlen,
> +    [RDLEN0]   = e1000e_set_dlen,
> +    [TCTL]     = e1000e_set_tctl,
> +    [TDT]      = e1000e_set_tdt,
> +    [MDIC]     = e1000e_set_mdic,
> +    [ICS]      = e1000e_set_ics,
> +    [TDH]      = e1000e_set_16bit,
> +    [RDH0]     = e1000e_set_16bit,
> +    [RDT0]     = e1000e_set_rdt,
> +    [IMC]      = e1000e_set_imc,
> +    [IMS]      = e1000e_set_ims,
> +    [ICR]      = e1000e_set_icr,
> +    [EECD]     = e1000e_set_eecd,
> +    [RCTL]     = e1000e_set_rx_control,
> +    [CTRL]     = e1000e_set_ctrl,
> +    [RDTR]     = e1000e_set_rdtr,
> +    [RADV]     = e1000e_set_16bit,
> +    [TADV]     = e1000e_set_16bit,
> +    [ITR]      = e1000e_set_itr,
> +    [EERD]     = e1000e_set_eerd,
> +    [GCR]      = e1000e_set_gcr,
> +    [PSRCTL]   = e1000e_set_psrctl,
> +    [RXCSUM]   = e1000e_set_rxcsum,
> +    [RAID]     = e1000e_set_16bit,
> +    [RSRPD]    = e1000e_set_12bit,
> +    [TIDV]     = e1000e_set_tidv,
> +    [RDLEN1]   = e1000e_set_dlen,
> +    [RDH1]     = e1000e_set_16bit,
> +    [RDT1]     = e1000e_set_rdt,
> +    [STATUS]   = e1000e_set_status,
> +    [PBACLR]   = e1000e_set_pbaclr,
> +    [CTRL_EXT] = e1000e_set_ctrlext,
> +    [FCAH]     = e1000e_set_16bit,
> +    [FCT]      = e1000e_set_16bit,
> +    [FCTTV]    = e1000e_set_16bit,
> +    [FCRTV]    = e1000e_set_16bit,
> +    [FCRTH]    = e1000e_set_fcrth,
> +    [FCRTL]    = e1000e_set_fcrtl,
> +    [VET]      = e1000e_set_vet,
> +    [RXDCTL]   = e1000e_set_rxdctl,
> +    [FLASHT]   = e1000e_set_16bit,
> +    [EEWR]     = e1000e_set_eewr,
> +    [CTRL_DUP] = e1000e_set_ctrl,
> +    [RFCTL]    = e1000e_set_rfctl,
> +    [RA + 1]   = e1000e_mac_setmacaddr,
> +
> +    [IP6AT ... IP6AT + 3]    = e1000e_mac_writereg,
> +    [IP4AT ... IP4AT + 6]    = e1000e_mac_writereg,
> +    [RA + 2 ... RA + 31]     = e1000e_mac_writereg,
> +    [WUPM ... WUPM + 31]     = e1000e_mac_writereg,
> +    [MTA ... MTA + 127]      = e1000e_mac_writereg,
> +    [VFTA ... VFTA + 127]    = e1000e_mac_writereg,
> +    [FFMT ... FFMT + 254]    = e1000e_mac_writereg,
> +    [FFVT ... FFVT + 254]    = e1000e_mac_writereg,
> +    [PBM ... PBM + 10239]    = e1000e_mac_writereg,
> +    [MDEF ... MDEF + 7]      = e1000e_mac_writereg,
> +    [FFLT ... FFLT + 10]     = e1000e_mac_writereg,
> +    [FTFT ... FTFT + 254]    = e1000e_mac_writereg,
> +    [RETA ... RETA + 31]     = e1000e_mac_writereg,
> +    [RSSRK ... RSSRK + 31]   = e1000e_mac_writereg,
> +    [MAVTV0 ... MAVTV3]      = e1000e_mac_writereg,
> +    [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_set_eitr
> +};
> +enum { E1000E_NWRITEOPS = ARRAY_SIZE(e1000e_macreg_writeops) };
> +
> +enum { MAC_ACCESS_PARTIAL = 1 };
> +
> +/* The array below combines alias offsets of the index values for the
> + * MAC registers that have aliases, with the indication of not fully
> + * implemented registers (lowest bit). This combination is possible
> + * because all of the offsets are even. */
> +static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
> +    /* Alias index offsets */
> +    [FCRTL_A] = 0x07fe, [FCRTH_A] = 0x0802,
> +    [RDH0_A]  = 0x09bc, [RDT0_A]  = 0x09bc, [RDTR_A] = 0x09c6,
> +    [RDFH_A]  = 0xe904, [RDFT_A]  = 0xe904,
> +    [TDH_A]   = 0x0cf8, [TDT_A]   = 0x0cf8, [TIDV_A] = 0x0cf8,
> +    [TDFH_A]  = 0xed00, [TDFT_A]  = 0xed00,
> +    [RA_A ... RA_A + 31]      = 0x14f0,
> +    [VFTA_A ... VFTA_A + 127] = 0x1400,
> +    [RDBAL0_A ... RDLEN0_A] = 0x09bc,
> +    [TDBAL_A ... TDLEN_A]   = 0x0cf8,
> +    /* Access options */
> +    [RDFH]  = MAC_ACCESS_PARTIAL,    [RDFT]  = MAC_ACCESS_PARTIAL,
> +    [RDFHS] = MAC_ACCESS_PARTIAL,    [RDFTS] = MAC_ACCESS_PARTIAL,
> +    [RDFPC] = MAC_ACCESS_PARTIAL,
> +    [TDFH]  = MAC_ACCESS_PARTIAL,    [TDFT]  = MAC_ACCESS_PARTIAL,
> +    [TDFHS] = MAC_ACCESS_PARTIAL,    [TDFTS] = MAC_ACCESS_PARTIAL,
> +    [TDFPC] = MAC_ACCESS_PARTIAL,    [EECD]  = MAC_ACCESS_PARTIAL,
> +    [PBM]   = MAC_ACCESS_PARTIAL,    [FLA]   = MAC_ACCESS_PARTIAL,
> +    [FCAL]  = MAC_ACCESS_PARTIAL,    [FCAH]  = MAC_ACCESS_PARTIAL,
> +    [FCT]   = MAC_ACCESS_PARTIAL,    [FCTTV] = MAC_ACCESS_PARTIAL,
> +    [FCRTV] = MAC_ACCESS_PARTIAL,    [FCRTL] = MAC_ACCESS_PARTIAL,
> +    [FCRTH] = MAC_ACCESS_PARTIAL,    [TXDCTL] = MAC_ACCESS_PARTIAL,
> +    [TXDCTL1] = MAC_ACCESS_PARTIAL,
> +    [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
> +};
> +
> +void
> +e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size)
> +{
> +    uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
> +
> +    if (index < E1000E_NWRITEOPS && e1000e_macreg_writeops[index]) {
> +        if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
> +            trace_e1000e_wrn_regs_write_trivial(index << 2);
> +        }
> +        trace_e1000e_core_write(index << 2, size, val);
> +        e1000e_macreg_writeops[index](core, index, val);
> +    } else if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
> +        trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
> +    } else {
> +        trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
> +    }
> +}
> +
> +uint64_t
> +e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size)
> +{
> +    uint64_t val;
> +    uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
> +
> +    if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
> +        if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
> +            trace_e1000e_wrn_regs_read_trivial(index << 2);
> +        }
> +        val = e1000e_macreg_readops[index](core, index);
> +        trace_e1000e_core_read(index << 2, size, val);
> +        return val;
> +    } else {
> +        trace_e1000e_wrn_regs_read_unknown(index << 2, size);
> +    }
> +    return 0;
> +}
> +
> +static void
> +e1000e_core_prepare_eeprom(E1000ECore      *core,
> +                           const uint16_t *templ,
> +                           uint32_t        templ_size,
> +                           const uint8_t  *macaddr)
> +{
> +    PCIDeviceClass *pdc = PCI_DEVICE_GET_CLASS(core->owner);
> +    uint16_t checksum = 0;
> +    int i;
> +
> +    memmove(core->eeprom, templ, templ_size);
> +
> +    for (i = 0; i < 3; i++) {
> +        core->eeprom[i] = (macaddr[2 * i + 1] << 8) | macaddr[2 * i];
> +    }
> +
> +    core->eeprom[11] = core->eeprom[13] = pdc->device_id;
> +
> +    for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
> +        checksum += core->eeprom[i];
> +    }
> +
> +    checksum = (uint16_t) EEPROM_SUM - checksum;
> +
> +    core->eeprom[EEPROM_CHECKSUM_REG] = checksum;
> +}
> +
> +void
> +e1000e_core_pci_realize(E1000ECore     *core,
> +                        const uint16_t *eeprom_templ,
> +                        uint32_t        eeprom_size,
> +                        const uint8_t  *macaddr)
> +{
> +    int i;
> +
> +    core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
> +                                       e1000e_autoneg_timer, core);
> +    e1000e_intrmgr_pci_realize(core);
> +
> +    for (i = 0; i < E1000E_NUM_QUEUES; i++) {
> +        net_tx_pkt_init(&core->tx[i].tx_pkt, E1000E_MAX_TX_FRAGS,
> +                        core->has_vnet);
> +    }
> +
> +    net_rx_pkt_init(&core->rx_pkt, core->has_vnet);
> +
> +    e1000e_core_prepare_eeprom(core, eeprom_templ, eeprom_size, macaddr);
> +    e1000e_update_rx_offloads(core);
> +}
> +
> +void
> +e1000e_core_pci_uninit(E1000ECore *core)
> +{
> +    int i;
> +
> +    timer_del(core->autoneg_timer);
> +    timer_free(core->autoneg_timer);
> +
> +    e1000e_intrmgr_pci_unint(core);
> +
> +    for (i = 0; i < E1000E_NUM_QUEUES; i++) {
> +        net_tx_pkt_reset(core->tx[i].tx_pkt);
> +        net_tx_pkt_uninit(core->tx[i].tx_pkt);
> +    }
> +
> +    net_rx_pkt_uninit(core->rx_pkt);
> +}
> +
> +static const uint16_t
> +e1000e_phy_reg_init[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE] = {
> +    [0] = {
> +        [PHY_CTRL] =   MII_CR_SPEED_SELECT_MSB  |
> +                       MII_CR_FULL_DUPLEX       |
> +                       MII_CR_AUTO_NEG_EN,
> +
> +        [PHY_STATUS] = MII_SR_EXTENDED_CAPS     |
> +                       MII_SR_LINK_STATUS       |
> +                       MII_SR_AUTONEG_CAPS      |
> +                       MII_SR_PREAMBLE_SUPPRESS |
> +                       MII_SR_EXTENDED_STATUS   |
> +                       MII_SR_10T_HD_CAPS       |
> +                       MII_SR_10T_FD_CAPS       |
> +                       MII_SR_100X_HD_CAPS      |
> +                       MII_SR_100X_FD_CAPS,
> +
> +        [PHY_ID1]               = 0x141,
> +        [PHY_ID2]               = E1000_PHY_ID2_82574x,
> +        [PHY_AUTONEG_ADV]       = 0xde1,
> +        [PHY_LP_ABILITY]        = 0x7e0,
> +        [PHY_AUTONEG_EXP]       = BIT(2),
> +        [PHY_NEXT_PAGE_TX]      = BIT(0) | BIT(13),
> +        [PHY_1000T_CTRL]        = BIT(8) | BIT(9) | BIT(10) | BIT(11),
> +        [PHY_1000T_STATUS]      = 0x3c00,
> +        [PHY_EXT_STATUS]        = BIT(12) | BIT(13),
> +
> +        [PHY_COPPER_CTRL1]      = BIT(5) | BIT(6) | BIT(8) | BIT(9) |
> +                                  BIT(12) | BIT(13),
> +        [PHY_COPPER_STAT1]      = BIT(3) | BIT(10) | BIT(11) | BIT(13) | 
> BIT(15)
> +    },
> +    [2] = {
> +        [PHY_MAC_CTRL1]         = BIT(3) | BIT(7),
> +        [PHY_MAC_CTRL2]         = BIT(1) | BIT(2) | BIT(6) | BIT(12)
> +    },
> +    [3] = {
> +        [PHY_LED_TIMER_CTRL]    = BIT(0) | BIT(2) | BIT(14)
> +    }
> +};
> +
> +static const uint32_t e1000e_mac_reg_init[] = {
> +    [PBA]           =     0x00140014,
> +    [LEDCTL]        =  BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | 
> BIT(18),
> +    [EXTCNF_CTRL]   = BIT(3),
> +    [EEMNGCTL]      = BIT(31),
> +    [FLASHT]        = 0x2,
> +    [FLSWCTL]       = BIT(30) | BIT(31),
> +    [FLOL]          = BIT(0),
> +    [RXDCTL]        = BIT(16),
> +    [RXDCTL1]       = BIT(16),
> +    [TIPG]          = 0x8 | (0x8 << 10) | (0x6 << 20),
> +    [RXCFGL]        = 0x88F7,
> +    [RXUDP]         = 0x319,
> +    [CTRL]          = E1000_CTRL_FD | E1000_CTRL_SWDPIN2 | 
> E1000_CTRL_SWDPIN0 |
> +                      E1000_CTRL_SPD_1000 | E1000_CTRL_SLU |
> +                      E1000_CTRL_ADVD3WUC,
> +    [STATUS]        =  E1000_STATUS_ASDV_1000 | E1000_STATUS_LU,
> +    [PSRCTL]        = (2 << E1000_PSRCTL_BSIZE0_SHIFT) |
> +                      (4 << E1000_PSRCTL_BSIZE1_SHIFT) |
> +                      (4 << E1000_PSRCTL_BSIZE2_SHIFT),
> +    [TARC0]         = 0x3 | E1000_TARC_ENABLE,
> +    [TARC1]         = 0x3 | E1000_TARC_ENABLE,
> +    [EECD]          = E1000_EECD_AUTO_RD | E1000_EECD_PRES,
> +    [EERD]          = E1000_EERW_DONE,
> +    [EEWR]          = E1000_EERW_DONE,
> +    [GCR]           = E1000_L0S_ADJUST |
> +                      E1000_L1_ENTRY_LATENCY_MSB |
> +                      E1000_L1_ENTRY_LATENCY_LSB,
> +    [TDFH]          = 0x600,
> +    [TDFT]          = 0x600,
> +    [TDFHS]         = 0x600,
> +    [TDFTS]         = 0x600,
> +    [POEMB]         = 0x30D,
> +    [PBS]           = 0x028,
> +    [MANC]          = E1000_MANC_DIS_IP_CHK_ARP,
> +    [FACTPS]        = E1000_FACTPS_LAN0_ON | 0x20000000,
> +    [SWSM]          = 1,
> +    [RXCSUM]        = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
> +    [ITR]           = E1000E_MIN_XITR,
> +    [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = E1000E_MIN_XITR,
> +};
> +
> +void
> +e1000e_core_reset(E1000ECore *core)
> +{
> +    int i;
> +
> +    timer_del(core->autoneg_timer);
> +
> +    e1000e_intrmgr_reset(core);
> +
> +    memset(core->phy, 0, sizeof core->phy);
> +    memmove(core->phy, e1000e_phy_reg_init, sizeof e1000e_phy_reg_init);
> +    memset(core->mac, 0, sizeof core->mac);
> +    memmove(core->mac, e1000e_mac_reg_init, sizeof e1000e_mac_reg_init);
> +
> +    core->rxbuf_min_shift = 1 + E1000_RING_DESC_LEN_SHIFT;
> +
> +    if (qemu_get_queue(core->owner_nic)->link_down) {
> +        e1000e_link_down(core);
> +    }
> +
> +    e1000e_core_reset_mac(core);
> +
> +    for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
> +        net_tx_pkt_reset(core->tx[i].tx_pkt);
> +        core->tx[i].sum_needed = 0;
> +        core->tx[i].ipcss = 0;
> +        core->tx[i].ipcso = 0;
> +        core->tx[i].ipcse = 0;
> +        core->tx[i].tucss = 0;
> +        core->tx[i].tucso = 0;
> +        core->tx[i].tucse = 0;
> +        core->tx[i].hdr_len = 0;
> +        core->tx[i].mss = 0;
> +        core->tx[i].paylen = 0;
> +        core->tx[i].ip = 0;
> +        core->tx[i].tcp = 0;
> +        core->tx[i].tse = 0;
> +        core->tx[i].cptse = 0;
> +        core->tx[i].skip_cp = 0;

If you embed all the state into another structure, you can use memset()
here.

> +    }
> +}
> +
> +void e1000e_core_pre_save(E1000ECore *core)
> +{
> +    int i;
> +    NetClientState *nc = qemu_get_queue(core->owner_nic);
> +
> +    /*
> +    * If link is down and auto-negotiation is supported and ongoing,
> +    * complete auto-negotiation immediately. This allows us to look
> +    * at MII_SR_AUTONEG_COMPLETE to infer link status on load.
> +    */
> +    if (nc->link_down && e1000e_have_autoneg(core)) {
> +        core->phy[0][PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
> +        e1000e_update_flowctl_status(core);
> +    }
> +
> +    for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
> +        if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
> +            core->tx[i].skip_cp = true;
> +        }
> +    }
> +}
> +
> +int
> +e1000e_core_post_load(E1000ECore *core)
> +{
> +    NetClientState *nc = qemu_get_queue(core->owner_nic);
> +
> +    /* nc.link_down can't be migrated, so infer link_down according
> +     * to link status bit in core.mac[STATUS].
> +     * Alternatively, restart link negotiation if it was in progress. */
> +    nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
> +
> +    if (e1000e_have_autoneg(core) &&
> +        !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
> +        nc->link_down = false;
> +        timer_mod(core->autoneg_timer,
> +                  qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
> +    }
> +
> +    e1000e_intrmgr_post_load(core);
> +
> +    return 0;
> +}
> diff --git a/hw/net/e1000e_core.h b/hw/net/e1000e_core.h
> new file mode 100644
> index 0000000..584f5a7
> --- /dev/null
> +++ b/hw/net/e1000e_core.h
> @@ -0,0 +1,230 @@
> +/*
> +* Core code for QEMU e1000e emulation
> +*
> +* Software developer's manuals:
> +* 
> http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
> +*
> +* Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
> +* Developed by Daynix Computing LTD (http://www.daynix.com)
> +*
> +* Authors:
> +* Dmitry Fleytman <address@hidden>
> +* Leonid Bloch <address@hidden>
> +* Yan Vugenfirer <address@hidden>
> +*
> +* Based on work done by:
> +* Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
> +* Copyright (c) 2008 Qumranet
> +* Based on work done by:
> +* Copyright (c) 2007 Dan Aloni
> +* Copyright (c) 2004 Antony T Curtis
> +*
> +* This library is free software; you can redistribute it and/or
> +* modify it under the terms of the GNU Lesser General Public
> +* License as published by the Free Software Foundation; either
> +* version 2 of the License, or (at your option) any later version.
> +*
> +* This library is distributed in the hope that it will be useful,
> +* but WITHOUT ANY WARRANTY; without even the implied warranty of
> +* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
> +* Lesser General Public License for more details.
> +*
> +* You should have received a copy of the GNU Lesser General Public
> +* License along with this library; if not, see 
> <http://www.gnu.org/licenses/>.
> +*/
> +
> +#define E1000E_PHY_PAGE_SIZE    (0x20)
> +#define E1000E_PHY_PAGES        (0x07)
> +#define E1000E_MAC_SIZE         (0x8000)
> +#define E1000E_EEPROM_SIZE      (64)
> +#define E1000E_MSIX_VEC_NUM     (5)
> +#define E1000E_NUM_QUEUES       (2)
> +
> +typedef struct E1000Core_st E1000ECore;
> +
> +enum { PHY_R = BIT(0),
> +       PHY_W = BIT(1),
> +       PHY_RW = PHY_R | PHY_W,
> +       PHY_ANYPAGE = BIT(2) };
> +
> +typedef struct E1000IntrDelayTimer_st {
> +    QEMUTimer *timer;
> +    bool running;
> +    uint32_t delay_reg;
> +    uint32_t delay_resolution_ns;
> +    E1000ECore *core;
> +} E1000IntrDelayTimer;
> +
> +#define VMSTATE_E1000_INTR_DELAY_TIMER(_f, _s) \
> +    VMSTATE_TIMER_PTR(_f.timer, _s),           \
> +    VMSTATE_BOOL(_f.running, _s)               \
> +
> +typedef struct E1000Core_st {
> +    uint32_t mac[E1000E_MAC_SIZE];
> +    uint16_t phy[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE];
> +    uint16_t eeprom[E1000E_EEPROM_SIZE];
> +
> +    uint32_t rxbuf_sizes[E1000_PSRCTL_BUFFS_PER_DESC];
> +    uint32_t rx_desc_buf_size;
> +    uint32_t rxbuf_min_shift;
> +    uint8_t rx_desc_len;
> +
> +    QEMUTimer *autoneg_timer;
> +
> +    struct e1000_tx {
> +        unsigned char sum_needed;
> +        uint8_t ipcss;
> +        uint8_t ipcso;
> +        uint16_t ipcse;
> +        uint8_t tucss;
> +        uint8_t tucso;
> +        uint16_t tucse;
> +        uint8_t hdr_len;
> +        uint16_t mss;
> +        uint32_t paylen;
> +        int8_t ip;
> +        int8_t tcp;
> +        bool tse;
> +        bool cptse;
> +
> +        struct NetTxPkt *tx_pkt;
> +        bool skip_cp;
> +    } tx[E1000E_NUM_QUEUES];
> +
> +    struct NetRxPkt *rx_pkt;
> +
> +    bool has_vnet;
> +    int max_queue_num;
> +
> +    /* Interrupt moderation management */
> +    uint32_t delayed_causes;
> +
> +    E1000IntrDelayTimer radv;
> +    E1000IntrDelayTimer rdtr;
> +    E1000IntrDelayTimer raid;
> +
> +    E1000IntrDelayTimer tadv;
> +    E1000IntrDelayTimer tidv;
> +
> +    E1000IntrDelayTimer itr;
> +    bool itr_intr_pending;
> +
> +    E1000IntrDelayTimer eitr[E1000E_MSIX_VEC_NUM];
> +    bool eitr_intr_pending[E1000E_MSIX_VEC_NUM];
> +
> +    uint32_t itr_guest_value;
> +    uint32_t eitr_guest_value[E1000E_MSIX_VEC_NUM];
> +
> +    uint16_t vet;
> +
> +    uint8_t permanent_mac[ETH_ALEN];
> +
> +    NICState *owner_nic;
> +    PCIDevice *owner;
> +    void (*owner_start_recv)(PCIDevice *d);
> +} E1000ECore;
> +
> +#define defreg(x)   x = (E1000_##x >> 2)
> +enum {
> +    defreg(CTRL),    defreg(EECD),    defreg(EERD),    defreg(GPRC),
> +    defreg(GPTC),    defreg(ICR),     defreg(ICS),     defreg(IMC),
> +    defreg(IMS),     defreg(LEDCTL),  defreg(MANC),    defreg(MDIC),
> +    defreg(MPC),     defreg(PBA),     defreg(RCTL),    defreg(RDBAH0),
> +    defreg(RDBAL0),  defreg(RDH0),    defreg(RDLEN0),  defreg(RDT0),
> +    defreg(STATUS),  defreg(SWSM),    defreg(TCTL),    defreg(TDBAH),
> +    defreg(TDBAL),   defreg(TDH),     defreg(TDLEN),   defreg(TDT),
> +    defreg(TDLEN1),  defreg(TDBAL1),  defreg(TDBAH1),  defreg(TDH1),
> +    defreg(TDT1),    defreg(TORH),    defreg(TORL),    defreg(TOTH),
> +    defreg(TOTL),    defreg(TPR),     defreg(TPT),     defreg(TXDCTL),
> +    defreg(WUFC),    defreg(RA),      defreg(MTA),     defreg(CRCERRS),
> +    defreg(VFTA),    defreg(VET),     defreg(RDTR),    defreg(RADV),
> +    defreg(TADV),    defreg(ITR),     defreg(SCC),     defreg(ECOL),
> +    defreg(MCC),     defreg(LATECOL), defreg(COLC),    defreg(DC),
> +    defreg(TNCRS),   defreg(SEC),     defreg(CEXTERR), defreg(RLEC),
> +    defreg(XONRXC),  defreg(XONTXC),  defreg(XOFFRXC), defreg(XOFFTXC),
> +    defreg(FCRUC),   defreg(AIT),     defreg(TDFH),    defreg(TDFT),
> +    defreg(TDFHS),   defreg(TDFTS),   defreg(TDFPC),   defreg(WUC),
> +    defreg(WUS),     defreg(POEMB),   defreg(PBS),     defreg(RDFH),
> +    defreg(RDFT),    defreg(RDFHS),   defreg(RDFTS),   defreg(RDFPC),
> +    defreg(PBM),     defreg(IPAV),    defreg(IP4AT),   defreg(IP6AT),
> +    defreg(WUPM),    defreg(FFLT),    defreg(FFMT),    defreg(FFVT),
> +    defreg(TARC0),   defreg(TARC1),   defreg(IAM),     defreg(EXTCNF_CTRL),
> +    defreg(GCR),     defreg(TIMINCA), defreg(EIAC),    defreg(CTRL_EXT),
> +    defreg(IVAR),    defreg(MFUTP01), defreg(MFUTP23), defreg(MANC2H),
> +    defreg(MFVAL),   defreg(MDEF),    defreg(FACTPS),  defreg(FTFT),
> +    defreg(RUC),     defreg(ROC),     defreg(RFC),     defreg(RJC),
> +    defreg(PRC64),   defreg(PRC127),  defreg(PRC255),  defreg(PRC511),
> +    defreg(PRC1023), defreg(PRC1522), defreg(PTC64),   defreg(PTC127),
> +    defreg(PTC255),  defreg(PTC511),  defreg(PTC1023), defreg(PTC1522),
> +    defreg(GORCL),   defreg(GORCH),   defreg(GOTCL),   defreg(GOTCH),
> +    defreg(RNBC),    defreg(BPRC),    defreg(MPRC),    defreg(RFCTL),
> +    defreg(PSRCTL),  defreg(MPTC),    defreg(BPTC),    defreg(TSCTFC),
> +    defreg(IAC),     defreg(MGTPRC),  defreg(MGTPDC),  defreg(MGTPTC),
> +    defreg(TSCTC),   defreg(RXCSUM),  defreg(FUNCTAG), defreg(GSCL_1),
> +    defreg(GSCL_2),  defreg(GSCL_3),  defreg(GSCL_4),  defreg(GSCN_0),
> +    defreg(GSCN_1),  defreg(GSCN_2),  defreg(GSCN_3),  defreg(GCR2),
> +    defreg(RAID),    defreg(RSRPD),   defreg(TIDV),    defreg(EITR),
> +    defreg(MRQC),    defreg(RETA),    defreg(RSSRK),   defreg(RDBAH1),
> +    defreg(RDBAL1),  defreg(RDLEN1),  defreg(RDH1),    defreg(RDT1),
> +    defreg(PBACLR),  defreg(FCAL),    defreg(FCAH),    defreg(FCT),
> +    defreg(FCRTH),   defreg(FCRTL),   defreg(FCTTV),   defreg(FCRTV),
> +    defreg(FLA),     defreg(EEWR),    defreg(FLOP),    defreg(FLOL),
> +    defreg(FLSWCTL), defreg(FLSWCNT), defreg(RXDCTL),  defreg(RXDCTL1),
> +    defreg(MAVTV0),  defreg(MAVTV1),  defreg(MAVTV2),  defreg(MAVTV3),
> +    defreg(TXSTMPL), defreg(TXSTMPH), defreg(SYSTIML), defreg(SYSTIMH),
> +    defreg(RXCFGL),  defreg(RXUDP),   defreg(TIMADJL), defreg(TIMADJH),
> +    defreg(RXSTMPH), defreg(RXSTMPL), defreg(RXSATRL), defreg(RXSATRH),
> +    defreg(FLASHT),  defreg(TIPG),    defreg(TXDCTL1), defreg(FLSWDATA),
> +    defreg(CTRL_DUP),
> +    defreg(EXTCNF_SIZE),
> +    defreg(EEMNGCTL),
> +    defreg(EEMNGDATA),
> +    defreg(FLMNGCTL),
> +    defreg(FLMNGDATA),
> +    defreg(FLMNGCNT),
> +    defreg(TSYNCRXCTL),
> +    defreg(TSYNCTXCTL),
> +
> +    /* Aliases */
> +    defreg(RDH0_A),  defreg(RDT0_A),  defreg(RDTR_A),  defreg(RDFH_A),
> +    defreg(RDFT_A),  defreg(TDH_A),   defreg(TDT_A),   defreg(TIDV_A),
> +    defreg(TDFH_A),  defreg(TDFT_A),  defreg(RA_A),    defreg(RDBAL0_A),
> +    defreg(TDBAL_A), defreg(TDLEN_A), defreg(VFTA_A),  defreg(RDLEN0_A),
> +    defreg(FCRTL_A), defreg(FCRTH_A)
> +};
> +
> +void
> +e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned 
> size);
> +
> +uint64_t
> +e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size);
> +
> +void
> +e1000e_core_pci_realize(E1000ECore      *regs,
> +                       const uint16_t *eeprom_templ,
> +                       uint32_t        eeprom_size,
> +                       const uint8_t  *macaddr);
> +
> +void
> +e1000e_core_reset(E1000ECore *core);
> +
> +void
> +e1000e_core_pre_save(E1000ECore *core);
> +
> +int
> +e1000e_core_post_load(E1000ECore *core);
> +
> +void
> +e1000e_core_set_link_status(E1000ECore *core);
> +
> +void
> +e1000e_core_pci_uninit(E1000ECore *core);
> +
> +int
> +e1000e_can_receive(E1000ECore *core);
> +
> +ssize_t
> +e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size);
> +
> +ssize_t
> +e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt);
> diff --git a/trace-events b/trace-events
> index db10724..5bb932a 100644
> --- a/trace-events
> +++ b/trace-events
> @@ -1930,3 +1930,173 @@ net_rx_pkt_rss_ip6(void) "Calculating IPv6 RSS  hash"
>  net_rx_pkt_rss_ip6_ex(void) "Calculating IPv6/EX RSS  hash"
>  net_rx_pkt_rss_hash(size_t rss_length, uint32_t rss_hash) "RSS hash for %lu 
> bytes: 0x%X"
>  net_rx_pkt_rss_add_chunk(void* ptr, size_t size, size_t input_offset) "Add 
> RSS chunk %p, %lu bytes, RSS input offset %lu bytes"
> +
> +# hw/net/e1000e_core.c
> +e1000e_core_write(uint64_t index, uint32_t size, uint64_t val) "Write to 
> register 0x%"PRIx64", %d byte(s), value: 0x%"PRIx64
> +e1000e_core_read(uint64_t index, uint32_t size, uint64_t val) "Read from 
> register 0x%"PRIx64", %d byte(s), value: 0x%"PRIx64
> +e1000e_core_mdic_read(uint8_t page, uint32_t addr, uint32_t data) "MDIC 
> READ: PHY[%u][%u] = 0x%x"
> +e1000e_core_mdic_read_unhandled(uint8_t page, uint32_t addr) "MDIC READ: 
> PHY[%u][%u] UNHANDLED"
> +e1000e_core_mdic_write(uint8_t page, uint32_t addr, uint32_t data) "MDIC 
> WRITE: PHY[%u][%u] = 0x%x"
> +e1000e_core_mdic_write_unhandled(uint8_t page, uint32_t addr) "MDIC WRITE: 
> PHY[%u][%u] UNHANDLED"
> +e1000e_core_eeeprom_write(uint16_t bit_in, uint16_t bit_out, uint16_t 
> reading) "eeprom bitnum in %d out %d, reading %d"
> +e1000e_core_ctrl_write(uint64_t index, uint32_t val) "Write CTRL register 
> 0x%"PRIx64", value: 0x%X"
> +e1000e_core_ctrl_sw_reset(void) "Doing SW reset"
> +e1000e_core_ctrl_phy_reset(void) "Doing PHY reset"
> +
> +e1000e_link_negotiation_start(void) "Start link auto negotiation"
> +e1000e_link_negotiation_done(void) "Auto negotiation is completed"
> +e1000e_link_autoneg_flowctl(bool enabled) "Auto-negotiated flow control 
> state is %d"
> +e1000e_link_set_params(bool autodetect, uint32_t speed, bool force_spd, bool 
> force_dplx, bool rx_fctl, bool tx_fctl) "Set link params: Autodetect: %d, 
> Speed: %d, Force speed: %d, Force duplex: %d, RX flow control %d, TX flow 
> control %d"
> +e1000e_link_read_params(bool autodetect, uint32_t speed, bool force_spd, 
> bool force_dplx, bool rx_fctl, bool tx_fctl) "Get link params: Autodetect: 
> %d, Speed: %d, Force speed: %d, Force duplex: %d, RX flow control %d, TX flow 
> control %d"
> +e1000e_link_set_ext_params(bool asd_check, bool speed_select_bypass) "Set 
> extended link params: ASD check: %d, Speed select bypass: %d"
> +e1000e_link_status(bool link_up, bool full_dplx, uint32_t speed, uint32_t 
> asdv) "Link up: %d, Duplex: %d, Speed: %d, ASDV: %d"
> +
> +e1000e_wrn_regs_write_ro(uint64_t index, uint32_t size, uint64_t val) 
> "WARNING: Write to RO register 0x%"PRIx64", %d byte(s), value: 0x%"PRIx64
> +e1000e_wrn_regs_write_unknown(uint64_t index, uint32_t size, uint64_t val) 
> "WARNING: Write to unknown register 0x%"PRIx64", %d byte(s), value: 0x%"PRIx64
> +e1000e_wrn_regs_read_unknown(uint64_t index, uint32_t size) "WARNING: Read 
> from unknown register 0x%"PRIx64", %d byte(s)"
> +e1000e_wrn_regs_read_trivial(uint32_t index) "WARNING: Reading register at 
> offset: 0x%05x. It is not fully implemented."
> +e1000e_wrn_regs_write_trivial(uint32_t index) "WARNING: Writing to register 
> at offset: 0x%05x. It is not fully implemented."
> +e1000e_wrn_no_ts_support(void) "WARNING: Guest requested TX timestamping 
> which is not supported"
> +e1000e_wrn_no_snap_support(void) "WARNING: Guest requested TX SNAP header 
> update which is not supported"
> +e1000e_wrn_iscsi_filtering_not_supported(void) "WARNING: Guest requested 
> iSCSI filtering  which is not supported"
> +e1000e_wrn_nfsw_filtering_not_supported(void) "WARNING: Guest requested NFS 
> write filtering  which is not supported"
> +e1000e_wrn_nfsr_filtering_not_supported(void) "WARNING: Guest requested NFS 
> read filtering  which is not supported"
> +
> +e1000e_tx_disabled(void) "TX Disabled"
> +e1000e_tx_descr(void *addr, uint32_t lower, uint32_t upper) "%p : %x %x"
> +e1000e_tx_cso_zero(void) "TCP/UDP: cso 0!"
> +
> +e1000e_ring_free_space(int ridx, uint32_t rdlen, uint32_t rdh, uint32_t rdt) 
> "ring #%d: LEN: %u, DH: %u, DT: %u"
> +
> +e1000e_rx_can_recv_disabled(bool link_up, bool rx_enabled, bool pci_master) 
> "link_up: %d, rx_enabled %d, pci_master %d"
> +e1000e_rx_can_recv_rings_full(void) "Cannot receive: all rings are full"
> +e1000e_rx_can_recv(void) "Can receive"
> +e1000e_rx_has_buffers(int ridx, uint32_t free_desc, size_t total_size, 
> uint32_t desc_buf_size) "ring #%d: free descr: %u, packet size %lu, descr 
> buffer size %u"
> +e1000e_rx_null_descriptor(void) "Null RX descriptor!!"
> +e1000e_rx_flt_ucast_match(uint32_t idx, uint8_t b0, uint8_t b1, uint8_t b2, 
> uint8_t b3, uint8_t b4, uint8_t b5) "unicast match[%d]: 
> %02x:%02x:%02x:%02x:%02x:%02x"
> +e1000e_rx_flt_ucast_mismatch(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, 
> uint8_t b4, uint8_t b5) "unicast mismatch: %02x:%02x:%02x:%02x:%02x:%02x"
> +e1000e_rx_flt_inexact_mismatch(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t 
> b3, uint8_t b4, uint8_t b5, uint32_t mo, uint32_t mta, uint32_t mta_val) 
> "inexact mismatch: %02x:%02x:%02x:%02x:%02x:%02x MO %d MTA[%d] %x"
> +e1000e_rx_flt_vlan_mismatch(uint16_t vid) "VID mismatch: 0x%X"
> +e1000e_rx_flt_vlan_match(uint16_t vid) "VID match: 0x%X"
> +e1000e_rx_desc_ps_read(uint64_t a0, uint64_t a1, uint64_t a2, uint64_t a3) 
> "buffers: [0x%"PRIx64", 0x%"PRIx64", 0x%"PRIx64", 0x%"PRIx64"]"
> +e1000e_rx_desc_ps_write(uint16_t a0, uint16_t a1, uint16_t a2, uint16_t a3) 
> "bytes written: [%u, %u, %u, %u]"
> +e1000e_rx_desc_buff_sizes(uint32_t b0, uint32_t b1, uint32_t b2, uint32_t 
> b3) "buffer sizes: [%u, %u, %u, %u]"
> +e1000e_rx_desc_len(uint8_t rx_desc_len) "RX descriptor length: %u"
> +e1000e_rx_desc_buff_write(uint8_t idx, uint64_t addr, uint16_t offset, const 
> void* source, uint32_t len) "buffer #%u, addr: 0x%"PRIx64", offset: %u, from: 
> %p, length: %u"
> +e1000e_rx_descr(int ridx, uint64_t base, uint8_t len) "Next RX descriptor: 
> ring #%d, PA: 0x%"PRIx64", length: %u"
> +e1000e_rx_set_rctl(uint32_t rctl) "RCTL = 0x%x"
> +e1000e_rx_receive_iov(int iovcnt) "Received vector of %d fragments"
> +e1000e_rx_packet_size(size_t full, size_t vhdr, size_t data) "Received 
> packet of %lu bytes total, %lu virt header, %lu data"
> +e1000e_rx_link_down(uint32_t status_reg) "Received packet dropped because 
> the link is down STATUS = %u"
> +e1000e_rx_disabled(uint32_t rctl_reg) "Received packet dropped because 
> receive is disabled RCTL = %u"
> +e1000e_rx_oversized(size_t size) "Received packet dropped because it was 
> oversized (%lu bytes)"
> +e1000e_rx_flt_dropped(void) "Received packet dropped by RX filter"
> +e1000e_rx_written_to_guest(uint32_t causes) "Received packet written to 
> guest (ICR causes %u)"
> +e1000e_rx_not_written_to_guest(uint32_t causes) "Received packet NOT written 
> to guest (ICR causes %u)"
> +e1000e_rx_interrupt_set(uint32_t causes) "Receive interrupt set (ICR causes 
> %u)"
> +e1000e_rx_interrupt_delayed(uint32_t causes) "Receive interrupt delayed (ICR 
> causes %u)"
> +e1000e_rx_set_cso(int cso_state) "RX CSO state set to %d"
> +e1000e_rx_set_rdt(int queue_idx, uint32_t val) "Setting RDT[%d] = %u"
> +e1000e_rx_set_rfctl(uint32_t val) "Setting RFCTL = 0x%X"
> +e1000e_rx_start_recv(void)
> +
> +e1000e_rx_rss_started(void) "Starting RSS processing"
> +e1000e_rx_rss_disabled(void) "RSS is disabled"
> +e1000e_rx_rss_type(uint32_t type) "RSS type is %u"
> +e1000e_rx_rss_ip4(bool isfragment, bool istcp, uint32_t mrqc, bool 
> tcpipv4_enabled, bool ipv4_enabled) "RSS IPv4: fragment %d, tcp %d, mrqc 
> 0x%X, tcpipv4 enabled %d, ipv4 enabled %d"
> +e1000e_rx_rss_ip6(uint32_t rfctl, bool ex_dis, bool new_ex_dis, bool istcp, 
> bool has_ext_headers, bool ex_dst_valid, bool ex_src_valid, uint32_t mrqc, 
> bool tcpipv6_enabled, bool ipv6ex_enabled, bool ipv6_enabled) "RSS IPv6: 
> rfctl 0x%X, ex_dis: %d, new_ex_dis: %d, tcp %d, has_ext_headers %d, 
> ex_dst_valid %d, ex_src_valid %d, mrqc 0x%X, tcpipv6 enabled %d, ipv6ex 
> enabled %d, ipv6 enabled %d"
> +e1000e_rx_rss_dispatched_to_queue(int queue_idx) "Packet being dispatched to 
> queue %d"
> +
> +e1000e_rx_metadata_protocols(bool isip4, bool isip6, bool isudp, bool istcp) 
> "protocols: ip4: %d, ip6: %d, udp: %d, tcp: %d"
> +e1000e_rx_metadata_vlan(uint16_t vlan_tag) "VLAN tag is 0x%X"
> +e1000e_rx_metadata_rss(uint32_t rss, uint32_t mrq) "RSS data: rss: 0x%X, 
> mrq: 0x%X"
> +e1000e_rx_metadata_ip_id(uint16_t ip_id) "the IPv4 ID is 0x%X"
> +e1000e_rx_metadata_ack(void) "the packet is TCP ACK"
> +e1000e_rx_metadata_pkt_type(uint32_t pkt_type) "the packet type is %u"
> +e1000e_rx_metadata_no_virthdr(void) "the packet has no virt-header"
> +e1000e_rx_metadata_virthdr_no_csum_info(void) "virt-header does not contain 
> checksum info"
> +e1000e_rx_metadata_l3_cso_disabled(void) "IP4 CSO is disabled"
> +e1000e_rx_metadata_l4_cso_disabled(void) "TCP/UDP CSO is disabled"
> +e1000e_rx_metadata_l3_csum_validation_failed(void) "Cannot validate L3 
> checksum"
> +e1000e_rx_metadata_l4_csum_validation_failed(void) "Cannot validate L4 
> checksum"
> +e1000e_rx_metadata_status_flags(uint32_t status_flags) "status_flags is 0x%X"
> +e1000e_rx_metadata_ipv6_sum_disabled(void) "IPv6 RX checksummimg disabled by 
> RFCTL"
> +e1000e_rx_metadata_ipv6_filtering_disabled(void) "IPv6 RX filtering disabled 
> by RFCTL"
> +
> +e1000e_vlan_vet(uint16_t vet) "Setting VLAN ethernet type 0x%X"
> +e1000e_vlan_is_vlan_pkt(bool is_vlan_pkt, uint16_t eth_proto, uint16_t vet) 
> "Is VLAN packet: %d, ETH proto: 0x%X, VET: 0x%X"
> +
> +e1000e_irq_set_cause(uint32_t cause) "IRQ cause set 0x%x"
> +e1000e_irq_msi_notify(uint32_t cause) "MSI notify 0x%x"
> +e1000e_irq_throttling_no_pending_interrupts(void) "No pending interrupts to 
> notify"
> +e1000e_irq_msi_notify_postponed(void) "Sending MSI postponed by ITR"
> +e1000e_irq_legacy_notify_postponed(void) "Raising legacy IRQ postponed by 
> ITR"
> +e1000e_irq_throttling_no_pending_vec(int idx) "No pending interrupts for 
> vector %d"
> +e1000e_irq_msix_notify_postponed_vec(int idx) "Sending MSI-X postponed by 
> EITR[%d]"
> +e1000e_irq_msix_notify(uint32_t cause) "MSI-X notify 0x%x"
> +e1000e_irq_legacy_notify(bool level) "IRQ line state: %d"
> +e1000e_irq_msix_notify_vec(uint32_t vector) "MSI-X notify vector 0x%x"
> +e1000e_irq_postponed_by_xitr(uint32_t reg) "Interrupt postponed by [E]ITR 
> register 0x%x"
> +e1000e_irq_clear_ims(uint32_t bits, uint32_t old_ims, uint32_t new_ims) 
> "Clearing IMS bits 0x%x: 0x%x --> 0x%x"
> +e1000e_irq_set_ims(uint32_t bits, uint32_t old_ims, uint32_t new_ims) 
> "Setting IMS bits 0x%x: 0x%x --> 0x%x"
> +e1000e_irq_fix_icr_asserted(uint32_t new_val) "ICR_ASSERTED bit fixed: 0x%x"
> +e1000e_irq_add_msi_other(uint32_t new_val) "ICR_OTHER bit added: 0x%x"
> +e1000e_irq_pending_interrupts(uint32_t pending, uint32_t icr, uint32_t ims) 
> "ICR PENDING: 0x%x (ICR: 0x%x, IMS: 0x%x)"
> +e1000e_irq_set_cause_entry(uint32_t val, uint32_t icr) "Going to set IRQ 
> cause 0x%x, ICR: 0x%x"
> +e1000e_irq_set_cause_exit(uint32_t val, uint32_t icr) "Set IRQ cause 0x%x, 
> ICR: 0x%x"
> +e1000e_irq_icr_write(uint32_t bits, uint32_t old_icr, uint32_t new_icr) 
> "Clearing ICR bits 0x%x: 0x%x --> 0x%x"
> +e1000e_irq_write_ics(uint32_t val) "Adding ICR bits 0x%x"
> +e1000e_irq_icr_process_iame(void) "Clearing IMS bits due to IAME"
> +e1000e_irq_read_ics(uint32_t ics) "Current ICS: 0x%x"
> +e1000e_irq_read_ims(uint32_t ims) "Current IMS: 0x%x"
> +e1000e_irq_icr_read_entry(uint32_t icr) "Starting ICR read. Current ICR: 
> 0x%x"
> +e1000e_irq_icr_read_exit(uint32_t icr) "Ending ICR read. Current ICR: 0x%x"
> +e1000e_irq_icr_clear_zero_ims(void) "Clearing ICR on read due to zero IMS"
> +e1000e_irq_icr_clear_iame(void) "Clearing ICR on read due to IAME"
> +e1000e_irq_ims_clear_eiame(uint32_t iam, uint32_t cause) "Clearing IMS due 
> to EIAME, IAM: 0x%X, cause: 0x%X"
> +e1000e_irq_ims_clear_set_imc(uint32_t val) "Clearing IMS bits due to IMC 
> write 0x%x"
> +e1000e_irq_fire_delayed_interrupts(void) "Firing delayed interrupts"
> +e1000e_irq_rearm_timer(uint32_t reg, int64_t delay_ns) "Mitigation timer 
> armed for register 0x%X, delay %ld ns"
> +e1000e_irq_throttling_timer(uint32_t reg) "Mitigation timer shot for 
> register 0x%X"
> +e1000e_irq_rdtr_fpd_running(void) "FPD written while RDTR was running"
> +e1000e_irq_rdtr_fpd_not_running(void) "FPD written while RDTR was not 
> running"
> +e1000e_irq_tidv_fpd_running(void) "FPD written while TIDV was running"
> +e1000e_irq_tidv_fpd_not_running(void) "FPD written while TIDV was not 
> running"
> +e1000e_irq_eitr_set(uint32_t eitr_num, uint32_t val) "EITR[%u] = %u"
> +e1000e_irq_itr_set(uint32_t val) "ITR = %u"
> +e1000e_irq_fire_all_timers(uint32_t val) "Firing all delay/throttling timers 
> on all interrupts enable (0x%X written to IMS)"
> +e1000e_irq_adding_delayed_causes(uint32_t val, uint32_t icr) "Merging 
> delayed causes 0x%X to ICR 0x%X"
> +e1000e_irq_msix_pending_clearing(uint32_t cause, uint32_t int_cfg, uint32_t 
> vec) "Clearing MSI-X pending bit for cause 0x%x, IVAR config 0x%x, vector %u"
> +
> +e1000e_wrn_msix_vec_wrong(uint32_t cause, uint32_t cfg) "Invalid 
> configuration for cause 0x%x: 0x%x"
> +e1000e_wrn_msix_invalid(uint32_t cause, uint32_t cfg) "Invalid entry for 
> cause 0x%x: 0x%x"
> +
> +e1000e_mac_set_permanent(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, 
> uint8_t b4, uint8_t b5) "Set permanent MAC: %02x:%02x:%02x:%02x:%02x:%02x"
> +e1000e_mac_set_sw(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t 
> b4, uint8_t b5) "Set SW MAC: %02x:%02x:%02x:%02x:%02x:%02x"
> +e1000e_mac_indicate(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t 
> b4, uint8_t b5) "Indicating MAC to guest: %02x:%02x:%02x:%02x:%02x:%02x"
> +
> +# hw/net/e1000e.c
> +e1000e_cb_pci_realize(void) "E1000E PCI realize entry"
> +e1000e_cb_pci_uninit(void) "E1000E PCI unit entry"
> +e1000e_cb_qdev_reset(void) "E1000E qdev reset entry"
> +e1000e_cb_pre_save(void) "E1000E pre save entry"
> +e1000e_cb_post_load(void) "E1000E post load entry"
> +
> +e1000e_io_write_addr(uint64_t addr) "IOADDR write 0x%"PRIx64
> +e1000e_io_write_data(uint64_t addr, uint64_t val) "IODATA write 0x%"PRIx64", 
> value: 0x%"PRIx64
> +e1000e_io_read_addr(uint64_t addr) "IOADDR read 0x%"PRIx64
> +e1000e_io_read_data(uint64_t addr, uint64_t val) "IODATA read 0x%"PRIx64", 
> value: 0x%"PRIx64
> +e1000e_wrn_io_write_unknown(uint64_t addr) "IO write unknown address 
> 0x%"PRIx64
> +e1000e_wrn_io_read_unknown(uint64_t addr) "IO read unknown address 0x%"PRIx64
> +e1000e_wrn_io_addr_undefined(uint64_t addr) "IO undefined register 0x%"PRIx64
> +e1000e_wrn_io_addr_flash(uint64_t addr) "IO flash access (0x%"PRIx64") not 
> implemented"
> +e1000e_wrn_io_addr_unknown(uint64_t addr) "IO unknown register 0x%"PRIx64
> +
> +e1000e_wrn_flash_read(uint64_t addr) "BAR1 flash read (0x%"PRIx64") not 
> implemented"
> +e1000e_wrn_flash_write(uint64_t addr, uint64_t val) "BAR1 flash write 
> ([0x%"PRIx64"] = 0x%"PRIx64") not implemented"
> +
> +e1000e_msi_init_fail(int32_t res) "Failed to initialize MSI, error %d"
> +e1000e_msix_init_fail(int32_t res) "Failed to initialize MSI-X, error %d"
> +e1000e_msix_use_vector_fail(uint32_t vec, int32_t res) "Failed to use MSI-X 
> vector %d, error %d"
> +
> +e1000e_cfg_support_virtio(bool support) "Virtio header supported: %d"




reply via email to

[Prev in Thread] Current Thread [Next in Thread]