The Waikoloa TM

Your Very Own Translation Database Engine

Translation databases, a.k.a. translation memories or “TMs,” have been well advertised in our industry--probably a little too much, as we will see later. Nevertheless, they do have an important part to play in helping making life a little easier for translators. While there are many TM tools on the market, they are often expensive and may not always be easy to integrate with your specific needs. This article describes one way you can develop your own TM engine. You can freely download the sample application, with its full source code, at www.multilingual.com.

The Kalalau Trail Principle

On the Hawaiian Island of Kauai, at the eastern end of the famous Napali Coast, the two first miles of the Kalalau trail are narrow and muddy, cut by slippery cascades and small landslides. They illustrate an important principle of time management for software developers. The first one mile of this dangerous path will give you about 90% of what the hike has to offer. Similarly, you can write a tool that gives you 90% of what you need, while getting perfect results may not be worth the risks, time, or money.

We will design our translation memory with this pragmatic principle in mind. Although not as fast and optimized as some of the commercial products, it will still provide the basic features you need to perform exact and fuzzy queries and even concordance searches. We will do the first mile together, and you can venture further if you want.

Simple Goals

A TM is a database containing a collection of “segments” in a source and one or more target languages. A segment is a unit of text: a sentence, a paragraph, a string, or whatever you deem appropriate. The purpose of a TM engine is to query the source-language portion of this database to find an identical segment (exact match) or one very similar (fuzzy match). Once you have a match, you can access its associated data, such as the translation.

The heart of a TM system is the search engine: the routine that, when comparing your query with each stored source segment, tells you whether it looks the same or not. The result is usually given in the form of a “score” (a percentage of similarity); The closer the score is to 100%, the more similar the query and the segment are. A score of 100% indicates an “exact match.” Keep in mind, however, that an exact match refers to the comparison between your query and the source segment. It does not at all guarantee the correctness of the translation.

We want to keep the goals of our “lite” translation memory simple:

· Concentrate on looking up the database, not on updating it.

· Keep only basic information in each record: source text, its translation in one language, an ID, and, to provide support for software text, a type identifier and four numbers for coordinates.

· No specific code set handling. We will assume the source and target texts are in windows-1252 code set (Western European).

· No segmentation handling. This is the responsibility of the calling application, not the TM engine.

Method

The method we use here is simple enough to be designed, and its algorithm jotted down on a napkin, while seated under the palm-trees of a Hawaiian beach. Waikoloa –the name of our little demo project– has been developed for Windows, but the source code of the engine itself (all the classes with a name starting with “okLite”) requires only an ANSI-compatible STL library to compile. You should be able, without too much effort, to use it in a DOS-based program or to port it to different platforms such as Linux or Macintosh.

To get fuzzy matches, you need to compare query and segments in a canonical form. This can be achieved through index keys. Each entry key is a copy of the source text, simplified as much as possible. You do this by removing “noise” and “reducing” the text to basic elements:

· Folding all characters to lowercase.

· Removing or treating as spaces any non-alphabetic characters.

· Removing trailing and leading white spaces and making sure one and only one space separates two words.

Once we have the simplified form of the text, we can make a basic comparison at the segment level. A simple method is to see how many words in the query exist in the queried segment. The ratio “Number of words found / Number of words in the query” gives us a value between 0 and 1: our score. If a segment contains all the words, a simple comparison between the non-reduced text of both the segment and the query will show whether it is a real exact match or only a fuzzy one. In the latter case, we decrease the score to 0.99, indicating that the difference is minimal (i.e., casing and/or spacing).

Clearly, this is too simple. We also need to make sure word order is taken into account and to make provision for the cases in which the query is a sub-string of the segment. One way to deal with sub-string matches is to change our method of calculation for the score to “(2 x Number of words found) / (Number of words in the query + Number of words in the segment).” This will give us more uniform scores. The first formula can be used for concordance search, the second for classic fuzzy matching.

For example, if the query string is "The result file:", its reduced form is "the result file" and comparing it to the following TM segments, the scores are:

Original Segment
Reduced Form
Method 1
Method 2

"No result file."
"no result file"
0.66
0.66

"&Result File…"
"result file"
0.66
0.80

"Result file: "
"result file"
0.66
0.80

"Copy the Result file to %s."
"copy the result file to s"
0.99
0.66

Implementation

The architecture of our little TM engine is built around four classes: okLiteTMQuery, okLiteTM, okLiteTMRecord, and okLiteTMResult. The two last are no more than wrappers around storage structures; their implementation is done in their respective header files. The core of the engine, okLiteTM, is accessed through an okLiteTMQuery object (in the demo program, the m_TmQ variable of the CWaikoloaDoc class).

The header information and the index reside in memory, while the records themselves are accessed from the file only when needed. There are better solutions if you need to update the records often, but this will do for our example in which the TM is mostly used for lookup purposes.

[image: image1.png]Waikoloa - Wordg.Itm —[ol x|

Ele Edi View Heb
ARk

[Geete the selected cells om the anay

Guy | Theshold [F5 = 976 Enties SYKES
I™ Concordance search 5Matches

Source: [deltes the selected cels fiam the table
key:

Source: [Deltes the selected cels fiam the table
e

Teiget. [Supprine les cellies sélectionmées o tableau
[

Splts the selected table cell
53 "Removes borders from the selected paragiaphs, tabls cels, and pictures”
57% Deleles the selected ows fiom the table

57% Delotes the selested calumns fram the table

The three sections are organized in the following way:

The first 82 bytes of the file are the information header. It contains:

· TM file signature and version: 8 bytes.

· The source locale identifier: 6 bytes to allow a standard ISO locale code.

· The target locale identifier: 6 bytes.

· The name of the code set for text of the records: 50 bytes, just to be safe.

· The number of records in the file: 4 bytes (a long).

· The start position of the Index in this file: 4 bytes (a long).

· The length of the index: 4 bytes (a long).

The second block is composed of the records themselves. It always starts at the 82nd byte of the file and has no limit (other than the system’s) to the number of records you can store.

The third block is the index. It starts where the block of records ends. When the file is opened, this area is loaded in memory. New records will simply overwrite it. Then, when the file is closed or updated, the index block is re-written.

The heart of the retrieval mechanism is the index. Loaded in memory as a simple bloc of bytes, it is laid out as follows:

+-> Start position of the record in the file
|
| +-> Words list
| | +-> Null terminating WordN
| | | +-> Null terminating the key
| | | |
pos|word1|0|word2|0|...|wordN|0|0|next key...

Each word (in its reduced form) is terminated by a null byte; two consecutive null bytes indicate the end of the key.

Traversing the TM is as easy as this:

// Traversing the TM

okLiteTMRecord Record;
long lPos = Tm.MoveToFirstRecord();
while (lPos != okLTM_EOF)
{
 if (Tm.Get(Record, lPos))
 {
 DoSomething(); // Do something with the record...
 }
 lPos = Tm.MoveToNextRecord();
}

Creating the Key

The key creation is handled by the MakeKey() method. It uses three parameters. First, p_pszText: the pointer to the text to index; then p_ppData: a pointer to the pointer that will hold the key; and finally p_pnLength: a pointer to an integer that will hold the length of the key. Note that the key is allocated in MakeKey() but it is the responsibility of the caller to free it.

To build the key, we first loop through the text to create a temporary string with the reduced words. Once the simplified string is made, we can allocate the memory for the storage of the key. The size needed is the length of the reduced string plus 6 bytes: one long for the record position, one byte for the terminal null of the last word, and one for the terminal null of the key itself. The pointer to the key and the length of the key are respectively assigned to the p_ppData and p_pnLength parameters of the function.

We then copy the reduced string to the key starting at the fifth byte (the first four are reserved for holding the position of the record in the file). And finally, replace the spaces by null characters, so each word has a terminating null.

Querying

The okLiteTM::Query() method implements the search. It takes four parameters: p_pszQuery: the string to query; p_nThreshold: an integer with a value between 0 and 100 that is used to filter out matches below a given score; p_bConcordance: the flag indicating which scoring formula to use; and p_pResults: a pointer to a list of okLiteTmResult objects.

First, we create a key for the text to query through a call to MakeKey() with a temporary buffer.

Then, for each segment in the TM, we compare each word of the query with each word of the segment. We make sure to keep track of whether the words found are consecutive or not. The score is calculated and then adjusted if necessary. We also need to make sure the matches that have identical scores will be ordered properly. Providing text length takes care of this.

Once the index has been traversed, the function returns the vector of results. They are sorted (by score, then by length) in the caller function. At this point, you can use GetFirstMatch() and GetNextmatch() to browse through the list of matches.

Export

It is always a good idea to have a way to convert binary files to text files. Since our data are records with several fields, a format allowing some structure is preferable. OpenTag will do nicely: it has native support for all the fields of our TM record. The method SaveAsOpenTag() implements the export function. The output includes the index key for each entry in a <prop> element so you can see the reduced forms.

In addition, we want also to support TMX, the industry standard for TM exchange. Saving in TMX is a bit more difficult, because the specifications request the file to be in either Unicode 16-bit (ucs-2) or in 7-bit ASCII (iso-646) with character references (e.g., "á" for "a-acute", etc.). Code set conversion falls outside of the scope of this article, however, because we are only implementing Latin-1 in this example, it is workable: iso-8859-1 is a sub-set of Unicode, so we simply need to cast the single-byte character to a 16-bit wide character. The function SaveAsTMX() takes care of this task.

Interface

Our user interface is simple but lets us exercise most of the engine functions. We can load existing TMs, create new ones, add entries (one-by-one or from tab-delimited files), export to OpenTag or TMX, query the file, and browse through the matches.

[image: image2.png]

To do a query: enter the text in the topmost edit box and click the Query button to search the current TM. The matches are listed in the bottom list-box. The current source and target texts are displayed in between, along with the index key.

In addition to the source code, the demo comes with a compiled executable and several sample files.

Improvements

Many improvements can be made. Here are a few ideas:

· The code set support could be easily extended beyond Latin-1. For example, using the wstring STL class instead of string would allow the storing and manipulation of the data in Unicode.

· Several things can be done for the index. Each unique word could be associated to a unique value, using hash table, checksums, atoms, or similar mechanisms. The resulting index where words would be coded as numbers would be faster to look up and would take less memory.

· Moving to a true database could improve the storage mechanism. This would allow more flexibility in updating the segments and would give better scalability. For example, we could use an Access database with either an index field for each record or a single index block, each option having its own benefits and drawbacks.

· Fuzzy matching could also be refined. First, we could remove noise words such as "a", "an" and "the". This would make our keys more generic and increase the number of fuzzy matches. We could also add a stemmer to reduce related words to a common root. For example, "published", "publishes", and "publishing" would be indexed as "publish".

Do Not Play With Matches

Regardless how we optimize and improve this basic engine, never forget that even the more sophisticated TMs have limitations. There is often confusion about how much these tools can do and in which context.

Originally TMs were designed to be used by translators, allowing them to pick, verify, and edit the exact or fuzzy matches proposed. Quickly though, TM tools have been seen as a way to leverage text in a more automated way: in batch processes prior to translation, often without validation of the exact matches. The difference between re-using the translation of an item uniquely identifiable for which the text did not change (re-use), and providing translation candidates for a new text (re-cycling), has often been forgotten.

Re-using is the function of identifying text items that exist both in the new and in the old file so you can re-use the translation of the old one for the new one. The reason it is a match is not because the text itself happened to be the same, but rather because both items can be uniquely identified the same way.

Re-cycling, on the other hand, is the function of finding, in some type of database, an entry with a text identical to the one of a given query. Here we rely on the text itself to do the matching, and there is no guarantee that the translated text is appropriate in the context of the searched item. This method is fine when used within a controlled environment in which a human makes the ultimate decision. It is also valuable in batch mode, as long as the output is verified. But keep in mind that you cannot rely blindly on re-cycling.

Most of the TM packages, especially when dealing with document-type formats, are re-cycling utilities. Undeniably there is room for such products, but it may be not where the research efforts should focus now. True re-use is related to the art of versioning data, of comparing files, or in other words: document management.

Going beyond the first mile on the Kalalau Trail may be interesting, but before you step in that direction you may want to ask yourselves if there are other trails that could offer an even better perspective.

