qemu-arm
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [Qemu-arm] [RFC PATCH v1 2/2] target-arm: Use Neon for zero checking


From: Vijay Kilari
Subject: Re: [Qemu-arm] [RFC PATCH v1 2/2] target-arm: Use Neon for zero checking
Date: Wed, 6 Apr 2016 14:02:04 +0530

On Tue, Apr 5, 2016 at 8:06 PM, Peter Maydell <address@hidden> wrote:
> On 4 April 2016 at 14:39,  <address@hidden> wrote:
>> From: Vijay <address@hidden>
>>
>> Use Neon instructions to perform zero checking of
>> buffer. This is helps in reducing downtime during
>> live migration.
>>
>> Signed-off-by: Vijaya Kumar K <address@hidden>
>> ---
>>  util/cutils.c |   81 
>> +++++++++++++++++++++++++++++++++++++++++++++++++++++++++
>>  1 file changed, 81 insertions(+)
>>
>> diff --git a/util/cutils.c b/util/cutils.c
>> index 43d1afb..d343b9a 100644
>> --- a/util/cutils.c
>> +++ b/util/cutils.c
>> @@ -352,6 +352,87 @@ static void 
>> *can_use_buffer_find_nonzero_offset_ifunc(void)
>>      return func;
>>  }
>>  #pragma GCC pop_options
>> +
>> +#elif defined __aarch64__
>> +#include "arm_neon.h"
>
> Can we rely on all compilers having this, or do we need to
> test in configure?

GCC and armcc support the same intrinsics. Both needs inclusion
of arm_neon.h.

>
>> +
>> +#define NEON_VECTYPE               uint64x2_t
>> +#define NEON_LOAD_N_ORR(v1, v2)    vorrq_u64(vld1q_u64(&v1), vld1q_u64(&v2))
>> +#define NEON_ORR(v1, v2)           vorrq_u64(v1, v2)
>> +#define NEON_EQ_ZERO(v1) \
>> +        ((vgetq_lane_u64(vceqzq_u64(v1), 0) == 0) || \
>> +         (vgetq_lane_u64(vceqzq_u64(v1), 1)) == 0)
>
> The intrinsics are a bit confusing, but shouldn't we be
> testing that both lanes of v1 are 0, rather than whether
> either of them is? (so "&&", not "||").

Above check is correct. vceqzq() sets all bits to 1 if value is 0.
So if one lane is 0, then it means it is non-zero buffer. I think
redefining this macro as below would be better and avoid
vceqzq_u64()

#define NEON_NOT_EQ_ZERO(v1) \
        ((vgetq_lane_u64(v1, 0) != 0) || (vgetq_lane_u64(v1, 1)) != 0)

>
>> +
>> +#define BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR_NEON 16
>> +
>> +/*
>> + * Zero page/buffer checking using SIMD(Neon)
>> + */
>> +
>> +static bool
>> +can_use_buffer_find_nonzero_offset_neon(const void *buf, size_t len)
>> +{
>> +    return (len % (BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR_NEON
>> +                   * sizeof(NEON_VECTYPE)) == 0
>> +            && ((uintptr_t) buf) % sizeof(NEON_VECTYPE) == 0);
>> +}
>> +
>> +static size_t buffer_find_nonzero_offset_neon(const void *buf, size_t len)
>> +{
>> +    size_t i;
>> +    NEON_VECTYPE d0, d1, d2, d3, d4, d5, d6;
>> +    NEON_VECTYPE d7, d8, d9, d10, d11, d12, d13, d14;
>> +    uint64_t const *data = buf;
>> +
>> +    assert(can_use_buffer_find_nonzero_offset_neon(buf, len));
>> +    len /= sizeof(unsigned long);
>> +
>> +    for (i = 0; i < len; i += 32) {
>> +        d0 = NEON_LOAD_N_ORR(data[i], data[i + 2]);
>> +        d1 = NEON_LOAD_N_ORR(data[i + 4], data[i + 6]);
>> +        d2 = NEON_LOAD_N_ORR(data[i + 8], data[i + 10]);
>> +        d3 = NEON_LOAD_N_ORR(data[i + 12], data[i + 14]);
>> +        d4 = NEON_ORR(d0, d1);
>> +        d5 = NEON_ORR(d2, d3);
>> +        d6 = NEON_ORR(d4, d5);
>> +
>> +        d7 = NEON_LOAD_N_ORR(data[i + 16], data[i + 18]);
>> +        d8 = NEON_LOAD_N_ORR(data[i + 20], data[i + 22]);
>> +        d9 = NEON_LOAD_N_ORR(data[i + 24], data[i + 26]);
>> +        d10 = NEON_LOAD_N_ORR(data[i + 28], data[i + 30]);
>> +        d11 = NEON_ORR(d7, d8);
>> +        d12 = NEON_ORR(d9, d10);
>> +        d13 = NEON_ORR(d11, d12);
>> +
>> +        d14 = NEON_ORR(d6, d13);
>> +        if (NEON_EQ_ZERO(d14)) {
>> +            break;
>> +        }
>> +    }
>
> Both the other optimised find_nonzero implementations in this
> file have two loops, not just one. Is it OK that this
> implementation has only a single loop?
>
> Paolo: do you know why we have two loops in the other
> implementations?

Paolo was right as he mentioned in the previous email.
But with two loops, I don't see much benefit. So restricted to
one loop.

>
>> +
>> +    return i * sizeof(unsigned long);
>> +}
>> +
>> +static inline bool neon_support(void)
>> +{
>> +    /*
>> +     * Check if neon feature is supported.
>> +     * By default neon is supported for aarch64.
>> +     */
>> +    return true;
>> +}
>
> There doesn't seem much point in this. We can assume Neon exists
> on any CPU we're going to run on (it's part of the ABI, the kernel
> assumes it, etc etc). So you can just implement the functions without
> the indirection functions below.
>
 Hmm. One reason was compilation fails if we don't call
can_use_buffer_find_nonzero_offset_inner() function from inside neon
implementation.
So I added this similar to AVX2 intel. Also thought if any platform
does not implement
Neon, then can simply skip changes this function.

>> +
>> +bool can_use_buffer_find_nonzero_offset(const void *buf, size_t len)
>> +{
>> +    return neon_support() ? can_use_buffer_find_nonzero_offset_neon(buf, 
>> len) :
>> +           can_use_buffer_find_nonzero_offset_inner(buf, len);
>> +}
>> +
>> +size_t buffer_find_nonzero_offset(const void *buf, size_t len)
>> +{
>> +    return neon_support() ? buffer_find_nonzero_offset_neon(buf, len) :
>> +           buffer_find_nonzero_offset_inner(buf, len);
>> +}
>>  #else
>>  bool can_use_buffer_find_nonzero_offset(const void *buf, size_t len)
>>  {
>> --
>
> thanks
> -- PMM



reply via email to

[Prev in Thread] Current Thread [Next in Thread]