
Chapter-7
Qemu Detailed Study

As discussed in chapter 6 QEMU is a machine emulator and thus can

emulate a given number of processor architectures on machine in which it is

running. For QEMU the emulated architectures is called the Target. And the real

machine on which QEMU is running, emulating the target, is called the Host. The

dynamic translation of virtual machine (target) code to Host code is done by a

module in QEMU called the Tiny Code Generator or TCG for short. When it

comes to TCG the term ‘target’ gets a different meaning. TCG creates the code to

emulate the target thus the code created by TCG is called its target .Thus when it

comes to TCG target means the generated Host code. Figure 7.1 clarifies this

varied terminology.

Figure 7.1: Use of term ‘Target’

TARGET

HOST

QEMU

G
U

E
ST

C

O
D

E

H
O

ST
 C

O
D

E

(T
C

G
 target)

TCG

Qemu Detailed Study 29

Thus one may call the code (OS + USER TOOLS) being run by the

emulated processor the guest code. QEMU functions by extracting the Guest

code and converting it to Host specific code. The whole translation task thus

consists of two parts: First a block of target code - Translation Block (TB) is

converted into TCG ops - a kind of machine-independent intermediate notation,

and subsequently the TCG ops for the TB is converted to Host code for the host's

architecture by TCG. Optional optimization passes are performed between them.

7.1 Codebase

A clear understanding of the QEMU codebase is required to add new

functionality that will extend the machine emulator to migrate its generated code

to execute in remote nodes. The QEMU codebase has over 1300 files which are

well organized into specific sections. Even though the code is well organized it is

complex enough to leave any new developer perplexed. This section will throw

light on the organization of QEMU codebase.

In this section the shallowest directory depth in the codebase will be represented

by a ‘/’ , and consecutive directory depths will follow the usual Unix file path

notations.

Start of Execution:

The major C files in the / that are important for the study are ; /vl.c,/cpus.c, /exec-

all.c, /exec.c, /cpu-exec.c. The ‘main’ function where the execution starts is

defined in /vl.c. The functions in this file sets up a virtual machine environment

as per the given virtual machine specification such as size of ram, available

30 Qemu Detailed Study

devices, number of CPUs etc. From the main function, after the virtual machine

is set up, execution branches out through files such as /cpus.c, /exec-all.c, /exec.c,

/cpu-exec.c.

Emulated Hardware:

The code that emulates all virtual hardware in the virtual machine can be found in

/hw/. QEMU emulates a considerable number of hardware but detailed

understanding of how the hardware are emulated is not necessary in this study.

Guest (Target) Specific:

The processor architectures currently emulated in QEMU are; Alpha, ARM, Cris,

i386, M68K, PPC, Sparc, Mips, MicroBlaze, S390X and SH4. The code specific

to these architectures necessary to convert TBs to TCG ops are available in

/target-xyz/ where xyz can any of the above given architecture names. Therefore

the code specific to i386 can be found in /target-i386/. This part can be called as

the frontend of TCG.

Host (TCG) Specific:

The host specific code for generating the host code from the TCG ops are placed

in /tcg/ . Inside TCG one can find /xyz/ where xyz can be i386 ,sparc etc which

contain the code that converts TCG ops to architecture specific code. This part

can be called as the backend of TCG.

Qemu Detailed Study 31

Summary:

/vl.c : The main emulator loop, the virtual

machine is setup and CPUs are executed.

/target-xyz/translate.c : The extracted guest code (guest specific

ISA) is converted into architecture

independent TCG ops

/tcg/tcg.c : The main code for TCG.

/tcg/*/tcg-target.c : Code that converts the TCG ops to host

code (host specific ISA).

/cpu-exec.c : Function cpu-exec() in /cpu-exec.c finds the

next translation block (TB), if not found

calls are made to generate the next TB and

finally to execute the generated code.

7.2 TCG - Dynamic translation

As mentioned earlier in this document dynamic translation in QEMU

before version 0.9.1 was carried out by DynGen. TBs were converted to C code

by DynGen and GCC (the GNU C compiler) converted the C code into host

specific code. The issue with the procedure was that DynGen was tightly tied to

32 Qemu Detailed Study

GCC and created problems as when GCC evolved. To remove the tight coupling

of the translator to GCC a new procedure was put in place; TCG.

The dynamic translation converts code as and when needed. The idea was to

spend the maximum time executing the generated code that executing the code

generation. Every time code is generated from the TB it is stored in the code

cache before being executed. Most of the time the same TBs are required again

and again, owing to what is called Locality Reference, so instead of re-generating

the same code it is best to save it. Figure 7.2 summarizes the same. And once the

code cache is full, to make things simple, the entire code cache is flushed instead

of using LRU algorithms.

GUEST
CODE

STATIC
CODE

GENERATED
CODE

DATA FLOW
CONTROL FLOW

C
O

D
E

 C
A

C
H

E

Figure 7.2: Jump to code cache

Qemu Detailed Study 33

Compilers produce the object code from the source code before

execution. In order to produce object code for a function call a compiler like

GCC produces special assembly code that does what is necessary before a

function is called and before a function returns. This special assembly code

produced is called Function Prologue and Epilogue.

Function Prologue typically does the following actions if the architecture is

having a base pointer and a stack pointer:

• Pushes the current base pointer onto the stack, such that it can be restored

later.

• Replaces the old base pointer with the current stack pointer such that the a

new stack will be created on top of the old stack.

• Moves the stack pointer further along the stack to make room in the

current stack frame for the function's local variables.

Function Epilogue reverses the actions of the function prologue and returns

control to the calling function. It typically does the following actions:

• Replaces the stack pointer with the current base pointer, so the stack

pointer is restored to its value before the prologue.

• Pops the base pointer off the stack, so it is restored to its value before the

prologue

• Returns to the calling function, by popping the previous frame's program

counter off the stack and jumping to it.

34 Qemu Detailed Study

TCG by itself can be seen to function as a compiler that produces object code

on the fly. The code generated by TCG is stored in buffer (code cache). The

execution control is passed to and from the code cache through TCG’s very on

Prologue and Epilogue, as illustrated in the figure 7.3.

Following figures (7.4 – 7.7) illustrate how TCG functions. Brief descriptions of

the functions seen in the figure are given in the next section.

cpu exex()

PROLOGUE

EPILOGUE

GENERATED

H0ST COD

PRE - GENERATED CODE CODE / TRANSLATION CACHE

Figure 7.3: Use of Function Prologue and Epilogue

Qemu Detailed Study 35

tcg_gen_code()

GUEST CODE

TCG OPERATIONS

HOST CODE

gen_intermediate_code()

Figure 7.4: Dynamic translation - outline

push %ebp
mov %esp,%ebp
not %eax
add %eax,%edx
mov %edx,%eax
xor $0x55555555, %eax
pop %ebp
ret

GUEST CODE

TCG OPERATIONS

HOST CODE

gen_intermediate_code()

tcg_gen_code()

Figure 7.5: Dynamic translation – Showing guest code

36 Qemu Detailed Study

…
ld_i 32 tmp2,env,$0x1 0
qemu_ld32u
tmp0,tmp2,$0xffffffff
ld_i 32 tmp4,env,$0x10
movi_I 32 tmp14,$0x4
add_i 32 tmp4,tmp4,tmp14
st_i 32 tmp4 ,env,$0x10
st_i32 tmp0,env,$0x20
movi_i 32 cc_op,$0x18
exit_tb $0x0

GUEST CODE

TCG OPERATIONS

HOST CODE

gen_intermediate_code()

tcg_gen_code()

Figure 7.6: Dynamic translation – showing TCG ops

GUEST CODE

TCG OPERATIONS

HOST CODE

gen_intermediate_code()

tcg_gen_code()

…
mov 0x10(%ebp) ,%eax
mov %eax,%ecx
mov (%ecx), %eax
mov 0x10(%ebp) ,%edx
add $0x4,%edx
mov %edx,0x10(%ebp)
mov %eax,0x20(%ebp)
mov $0x18,%eax
mov %eax,0x30(%ebp)
xor %eax,%eax
jmp 0xba0db428

/*This represents just the
ret instruction!"

Figure 7.7: Dynamic translation – Showing Generated host Code (shown in
assembly for readability)

Qemu Detailed Study 37

7.3 Chaining of TBs:

Returning from the code cache to the static code (QEMU code) and

jumping back into the code cache is generally slow. To solve this QEMU chains

every TB to the next TB. So after the execution of one TB the execution directly

jumps to the next TB without returning to the static code. The chaining of block

happens when the Tb returns to the static code. Thus when TB1 returns (as there

was no chaining) to static code the next TB, TB2, is found, generated and

executed. When TB2 returns it is immediately chained to TB1. This makes sure

that next time when TB1 is executed TB2 follows it without returning to the

static code. Figure 7.8 (a-c) in the following page illustrates chaining of TBs.

7.4 Execution trace

This section will try to trace the execution of QEMU and specifically

point out the location of specific files and declaration of functions called. This

section will focus mainly on the TCG part of QEMU and will thus be key in

finding the code sections that generate the Host code. A good understanding of

code generation in QEMU will be necessary to help patch up QEMU in order to

make the EVM.

The file/folder path notations are same as the ones used in the previous

‘codebase’ section but in order to specify the location of function declarations

and define statements the same notations need to be augmented.

38 Qemu Detailed Study

Figure 7.8: Chaining of TBs

(c)

(b)

(a)

PROLOGUE

EPILOGUE

TB

cpu exex()

PRE - GENERATED CODE CODE / TRANSLATION CACHE

TB TB

TB

PROLOGUE

EPILOGUE

cpu exex()

PRE - GENERATED CODE CODE / TRANSLATION CACHE

PROLOGUE

EPILOGUE

cpu exex()

PRE - GENERATED CODE CODE / TRANSLATION CACHE

TB

TB TB

TB

TB

TB TB

TB

Qemu Detailed Study 39

Thus func1(...){/folder/file.c} would mean that declaration of func1() is in

/folder/file.c the same goes with #define symbol_name{/folder/file.c},

var var_name {/folder/file.c}.

Similarly to highlight a particular piece of code the following convention is used.

:345

int max=MAX;

:

Suggests that ‘int max=MAX;’ is in line number 346 in the corresponding file.

main(..){/vl.c} : The main function parses the command line arguments

passed during start-up and sets up the virtual machine (VM) based on the

parameters such as size of ram, size of hard disk, boot disk etc. Once the VM is

setup, main() calls main_loop().

main_loop(...){/vl.c} : Function main_loop initially calls

qemu_main_loop_start() and then does infinite looping of cpu_exec_all()

and profile_getclock() within a do-while for which the condition is

vm_can_run(). The infinite for-loop continues with checking some VM halting

situations like qemu_shutdown_requested(), qemu_powerdown_requested(),

qemu_vmstop_requested() etc. These halting conditions will not be investigated

further.

40 Qemu Detailed Study

qemu_main_loop_start(...){/cpus.c} : Function qemu_main_loop_start

sets the variable qemu_system_ready = 1 and calls qemu_cond_broadcast()

which basically deals with restarting all thread waiting on a condition variable.

This will not be further investigated here. Please. look in to /qemu-thread.c for

more details.

profile_getclock(...){/qemu-timer.c} : Function profile_getclock basically

deals with timing (CLOCK_MONOTONIC) and is not further investigated here.

cpu_exec_all(...){/cpus.c} : Function cpu_exec_all basically round

robins the available CPUs (cores) in the VM. QEMU can have up to 256 cores.

But all these cores will be executed in round robin fashion and thus do not fully

mimic a multi-core processor in which all cores run in parallel. Once the next

CPU is chosen it’s state (CPUState *env) is found and the state is passed to

qemu_cpu_exec() for continuation of execution of the chosen CPU from its

current state, after checking a condition cpu_can_run().

struct CPUState{/target-xyz/cpu.h} : Structure CPUState is architecture

specific and basically holds the CPU state like standard registers, segments,

FPU state, exception/interrupt handling, processor feature and some emulator

specific internal variables and flags.

Qemu Detailed Study 41

qemu_cpu_exec(...){/cpus.c}: Function qemu_cpu_exec basically calls

cpu_exec().

cpu_exec(...){/cpu-exec.c}: Function cpu_exec is referred to as the ‘main

execution loop’. Here for the first time a translation Block TB is initialized

(TranslationBlock *tb) the code then basically continues with handling

exceptions. Deep within two nested infinite for-loops one can find tb_find_fast()

and tcg_qemu_tb_exec(). tb_find_fast() initiates the search for the next TB for

the Guest and then generate the Host code. The generated Host code is then

executed through tcg_qemu_tb_exec().

struct TranslationBlock {/exec-all.h}: Structure TranslationBlock contains

the following; PC, CS_BASE, Flags corresponding to this TB, tc_ptr (a pointer to

the translated code of this TB), tb_next_offset[2], tb_jmp_offset[2] (both to find

the TBs chained to this TB. ie. the TB that follows this TB), *jmp_next[2],

*jmp_first (points to the TBs that jump into this TB).

tb_find_fast(...){/cpu-exec.c} : Function tb_find_fast calls

cpu_get_tb_cpu_state() which gets the program counter (PC) form CPUState

(env) this PC value is passed to a hash function to get the index of the TB in

tb_jmp_cache[] (a hash table). Using this index the next TB is found from

tb_jmp_cache.

42 Qemu Detailed Study

: 200

tb = env->b_jmp_cache[tb_jmp_cache_hash_func(pc)]

:

Thus it can be found that once a TB (for a particular PC value) is found it is

stored in tb_jmp_cache so that it can be later reused from tb_jmp_cache using its

index found using the hash function (tb_jmp_cache_hash_func(pc)). The code

then follows to check the validity of the found TB, if the TB found is invalid then

a call is made to tb_find_slow().

cpu_get_tb_cpu_state(...){/target-xyz/cpu.h}: Function cpu_get_tb_cpu_state

basically finds the PC, BP, Flags from the current CPUState (env).

tb_jmp_cache_hash_func(...){/exec-all.h}: This is a hash function to find offset

of TB in tb_jmp_cache using the PC as key.

tb_find_slow(...){/cpu-exec.c}: Function tb_find_slow is used when

tb_find_fast() fails. This time an attempt to find a TB is made using physical

memory mapping.

:142

phys_pc=get_page_addr_code (env, pc)

:

phys_pc should be the physical memory address of the Guest OS’s PC, and it is

used to find the next TB through a hash function.

:147

Qemu Detailed Study 43

h=tb_phys_hash_func(phys_pc)

ptb1 = &tb_phys_hash[h];

:

The above ptb1 is supposed to be the next TB but its validity is checked

in the code that follows. If no valid TB is found then new TB is generated

through tb_gen_code() else if a valid TB was found then its quickly added to

tb_jmp_cache at an index found by tb_jmp_cache_hash_func().

:181

env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;

 :

tb_gen_code(...){/exec.c}: Function tb_gen_code starts with allocating

 (tb_alloc()) a new TB, the PC for the TB is found from the PC of CPUState

using get_page_addr_code() .

:957

phys_pc = get_page_addr_code(env, pc);

tb = tb_alloc(pc);

:

When this is done a call is made to cpu_gen_code() followed by a call to

tb_link_page() which adds a new TB and links it to physical page tables.

44 Qemu Detailed Study

cpu_gen_code(...){translate-all.c}: function cpu_gen_code initiates the actual

code generation. In which there is a chain of subsequent function calls given as

below.

gen_intermediate_code(){/target-xyz/translate.c}

gen_intermediate_code_internal(){/target-xyz/translate.c  disas_insn(){/target-

xyz/translate.c}

Function disas_ins does the actual conversion of Guest code into TCG

ops through a long switch case of target(Guest) instruction and corresponding

group of functions that end-up adding TCG ops to code_buff. After the TCG ops

are generated a call to tcg_gen_code() is made.

tcg_gen_code(...){/tcg/tcg.c}: Function tcg_gen_code converts TCG ops

to Host specific code. Check the previous section ‘TCG- Dynamic Translator’ to

find out more on the functioning of TCG.

#define tcg_qemu_tb_exec(...){/tcg/tcg.g}: Once the next TB is

obtained, through all the processes as detailed above, the TB need to be executed.

The TB is executed through tcg_qemu_tb_exec() in /exec-cpu.c.

:644

next_tb = tcg_qemu_tb_exec(tc_ptr)

:

Infact tcg_qemu_tb_exec() is a macro function defined in /tcg/tcg.h

Qemu Detailed Study 45

:484 (in /tcg/tcg.h)

extern uint8_t code_gen_prologue[];

:

#define tcg_qemu_tb_exec(tb_ptr) ((long REGPARM(*)(void *))

code_gen_prologue)(tb_ptr)

:

To understand what happens in the above line of code, a good knowledge

of function pointers is required. The following lines will elaborate on

understanding this.

It is well known that (int) var will explicitly convert a variable to type

int. In the same sense ((long REGPARM (*)(void *)) is a type - pointer to a

function that takes in void * parameter and returns a long. Here REGPARAM(*)

is a GCC compiler-directive that causes parameter of a function to be passed

through Registers instead of through the Stack.…………………………...

 The intention of ((long REGPARM (*)(void *)) would have been clear if

the functions name appeared in it as ((long REGPARM (*func_name)(void *)).

However it was used here without a function name (but serves the purpose).

When an array name is used, the array base address is obtained, and thus points

(pointer) to the array. Therefore (function_pointer) array_name will cast the

array pointer as function pointer.

46 Qemu Detailed Study

A function is called through its pointer as (*pointer_to_func)(args) therefore

((long REGPARM (*)(void *))code_gen_prologue)(tc_ptr) does a function call.

It is seen that a ‘*' is missing in the above function call, but one can test to see

that (*pointer_to_func)(args) and (pointer_to_func)(args) are equivalent.

So the above explanation clarifies that code_gen_prologue, an array, is

cast as function and executed. code_gen_prologue holds in it a function in binary

form that takes in an argument tc_ptr and return a long which is the next TB. The

function in code_gen_prologue is the Function Prologue (discussed in a previous

section) that transfers control to the generated Host code pointed to by tc_ptr.

