
New Field Abstractions

Jeffrey D. Oldham and Stephen Smith

2001 Jul 23

Contents

Jim Crotinger, Scott Haney, Jeffrey D. Oldham, and Stephen Smith par-
ticipated in this design.

1 Fundamental Field Concepts

• A field is an array in space. That is, given an index into a field, one
can ask for its position in, e.g., 3D, space.

• A field cell is a field’s fundamental building block. All field concepts
are cell-based.

• The lower, left corner of a cell in d-D space is its origin 0d. The upper
right corner has coordinates 1d.

• A field can store at most one value at each position within each cell.

2 Centering Specifications

A field’s centering is specified by an object with the following fields:

centering type: an enumeration for vertex, edge, face, or cell centering
type

discontinuous: a boolean indicating whether, for a value located on a cell
boundary, each of the neighboring cells has its own value (discontinu-
ous) xor one value for all neighboring cells is provided (continuous)

1

list of values: Each list element is a pair of an orientation and a position.
The position, a d-D real vector, specifies the value’s position with re-
spect to the cell’s coordinate system, which is either [0, 1)d or [0, 1]d

depending on whether values are continuous or discontinuous, respec-
tively. The orientation in Zd

2 , indicates which zeroes (or ones if discon-
tinuous) in the position must be zero (or one) because of the centering
type. For example, a continuous face centering for an x-face must have
a 0 in the x-component. Other coordinates can be zero but need not
be.

For a d-D cell, a face is a (d − 1)-D object. An edge centering is always
a 1-D object. For two dimensions, edge and face centerings are the same
although it is sometimes useful to distinguish them when writing programs
that work for various dimensions.

Adjacent cells can share values. For example, a vertex-centered value in
a 3-D field is shared by eight cells. A program might require that each cell
maintain its own value at the point. To do so, specify discontinuous values.
To be a valid discontinuous centering, values on cell boundaries must be
arranged so that every adjacent cell also has a value at that same position in
space. For example, any discontinuous edge value in three-dimensional space
must have related values in the three adjacent cells.1

Each value in the list should be specified exactly once. For example, the
canonical continuous vertex-centered value is 0d. This cell specifies a value at
its origin. Neighboring cells specify values at their origins. Collectively, all
the field’s vertex values are specified. For continuous values, positions should
be in the range [0, 1)d. For discontinuous values, positions should be in the
range [0, 1]d. To implement the field, each specified position corresponds to
a subfield.

Orientations are used when creating storage for field values. When creat-
ing storage, the number of values does not necessarily match the number of
cells. For example, to create a field with n2 cells requires (n + 1)2 vertices.
Although orientations might appear to be redundant since nonzero values in-
dicate an orientation, an x-face centered value may have position (0, 0, 0.5),
which does not indicate whether it is an x- or y-face.

1We need to provide a justification for this restriction.

2

2.1 Examples

2.1.1 Orientation Examples

For three-dimensions, orientations for

vertex type: 000 since vertex positions are completely determined

x-edge: 100 since the x-coordinate varies along the edge

x-face: 011 since the x-coordinate is fixed at zero (or one) but the other
values can vary

cell type: 111 since values can be placed at any location.

2.1.2 Centering Examples

Continuous Vertex Centering Values occur at every vertex in the field,
but each cell is responsible only for the vertex located at its origin. Thus,
the centering need only declare one orientation-position pair:

Vertex false /* continuous */ {((0, 0, 0), (0.0, 0.0, 0.0))}

Discontinuous Vertex Centering Each cell maintains its own set of 2d

vertex values.
Vertex true /* discontinuous */ {((0, 0, 0), (0.0, 0.0, 0.0)),

((0, 0, 0), (1.0, 0.0, 0.0)),
((0, 0, 0), (0.0, 1.0, 0.0)),
((0, 0, 0), (0.0, 0.0, 1.0)),
((0, 0, 0), (1.0, 1.0, 0.0)),
((0, 0, 0), (1.0, 0.0, 1.0)),
((0, 0, 0), (0.0, 1.0, 1.0)),
((0, 0, 0), (1.0, 1.0, 1.0))}.

Continuous Face Centering Since the faces are shared, each cell is re-
sponsible for only the faces intersecting the origin. Here we specify one value
on each face.

Face false /* continuous */ {((0, 1, 1), (0.0, 0.5, 0.5)),
((1, 0, 1), (0.5, 0.0, 0.5)),
((1, 1, 0), (0.5, 0.5, 0.0))}.

3

2.2 Centering Design Criteria

• To facilitate writing programs that work for various dimensions, the
centering type should be specified and stored. For example, in two
dimensions, edge and face centerings are the same, but a program may
require a face centering. Thus, face, not edge, should be stored.

3 Pooma Field Computation Notation

When writing Pooma field computations, notation for accessing field values
is needed. Since Pooma is cell-centric, all value locations are relative to a
particular cell and its coordinate system. Most computations use one or more
cells centered around one particular cell. Below, we assume its indices are
specified by a Loc called loc, and we refer to all cell locations relative to it.
Given loc, any field value can be specified by a FieldOffset, which is a cell
offset (relative to loc) and the number of a value within the cell.

cell offset: This Zd value specifies the value’s cell relative to loc, which is
conceptually at the origin 0d. For example, in a three-dimensional field,
the cells to the left and right are (−1, 0, 0) and (1, 0, 0), respectively.
In Pooma, we will represent a cell offset using a Loc<dim>.

value number: All the values in a cell specified by a centering are numbered
according to the order of declaration in the centering. For example, the
zeroth value specified in the centering has number 0. The next value
(if present) has number 1.

Given a field f, a Loc loc, and a field offset (offset,num), a field
value can be obtained. Since each value specified by the field’s center-
ing is stored in a separate subfield, the notation f[num](loc + offset)

yields the value. Alternative notation permits operating on a field using a
FieldOffset: f(FieldOffset, Loc<dim>) yields a value at the same po-
sition. f(FieldOffset) yields a comparable data-parallel statement for all
cells.

Some output centerings have vertices shared among adjacent cells. Pooma
computations may use any input field values but should assign only to values
specified in the output centering. Since the output centering includes only
values for which the cell is responsible, assigning only to these values prevents
assignment from multiple cells.

4

3.1 Different Pooma Computations

Pooma supports three different computation paradigms: scalar, data par-
allel, and stencil-based. To illustrate these three styles, we use a scatter
computation copying a cell-centered value to each output value in a cell. For
this example, the output centering does not matter.

3.1.1 Scalar Computation

A scalar computation explicitly assumes all output field values.

???some loop over loc???

for (int i = outputField.centering().size() - 1; i >= 0; --i)

out[i](loc) = in[0](loc);

Finish: What is the right loc treatment?

3.1.2 Data Parallel Computation

For data parallel computations, the same computation is applied to every
field location. Thus, loc is omitted.

for (int i = outputField.centering().size() - 1; i >= 0; --i)

out[i] = in[0];

3.1.3 Stencil Computation

Even though an output field cell may have multiple values, each stencil com-
putation yields one output value. The stencil operator creates one stencil
computation for each output value. Thus, the stencil computation can as-
sume it is given loc and a destination field value number. The computation

return in[0](loc);

ignores the output value number since all values receive the same (and only)
input value.

5

4 Easing Pooma Computation Implementa-

tions

Although the FieldOffset notation is sufficient to write any computation,
we also provide sets of values and reduction operations to ease writing Pooma
field computations in a dimension-independent way.

The most common computations used in the Caramana hydrodynamics
program and in the examples we created involve computations using the
input values closest to the computed output value. Here we assume only one
input field. Also, we use the logical coordinate space where a cell’s origin
has coordinate 0d and its most extreme corner has coordinate 1d, regardless
of its physical size.

To compute an output value’s nearest neighbors, align the logical coordi-
nate spaces of the input and output field’s cells. Starting at the output value,
expand a ball using the Manhattan norm `1 until it touches one or more input
field values. The ball’s radius may be any nonnegative number. We call this
smallest ball the first shell. We make these available in a FieldOffsetList.

The most trivial example is computing one cell-centered value from an
input field with a cell-centered value at the same location in the logical
coordinate space. Expanding the ball immediately touches the input field
value using a radius of zero so it is the only FieldOffset in the list.

Computing a continuous vertex value by summing all discontinuous vertex
values demonstrates that more than one input field can be involved. More
than one of the input field’s discontinuous vertex values may be located at
the same logical coordinate location, but each is associated with a distinct
cell. Expanding a ball starting at the output field value immediately touches
all the discontinuous values associated with the same location. All these are
included in a FieldOffsetList.

Forming a cell-centered value by summing all discontinuous vertex values
within a cell illustrates that FieldOffsetLists can be restricted to those
within a cell. An expanding ball starting from a cell’s center first touches
input field values at the cell’s corners but it also touches the discontinuous
vertex values at the adjacent cells since they are at the same logical coor-
dinate locations. Specifying including values only from the input field cell
corresponding to the output field cell in the FieldOffsetList excludes them.

Future work may permit specifying values on other shells or the union of
these values.

6

4.1 FieldOffsetList Operations

A FieldOffsetList contains a sequence of FieldOffsets similar to a fixed-
length vector<FieldOffset>. Among the supported operations are

.size(): returning the nonnegative number of FieldOffsets.

operator[](n): returning a constant reference to the FieldOffset located
at the specified zero-based location.

In fact, we will implement the class as std::vector<FieldOffset>.

4.2 Computing the Values in the First Shell

We explain how to compute the input values in the first shell given the input
and output centerings and a specified output value. We wish to determine
all input field value locations vi which minimize d1(vi, vo), where d1 is the
Manhattan distance and vo is the location of the output field value. More
precisely, we wish to minimize the absolute value of (vic−vo) (mod 1d), where
vic varies over all input centering locations.

Incorporating the modulus reflects the repetition of input values through-
out the field. Since each cell has at least one input field value, this set is
non-empty and also the largest distance to consider is d ∗ 0.5.2

To compute the absolute value over all input centering locations, we com-
pute an absolute value for each location, remembering the associated loca-
tions. Since we are using the Manhattan norm, each dimension can be treated
independently. If |vic − vo| restricted to the dimension is greater than 0.5,
add one or subtract one to yield an absolute value less than 0.5. If the value
equals 0.5, add one or subtract one to determine another location with the
same distance. As the minimum computes through all input centering loca-
tions, only the minimum distance computed so far and the associated values
need be stored.

4.3 Computations Involving Reductions

Many computations involve reducing the values specified in FieldOffsetLists.
For example, an output value can be the average of the input field values.

2Proof: A cell’s width is at most d ∗ 1. Since cell values are repeated every distance 1
in every dimension, the largest distance between an output value location and one of the
repeated input locations is actually 0.5 in any dimension.

7

Thus, we will provide a canonical set of reduction functions, each taking a
field, a FieldOffsetList, and a cell location loc. The reduction functions
will include sum, average, min, and max. Each reduction function iterates
through the list of FieldOffsets, using the field values located at the sums
of the FieldOffsets and loc. These are dimension-independent computa-
tions, which may use different numbers of values for different dimensions.
Thus, average is needed in addition to codesum.

4.4 Computing FieldOffsetLists

Instead of computing FieldOffsetLists when needed, we precompute com-
monly used lists. Given an input centering and an output centering, the
findFieldOffsetList function returns a std::vector of FieldOffsetLists.
Each vector entry corresponds to one output value in the output centering.

Eventually, the function will use a std::map from the pair of an input cen-
tering and an output centering to a std::vector<FieldOffsetList. Each
centering will be given an ID. To form the ID, the Centering class will be
a reference counter pointer to a CenteringData object. The ID will the
pointer’s value.

8

4.5 Summing Discontinuous Vertex Values to a Cell
Center

input centering: discontinuous vertex values. For three dimensions, the
centering is

Vertex discontinuous {((0, 0, 0), (0.0, 0.0, 0.0)),
((0, 0, 0), (1.0, 0.0, 0.0)),
((0, 0, 0), (0.0, 1.0, 0.0)),
((0, 0, 0), (0.0, 0.0, 1.0)),
((0, 0, 0), (1.0, 1.0, 0.0)),
((0, 0, 0), (1.0, 0.0, 1.0)),
((0, 0, 0), (0.0, 1.0, 1.0)),
((0, 0, 0), (1.0, 1.0, 1.0))}.

output centering: one cell centered point:

Cell continuous {((1, 1, 1), (0.5, 0.5, 0.5))}

computation: Sum all vertex values.

Syntax showing a loop:

double result = 0.0;

for (FieldOffsetIterator<dim> iter = CellFromDiscontinuousVert<Dim>();

iter;

++iter)

result += inputField(*iter, loc);

return result;

Shorter syntax:

return sum(inputField, CellFromDiscontinuousVert<dim>(), loc);

or

return sum(inputField, AllCenteringValues<dim>(inputField.centering()), loc);

9

4.6 Summing Continuous Vertex Values to a Cell

input centering: continuous vertex values. For three dimensions, the cen-
tering is

Vertex continuous {((0, 0, 0), (0.0, 0.0, 0.0))}

output centering: one cell centered point:

Cell continuous {((1, 1, 1), (0.5, 0.5, 0.5))}

computation: Sum all vertex values.

return sum(inputField, CellFromVert<dim>(), loc);

The iterator CellFromVert produces a sequence of field offsets visiting
all of a cell’s vertices, which are shared with adjacent neighbors.

10

4.7 Summing Discontinuous Vertex Values to a Con-
tinuous Vertex

input centering: discontinuous vertex values. For three dimensions, the
centering is

Vertex discontinuous {((0, 0, 0), (0.0, 0.0, 0.0)),
((0, 0, 0), (1.0, 0.0, 0.0)),
((0, 0, 0), (0.0, 1.0, 0.0)),
((0, 0, 0), (0.0, 0.0, 1.0)),
((0, 0, 0), (1.0, 1.0, 0.0)),
((0, 0, 0), (1.0, 0.0, 1.0)),
((0, 0, 0), (0.0, 1.0, 1.0)),
((0, 0, 0), (1.0, 1.0, 1.0))}.

output centering: continuous vertex values:

Vertex continuous {((0, 0, 0), (0.0, 0.0, 0.0))}

computation: Sum all vertex values conceptually on the same point.

return sum(inputField, VertFromDiscontinuousVert<dim>(), loc);

The iterator visits all the cells adjacent to the given cell’s origin, adding
their values. For example, from cell (-1, 0, 0), it obtains the value at
(1.0, 0.0, 0.0). From cell (-1, 0, -1), it obtains the value at (1.0, 0.0,
1.0).

11

4.8 Gathering Face Values with Twice the Granularity
to Faces

input centering: continuous face-centered values on a grid with twice the
granularity of the output grid. For three dimensions, the centering is

Face continuous {((0, 1, 1), (0.0, 0.5, 0.5)),
((1, 0, 1), (0.5, 0.0, 0.5)),
((1, 1, 0), (0.5, 0.5, 0.0))}.

output centering: continuous face-centered vertex values on a grid. The
centering is the same.

computation: One output cell corresponds to eight input cells for three
dimensions. Each value on the exterior faces of the eight input cells
is added to yield the value on the corresponding input field face. The
values on interior faces are ignored.

For one stencil output value, we assume are given a loc and an orien-
tation faceOrientation for a particular face.

return sum(inputField, ManyFacesToOneFace<dim,2>(faceOrientation), loc);

12

4.9 Scattering A Value to A Discontinuous Spoke Cen-
tering

input centering: cell-centered value. For two dimensions, the centering is

Cell continuous {((1, 1), (0.5, 0.5))}.

output centering: discontinuous spoke edge-centered values. For two di-
mensions, the centering is

Edge discontinuous {((1, 0), (0.25, 0.0)),
((1, 0), (0.75, 0.0)),
((1, 0), (0.25, 1.0)),
((1, 0), (0.75, 1.0)),
((0, 1), (0.0, 0.25)),
((0, 1), (0.0, 0.75)),
((0, 1), (1.0, 0.25)),
((0, 1), (1.0, 0.75))}

computation: For stencils, we assume we are given a loc and a destination
field value number.

return inputField[0](loc);

13

4.10 Gathering Continuous Spoke Face-Centered to a
Cell Center

input centering: continuous spoke face-centered values. For two dimen-
sions, the centering is

Face continuous {((1, 0), (0.25, 0.0)),
((1, 0), (0.75, 0.0)),
((0, 1), (0.0, 0.25)),
((0, 1), (0.0, 0.75))}

output centering: one cell centered point:

Cell continuous {((1, 1, 1), (0.5, 0.5, 0.5))}

computation: Sum all values and adjacent values.

return sum(inputField, SpokeEdgesToCall<dim>(), loc);

14

4.11 Average Cell Centers

input centering: continuous cell-centered values. For two dimensions, the
centering is

Cell continuous {((1, 1), (0.5, 0.5))}

output centering: one cell centered point, i.e., the same centering.

computation: Average a cell’s nine neighbors (including itself).

return sum(in, CellNeighbors<dim>(-1,1), loc) / pow(3, dim);

CellNeighbors<dim>(-1,1) iterates through cells in the integer range
[−1, 1]d.

15

4.12 Gradient from Cell Centering to Vertex Center-
ing

input centering: cell-centered value. For three dimensions, the centering
is

Cell continuous {((1, 1, 1), (0.5, 0.5, 0.5))}.

output centering: vertex-centered value. For three dimensions, the cen-
tering is

Vertex continuous {((0, 0, 0), (0.0, 0.0, 0.0))}

computation: Compute the gradient at the cell center from the neighboring
vertices.

for (FieldOffsetIterator<Dim> cells = cellOfVertNeighbor<Dim>();
cells; ++cells)

{
result += inputField(*cells, loc) * (*cells.vectorSign());

}
return result;

16

4.13 Computation of Edge Normals

input centering: vertex-centered value in two dimensions

Vertex continuous {((0, 0), (0.0, 0.0))}.

output centering: edge values. For two dimensions, the centering is

Edge continuous {((1, 0), (0.5, 0.0)),
((0, 1), (0.0, 0.5))}

computation: First there are two stencil engines, one for each of the output
centering points. The stencil constructor computes the vertex neigh-
bors:

// Typical input:
// outputCenter = ((0, 1), (0.0, 0.5))
// inputCentering = Vertex

Stencil(Center outputCenter,
Centering inputCentering)

{
neighborList_m = nearestNeighbor(outputCenter,

inputCentering);
}

// For this example neighborList_m contains:
// [0](0,1)
// [0](0,0)
// (In that order, the y-edge returns to the origin.)

The stencil application uses the neighbor list to compute the direction:

apply(Field f, Loc<2> loc)
{
Vector<2, double> ret(0);
for (vert = neighborList_m.begin(); vert; ++vert)
{

ret += f(*vert, loc) * (*vert.sign());
}
return rotate(ret);

}

17

4.14 Computation of Corner Normals

input centering: edge values. For two dimensions, the centering is

Edge continuous {((1, 0), (0.5 ,0.0)),
((0, 1), (0.0 ,0.5))}

output centering: corner-cell value. For two dimensions, the centering is

Cell continuous {((1, 1), (0.25, 0.25)),
((1, 1), (0.75, 0.25)),
((1, 1), (0.25, 0.75)),
((1, 1), (0.75, 0.75))}

computation: First there are four stencil engines, one for each of the output
centering points. The stencil constructor computes the edge neighbors:

// Typical input:
// outputCenter = ((1, 1), (0.25, 0.25))
// inputCentering = Edge

Stencil(Center outputCenter,
Centering inputCentering)

{
neighborList_m = nearestNeighbor(outputCenter,

inputCentering);
}

// neighborList_m contains something like:
// [0](0,0) - lower x-edge
// [1](0,0) - left y-edge

The stencil application uses the neighbor list to add the two nearest
edge normals together for each corner. Note that we stored the normals
in a non-discontinuous field, so we need to multiply by the normal sign
to get the outward-facing normal.

apply(Field f, Loc<2> loc)
{

Vector<2, double> ret(0);
for (vert = neighborList_m.begin(); vert; ++vert)

18

{
ret += f(*vert, loc) * (*vert.normalSign());

}
return ret;

}

5 Unfinished Work

1. Update the Pooma computation examples.

2. Write down the Caramana hydrodynamics code with illustrations.

19

