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The so-called ‘raspberry’ model refers to the hybrid lattice-Boltzmann and Langevin molecular
dynamics scheme for simulating the dynamics of suspensions of colloidal particles, originally de-
veloped by [V. Lobaskin and B. Diinweg, New J. Phys. 6, 54 (2004)], wherein discrete surface
points are used to achieve fluid-particle coupling. This technique has been used in many simulation
studies on the behavior of colloids. However, there are fundamental questions with regards to the
use of this model. In this paper, we examine the accuracy with which the raspberry method is able
to reproduce hydrodynamic interactions when compared to analytic expressions for a solid sphere
in simple-cubic crystals. To this end, we consider the quality of numerical experiments that are
traditionally used to establish these properties and we discuss their shortcomings. We show that
there is a discrepancy between the translational and rotational mobility reproduced by the simple
raspberry model and present a way to numerically remedy the problem by adding internal coupling
points. Finally, we examine a non-convex shape, namely a colloidal dumbbell, and show that the
filled raspberry model replicates the desired hydrodynamic behavior in bulk for this more compli-
cated shape. Our investigation is continued in [J. de Graaf, et al., XX XX, xx (2015)], wherein we

consider the raspberry model in confining geometry of two parallel plates.

I. INTRODUCTION

The physical description of hydrodynamic interactions
in fluids has been a field of intensive study for over three
centuries. The first mathematical description of (rarified)
flow dates back to Euler. [1] This description was subse-
quently refined by Navier and Stokes to be applicable to
the flow of dense media. [2, 3] However, finding solutions
to the Navier-Stokes equations, even under the simplify-
ing assumption of the low Reynolds number regime, has
proven to be a particularly challenging boundary-value
problem. Only in a few simple geometries can the Navier-
Stokes equations be analytically solved, often leading to
truncated series expansions rather than a full solution.

Two geometries that can be handled semi-analytically
are a simple-cubic array of spheres and a sphere between
two parallel plates. The former is of particular interest as
a toy model for fluid flow in a porous medium (at small
sphere separations), [4] while the latter is relevant to, for
example, the field of hydrodynamic chromatography. [5,
6] In this paper, we consider the crystalline arrangement
and in Ref. [7] we study the confining geometry of two
parallel plates.

There are a large number of (semi-)analytic investiga-
tions for the simple-cubic geometry, which makes this ge-
ometry perfectly suited for benchmarking the quality of
hydrodynamic solvers. For the translational movement
of a simple-cubic crystal through a fluid, the first re-
sults were obtained by Hasimoto, who derived a semi-
numerical result for dilute systems. [8] A complete nu-
merical study for a larger range of lattice spacings and
various crystal structures was later presented by Zick
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and Homsy. [9] The hydrodynamic flow around an in-
finite (simple-cubic) array of rotating spheres was first
described by Brenner et al. [10] These results were sub-
sequently refined by Zuzovsky et al. [11] A complete nu-
merical study of both translational and rotational friction
over a large range of possible lattice spacings was pro-
vided by Hofman et al. [4] We utilize this large volume
of data as a reference throught our manuscript.

A breakthrough in the numerical simulation of fluid
dynamics resulted from the development of the lattice-
Boltzmann (LB) algorithm. LB is based on the dis-
cretized version of the Boltzmann transport equation, see
Ref. [12] for a brief background. This lattice-based algo-
rithm allows for the efficient simulation of hydrodynamic
interactions in arbitrary geometries using simple bound-
ary conditions, such as the bounce-back rule to obtain
no-slip surfaces. [12]

In the early days of LB, stationary bounce-back rules
were introduced to describe boundaries. However, it
proved difficult to extend the use of these grid-based
boundaries to describe moving objects. One attempt to
tackle the problem of moving particles was introduced
by Ahlrichs and Diinweg, who simulated polymer chains
by utilizing an interpolated point-coupling scheme. [13]
These points couple to the fluid through a frictional force,
acting both on the solvent and on the solute, which de-
pends on the relative velocity. The effect of this cou-
pling is the formation of a hydrodynamic hull around
the points, which thus gain a finite hydrodynamic extent
(effective hydrodynamic radius). [13] Even if individual
friction coeflicients and thus different effective radii are
used for the points, this method is limited in the effective
size ratios that it can handle, namely, by the particle-grid
interpolation scheme and discretization used for the LB
fluid. [13] Thus the method cannot be used to study sys-
tems spanning approximately one order of magnitude in



FIG. 1. (color online) Representation of the structure of the
raspberry models used in our simulations, filled (left) and
hollow (right), respectively. The central bead to which all
other beads are connected wia rigid bonds, is shown using a
green sphere. The blue spheres represent the beads that form
the filled raspberry and the red ones give the surface beads
used for the hollow variant. The radius of the beads is chosen
to be smaller than the typical effective hydrodynamic radius
to help visualize the internal structure.

length, e.g., the electrophoresis of colloids with explicit
ions.

Lobaskin and Diinweg remedied this issue by intro-
ducing the so-called ‘raspberry’ model, in which a larger
colloid is modeled using the aforementioned coupling by
discretizing the surface of the colloid into points. [14] The
method derives its name from this discretized nature of
the surface, which resembles a raspberry, when repre-
sented by molecular-dynamics (MD) beads, see Fig. 1. A
proper coverage of the surface by coupling points, such
that the fluid inside of the shell is ‘trapped’ and thus
translates and rotates in unison with the shell, was as-
sumed to create an effective no-slip/co-moving boundary
condition at the surface. [14, 15]

Moving bounce-back (as well as other varieties of)
boundary conditions were subsequently developed to ex-
ploit the lattice structure of the LB in describing colloidal
particles. [16, 17] However, the raspberry method has re-
mained popular, because of its simplicity as a straight-
forward extension of point-particle coupling. It has been
extended upon [15] and has been used in a wide vari-
ety of simulation settings. [18-20] Recently, this model
was employed in the context of multi-particle collision
dynamics (MPCD), [21, 22] stochastic rotation dynam-
ics (SRD), [23] and dissipative particle dynamics (DPD)
simulations. [24, 25]

Of singular interest are a set of recent publications
from the Denniston group. [26-29] In these publica-
tions the quality of the (raspberry-type) point-coupling
schemes are investigated and compared to theoretical ex-

pressions. Ollila et al. show in Ref. [26] that there is good
correspondence between the LB simulations and analytic
results [30, 31] for a hollow shell, an annulus, and a dense
distribution of coupling points. They place these results
in the context of the simulation of porous particles. In
Ref. [27], Ollila et al. further analyzed the quality of the
point-coupling method and showed that there are prob-
lems with this scheme when utilizing it to describe solid
particles. In particular, Ollila et al. demonstrated that
the hydrodynamic radius of these particles is ill-defined
in an LB fluid. That is, the effective hydrodynamic ra-
dius that follows from the translational mobility (via the
Stokes-Einstein relation) does not match that obtained
using the rotational mobility. By careful calibration, [27]
the use of a colloid radius that is ‘incommensurate’ with
the lattice spacing, [26] and modification of the coupling
of the points to the LB fluid, [28, 29] the rotational and
translational effective radii can be well-matched and co-
incide with the radius given to the coupling points.

In this manuscript, we re-examine the raspberry model
by Lobaskin and Diinweg [14] in the context of the work
of Ollila et al. [26, 27] We show that there is a simple way
to obtain an effectively consistent hydrodynamic descrip-
tion of a solid particle using the raspberry model, namely
by introducing coupling points to the interior of the rasp-
berry particle and fitting for the radius of a solid particle
using suitable experiments, which we will describe. This
‘filling + fitting’ procedure does not necessitate a particle
radius that is incommensurate with the lattice. More-
over, it yields an internally consistent formalism, which
reproduces the hydrodynamic properties of a solid object
to a high degree of accuracy.

We show how our fit parameter (the effective hydrody-
namic radius) can be straightforwardly determined. To
demonstrate that our method works for a range of rea-
sonable LB parameters, we examine the quality of the
raspberry model in the classic fluid-dynamics geometry
of a simple-cubic arrangement. [4, 8, 10, 11] We show
that the raspberry model reproduces the theoretical re-
sult surprisingly well for the complete range of applicable
raspberry separations. In obtaining these results, we also
analyze the quality of the standard hydrodynamics ex-
periments performed in this geometry. [14, 15] We further
demonstrate that the improved correspondence between
the effective rotational and translational hydrodynamic
radius is upheld over a large range in viscosity. Finally,
we consider the effectiveness of the raspberry descrip-
tion for modeling a solid non-convex particles and show
that the ‘filled + fitted’ model gives accurate results for
the bulk mobility of a dumbbell-shaped colloid. Part II
of our analysis, which extends these conclusions to rasp-
berry particles under confinement, is presented in Ref. [7].
We thus demonstrate that for a wide range of suitably
chosen parameters our ‘filling + fitting’ formalism leads
to a substantially improved (and acceptable) numerical
tolerance in simulating solid objects with respect to that
of the traditional raspberry model of Refs. [14, 15].

The reason why adding internal coupling points is so



effective, is that the permeability (sometimes referred to
as ‘leakiness’ in the context of the raspberry method) is
substantially reduced, as was also observed in Ref. [26].
In other words, the Brinkman screening length that is
only modulated by the coupling points at the surface of
the traditional raspberry model, [14, 15, 27, 29] is now im-
posed throughout the volume. This sufficiently enhances
the raspberry-fluid coupling to allow for these porous par-
ticles to be used to model solid objects. The ‘filling + fit-
ting’ formalism has advantages over the method proposed
by Refs. [27, 29] which achieves consistency by modify-
ing the surface density only, as well as the method of
Ref. [26] that requires incommensurability of the particle
radius with the LB lattice. Moreover, we find that our
procedure is effective for far lower coupling-point num-
bers than were utilized in Refs. [26, 27, 29], which is
interesting from a computational efficiency perspective.

The remainder of this manuscript is structured as fol-
lows. In Section II we describe our simulation methods
in detail. Section IT A introduces our variant of the rasp-
berry model for the spherical and dumbbell-shaped col-
loids of interest. Sections II B and II C detail the molecu-
lar dynamics and LB simulation parameters, respectively.
Section IID describes the various hydrodynamic experi-
ments that we performed to determine the properties of
the raspberry model. We provide a summary of the no-
tations used throughout the text in Section IIE to aid
the reader when going through the manuscript. In Sec-
tion III we list our main results. We begin by examining
the properties of the spherical raspberry in a simple-cubic
lattice in Section IITA. We continue with the proper-
ties of two dumbbell-shaped raspberries in Section IITB.
The results are discussed and related to previous studies
in Section IV. Finally, we give a summary, conclusions,
and an outlook in Section V.

II. METHODS

In this section, we outline the approach used to deter-
mine the hydrodynamic properties of a colloid. We have
split this into subsections detailing the properties and
construction of the raspberry model, the molecular dy-
namics and lattice-Boltzmann parameters used, the hy-
drodynamic experiments performed to extract the mo-
bility of the raspberry, and a reference list of the input
parameters and measured quantities.

A. The Raspberry Model

In this manuscript we study the so-called ‘raspberry’
model for particle-fluid interactions, [14] also see Fig. 1.
This model relies on discretizing the surface of a larger
colloid into coupling points, which experience a friction
force related to the relative velocity of the fluid and the
points. [13] In Ref. [14], 100 points were used to approx-
imate a sphere. To ensure a reasonably homogeneous

surface coverage these were connected to each other by fi-
nite extensible nonlinear elastic (FENE) potentials. The
forces acting on the surface beads were forwarded to a
central Lennard-Jones (LJ) MD bead, via the LJ inter-
action. A model similar in spirit to the one proposed by
Lobaskin and Diinweg was developed by Chatterji and
Horbach. [15] In their construction the surface beads were
fixed with rigid bonds to the central bead and no FENE
potential was employed for the surface-center coupling.

1. The Hollow Raspberry

For the construction of the raspberry model in this
paper, we combined the approaches of Refs. [14, 15].
To arrange the MD beads in a spherical shell of ra-
dius R, we used a separate MD simulation. We placed
N > [47R?/a*] MD beads in a cubic simulation box
with edge length L, LB lattice spacing a, and periodic
boundary conditions. The number of MD beads was thus
chosen such that on average there is at least one parti-
cle per lattice site for the LB simulation. To force the
beads onto a spherical shell we employed a shifted har-
monic bond potential around the center of the box (of
the future particle) rp. This potential has the form

1
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where r is a point in space and K is the spring con-
stant. To ensure that the beads do not overlap and to
homogenize the surface density, we endowed them with a
repulsive Weeks-Chandler-Anderson (WCA) interaction
potential
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where ¢ is the MD base unit of length and is equal to the
bead diameter.

The MD beads were thermalized using a Langevin
thermostat with ‘temperature’ le and friction coefficient
I' = 177!, Here, € is the MD base unit of energy and
corresponds to 1kgT, where kg is the Boltzmann con-
stant and 7T is the temperature, and 7 is the MD base
unit of time. The MD beads were given mass 1mg, with
mgo the MD base unit of mass (mg = 7%¢/0?). By geo-
metrically increasing the spring constant from K = 1e to
K = 3,000¢ the MD beads are forced onto the spherical
shell described by the potential in Eq. (1). We increased
K by a factor of 1.1 to its final value of K = 3,000¢ over
100,000 integration steps of length At = 0.0037. These
simulations were performed using the MD software pack-
age ESPResSo. [32, 33] Finally, small deviations of the
MD beads’ radial position with respect to the desired dis-
tance R were removed by adjusting their radial position.
The configuration was then ‘frozen in’ by connecting all
beads to a central bead via rigid bonds (virtual sites). [33]



To test the quality of the result, the raspberry was
checked for large holes in the surface coverage by applying
a ‘shotgun’ algorithm. We randomly picked 50,000 points
on the surface of the sphere and calculate the distances to
the nearest surface bead. We arrived at the distribution
of MD beads that we used throughout our simulations,
by repeating this procedure with different initial config-
urations and particle numbers, until we found a system
for which the maximum hole size was roughly 1o (bead
diameter). The outcome for a sphere of radius R = 3¢ is
shown in the right-hand side of Fig. 1. Here, 202 surface
beads were used to obtain a maximal hole diameter of
1.10. We refer to this model as a ‘hollow raspberry’ for
the remainder of this manuscript.

2. Filling the Raspberry

We ‘fill’ the hollow-shell raspberry particle by adding
coupling points in the interior, as outlined in detail be-
low. We first formed a hollow raspberry according to
the recipe in Section ITA1l. Next, we added N’ >
[4m(R — 0/2)3/3a3] beads to the interior of the shell,
which interact with each other and the shell MD beads
via the WCA potential of Eq. (2). The force between the
internal beads themselves was initially capped to le/o
to prevent numerical instabilities. The system was al-
lowed to evolve by making use of a Langevin thermo-
stat (kgT = le, I = 1771). For the simulation, over
50,000 time steps of length At = 0.0057 were used dur-
ing which the capping value was slowly raised to 100e.
This generally resulted in a random configuration with a
homogeneous distribution of MD beads within the rasp-
berry. These particles were subsequently frozen in place
by adding rigid (virtual) bonds to the central MD bead.

We examined several values of N” and investigated the
homogeneity of the distribution of MD beads. We set-
tled upon a value of N’ = 722, resulting in a total of
Niot = N + N+ 1 = 925 MD beads for the so-called
‘filled raspberry’ of radius R = 30. This result is shown
in the left-hand side of Fig. 1. Note that we used exactly
the same hollow shell to construct our filled variant. Fi-
nally, it should be remarked that in the hydrodynamic
simulations utilizing the raspberry model, all WCA in-
teractions were switched off and only the rigid (virtual)
bonds remained.

3. Constructing a Dumbbell Raspberry

A dumbbell-shaped raspberry model (filled or hollow)
is constructed using a procedure that is analogous to the
one given in Sections ITA 1 and IT A 2. Instead of a cen-
tral harmonic potential, we used two harmonic potentials
centered on rp = (0,0,—d/2) and r’s = (0,0, d/2), with
d the distance between the sphere centers of the dumb-
bell (the length is d+2R). In addition, a WCA potential
had to be added to prevent particles from accumulat-

ing in the neck of the dumbbell — the region where the
two dumbbell spheres overlap, if d < 2R. To accomplish
this, we used a WCA potential between the center of the
dumbbell, located at (0, 0,0), and the surface MD beads.
This potential had the following form

Vi — 4 1€ ((1:)12 - (%)6 + z11> r <20 3)
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where w is the width of the neck and is given by
w=4/R?— —. (4)

After letting the particles become trapped in the
dumbbell shell, in the same manner as for the spherical
shell, they are connected via rigid bonds to a particle at
the geometric center of the dumbbell. The dumbbell may
be filled with N’ additional beads using the procedure
outlined in Section IT A 2. In this paper, we consider two
dumbbell-shaped raspberry particles — one with d = 50
and one with d = 70 — corresponding to a partially
overlapping configuration and one with the spheres just
touching, respectively; see Fig. 2. We used (N = 416,
N’ = 598) for d = 50 and (N = 502, N’ = 404) for
d = 7o, respectively, to ensure a homogeneous surface
distribution and filling of the volume.

A.
y

FIG. 2. (color online) Representation of the raspberry dumb-
bells used in our simulations, touching (left) and overlapping
(right), respectively. The distance between the centers of the
spheres (each R = 30 in size) is indicated using the arrows.
Note that we used the effective MD bead diameter of approx-
imately 1o to visualize our result.




B. Molecular Dynamics Parameters

Once we had constructed the raspberries, we could use
them in our LB simulations. The particles were allowed
to freely move and rotate, unless otherwise specified. All
the forces acting on the MD beads are transferred to
the central bead wvia the virtual sites (rigid bonds). To
stabilize the simulation for the bare friction coefficients
used, we set the (bare) mass and rotational inertia of the
raspberry; these quantities should not be confused with
the virtual mass of the body in a fluid, see, e.g., Ref. [34]
for the definition. The mass and rotational inertia are
based on the particle’s dimensions and the fluid mass
density, which we denote by p and set to p = 1mgo 2.
Here, we thus assume that the raspberry particle has the
same density as the surrounding fluid.
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where the long axis of the dumbbell is assumed to be
aligned with the z-axis. This gives us the following for
the d = 50 dumbbell: m =~ 221lmg, I, ~ 2226mgyo?,
and [ ~ 810mgo2. Whereas for the d = 7o dumbbell we

obtain: m ~ 226mg, I, ~ 3585mgo?, and I~ 814mgo?.

C. Lattice-Boltzmann Parameters

The raspberry particles were coupled to a LB fluid.
We used a graphics processing unit (GPU) based LB
solver, [35] which is attached to the MD software
ESPResSo. [32, 33] The GPU variant of LB implemented
in ESPResSo utilizes a D3Q19 lattice and a fluctuating
multi-relaxation time (MRT) collision operator. [36] This
fluctuating LB model was introduced first by Adhikari et
al. [37] and later validated by Diinweg et al. [38, 39]
The particle-fluid interaction proposed by Ahlrichs and
Diinweg [13] was used to couple the fluid to embedded
MD beads. We did not employ the coupling scheme of
Refs. [28, 29], since our method turned out to work suf-
ficient well for the long-time properties without modifi-
cations to the Ahlrichs and Diinweg LB coupling. The

p <£R5 + —dR* - 1 ppe + d0> 0<d<2R

For the sphere, the mass we used is m = (4/3)7pR> ~
113m( and the inertia tensor is a diagonal tensor with
identical entries of I = (8/15)mpR® ~ 407mgo?. For the
two dumbbell raspberries, we used
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For the dumbbell, the rotational inertia tensor is diago-
nal, but the entries are not identical. Let I; denote the
moment for rotation about the main axis of the dumb-
bell and I, the moment for rotation about a central axis
perpendicular to the main axis. We may then write

1
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particle coordinates were interpolated onto the lattice us-
ing a tri-linear scheme. [12]

To keep our result as general as possible, we set the
density of the fluid to p = 1mgo 2, the lattice spacing
to lo, the time step to At = 0.0057, the (kinematic)
viscosity to v = 1o277!, the bare particle-fluid friction
to (o = 25771, and the strength of the fluctuations to
kT = 0.01e¢, unless otherwise specified. Here, we chose
neither to optimize our parameters for the most accu-
rate reproduction of hydrodynamic interactions, nor to
match a specific experimental system of interest via tele-
scoping. [40, 41] The reason behind our choice is to use
parameters that are in the regime, where LB reproduces
hydrodynamic effects reasonably well and is sufficiently
stable to use the (float-precision) GPU algorithm; thus
making our results ‘generic’ rather than tailored to a
specific system. The low amplitude of the fluctuations
in the thermalized LB is to allow averaging over long
times without noise dominating our results, as will be-
come more clear when we discuss these and prove impor-
tant for the thermal averaging performed in Ref. [7] as
well.



D. Hydrodynamic Experiments

To assess the quality of the raspberry approximation
in modeling the hydrodynamic properties of a colloid we
performed several experiments. We use the term ‘quies-
cent’ to describe an un-thermalized (non-fluctuating) LB
fluid. Below we specify the experiments performed for
particles in a simple cubic lattice, i.e., a cubic simulation
box of length L with periodic boundary conditions. In
all experiments the particle was initialized in the center
of the box.
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FIG. 3. (color online) Visualization of the various hydrody-
namic experiments carried out in a cubic box of length L
with periodic boundary conditions. A two-dimensional (2D)
representation is given here. The blue arrows and symbols
denote quantities applied to the fluid and raspberry, the red
arrows and symbols indicate measured quantities. The black
arrows indicate a thermalized fluid. We refer to the text for
a description of the experiments, as well as the applied and
measured quantities.

e A force experiment in a quiescent fluid, see
Fig. 3(a). A constant force F was applied to the

particle (typically along one of the box axes) and
a counter force density of —F /L3 was applied ho-
mogeneously to the fluid to ensure that there is no
motion of the center of mass, i.e, no net transfer
of momentum to the system. Not applying this
counter force density would result in an acceler-
ation of the colloid wvia the fluid flow that builds
up, as momentum is continuously pumped into the
system. The resulting time-dependent velocity v ()
and steady-state (terminal) velocity v, were mea-
sured and used to determine the translational mo-
bility
[ve|

ni = ik (9)

A force experiment in a thermalized fluid, see
Fig. 3(b). The set-up is the same as for the first
experiment. However, the system was first equili-
brated until a steady-state emerged and the par-
ticle fluctuated with the proper thermal distribu-
tion. During the production run, v(t) was aver-
aged to determine the average steady-state veloc-
ity v; = (v(t)), where () denotes the time average.
This allowed us to determine the time-averaged
translational mobility

KL = |7 (10)

A torque experiment in a quiescent fluid, see
Fig. 3(c). A constant torque T was applied to the
particle (typically along one of the box axes). The
resulting time-dependent angular velocity w(t) and
steady-state angular velocity w; were measured and
used to determine the rotational mobility

r_ lwi
= 11

There is no need to apply a ‘back torque density’ to
the fluid in this experiment, as the periodic bound-
ary conditions do not allow the fluid to develop a
net rotation.

A welocity experiment in a quiescent fluid, see
Fig. 3(d). An instantaneous velocity vy was im-
parted onto the particle at ¢ = 0 and an instanta-
neous counter velocity of —vy/L? was applied ho-
mogeneously (at the same time) to the fluid to en-
sure zero net motion of the system. The resulting
time-dependent velocity v(t) was measured. This
quantity can be related to a de-dimensionalized ve-
locity auto-correlation function (VACF) C7T(t) via
the relation

vo - v(t)

CL@t)= o

; (12)

where - denotes the dot product.



e An angular velocity experiment in a quiescent fluid,
see Fig. 3(e). An instantaneous angular velocity wq
was imparted onto the particle at ¢ = 0. The re-
sulting time-dependent angular velocity w(t) was
measured. This quantity can be related to a de-
dimensionalized angular velocity auto-correlation
function (AVACF) CE(t) via

(13)

e An auto-correlation experiment in a thermalized
fluid, see Fig. 3(f). The system was equilibrated
until the particle fluctuated with the proper ther-
mal distribution. The (A)VACF and the mean
square displacement (MSD) were measured using
the multiple-tau correlator in ESPResSo. [42] For
the (A)VACF the (angular) velocity in the co-
rotating frame was averaged. The C7T(t) = (v(t) -
v(t+ 7)) and CT(t) = (w(t) - w(t + 7)) that follow
from the thermal experiments differ slightly from
those in Eqgs. (12) and (13), since CT(0) = 3kgT/m
and CT(0) = 3kpT/I, as a consequence of the
equipartition theorem. This allows us to compute
the translational and rotational mobility, respec-
tively, via the Green-Kubo relation

1 o0
i =g [ ¥ (14

where the factor 1/3 is used for spherical parti-
cles only and X can be either T or R. [43] The
relations for anisotropic particles are similar, but
slightly more involved, since the dot product for
the (A)VACEF is replaced by the dyadic product.

In the above experiments, care was taken to en-
sure that the particle remained in the low translational
Reynolds number regime

ReT = B o 1, (15)
v

with v the maximum/typical velocity. This implies that
we can compare it to analytic and numerical results ob-
tained by solving the Stokes equations, as will be dis-
cussed further in Section III. For the radius R = 30
colloid and our value of the kinematic viscosity, we en-
sured that the maximum particle velocity remained un-
der 0.1507~ 1, for which Re” < 0.5. However, this value
was only attained in the velocity and auto-correlation ex-
periments in the cubic geometry for the first time step.
For ¢t > 17 and in the other experiments, the Reynolds
number remained smaller than 0.1. Similarly the rota-
tional Reynolds number

wR?
Relt = =7 (16)
v
with w the maximum angular velocity, remained small:

Re® < 0.7, but typically smaller than 0.1.

E. Notations Used throughout this Manuscript

In this section, we summarize the notations used in this
manuscript. This will aid the reader in going through the
text, as many of the notations are necessarily similar.

e [, the box length of a cubic box with periodic
boundary conditions.

e RT the effective hydrodynamic radius obtained by
extrapolating translational mobility measurements,
see Figs. 3(a,b,d,f), for the limit of box length
L 1 co. The subscript h is used to differentiate Ry
from the bead-to-center distance of the raspberry’s
coupling points R.

° R,If, the effective hydrodynamic radius obtained by
extrapolating rotational mobility measurements,
see Figs. 3(c,e,f), for the limit of box length L 1 co.

e CT(t), the wvelocity auto-correlation function
(VACF) for translational movement in a cubic box
of length L with periodic boundary conditions, also
see Figs. 3(d,f) and Eq. (12).

e CE(t), the angular velocity auto-correlation func-
tion (AVACF) for rotation in a cubic box of length
L with periodic boundary conditions, also see
Figs. 3(e,f) and Eq. (13).

e 1L (t), the time-dependent translational mobility in
a cubic box of length L with periodic boundary con-
ditions, also see Fig. 3(a). When the time depen-
dence is dropped the limit ¢ 7 oo has been taken.

e 1f(t), the time-dependent rotational mobility in a
cubic box of length L with periodic boundary con-
ditions, also see Fig. 3(c). When the time depen-
dence is dropped the limit ¢ T co has been taken.

e jiT, the time-averaged translational mobility result-
ing from the thermal force experiment, also see
Fig. 3(b).

e ul', the bulk translational mobility, which follows
from the limit L 1 oo of pf.

e uf, the bulk rotational mobility, which follows from
the limit L 1 oo of pft.

e f. the fractional deviation between two results.

III. RESULTS

In this section, we discuss the results that we obtained
by performing the simulations and numerical calculations
outlined in Section II. We have split these into two parts:
one for the sphere and one for the dumbbell. These parts
are further subdivided according to the nature of the ex-
periments.



A. Sphere in a Simple Cubic Crystal
1. The (Angular) Velocity Auto-Correlation Function

Using the (quiescent) velocity and (thermalized) auto-
correlation experiments discussed in Section IID, see
Figs. 3(d,f), we established the VACF for a filled rasp-
berry sphere in a cubic box of length L = 1000. The
results are shown in Fig. 4. From Figs. 4(a,b,c) we ob-
serve the three (possibly four) decay regimes that are
typical for the LB simulations of the raspberry particle.
In the following they will be described in more detail.

(I) At short times there is an unphysical-coupling
regime, see Fig. 4(a), in which the VACF decays expo-
nentially according to

CT(t) _ NtotCO
cro) ~ o (‘mt> ’ a7

with Niot the total number of beads, (y the bare friction
coefficient, and m the particle’s (bare) mass. [14] The
existence of this regime can be attributed to the fluid
not co-moving with the velocity of the particles. That
is, the MD beads interact with the stationary fluid only
through a regular Langevin-type friction — the velocity
of the fluid is essentially zero in these time steps.

The expected (unphysical) decay of Eq. (17) is indi-
cated in Fig. 4(a) and matches reasonably well with the
observed initial decay. However, the result deviates even
in the first and second time step, signifying the onset
of proper coupling. This is in agreement with the re-
cent observations in the MPCD simulations of Ref. [22],
where this deviation from the expected unphysical decay
was also attributed to the onset of hydrodynamic corre-
lations. Finally, note that there is a small deviation be-
tween the thermalized LB result and the quiescent VACF
when ¢ > 0.037, to which we will come back later.

From the above it is thus clear that the no-slip bound-
ary condition at the surface of the raspberry is violated
at short times, even taking the finite compressibility of
the LB fluid into account. Moreover, the expected decay
for a porous colloid [44] is not captured by the raspberry
with the Ahlrichs and Diinweg coupling [13] This is a
problem inherent to the LB method. [14, 15] The mod-
ified coupling scheme by Mackay et al. [28] purportedly
can be used to remedy this problem, we will come back
to this in Section IV.

(IT) At intermediate times there is a regime, in which
the VACF decays exponentially according to Stokes’ pre-

diction
CT(t) 6mR
— . 1
T 0) x exp - t (18)

Here, we used the proportionality symbol, since the un-
physical initial decay makes it impossible to establish an
analytic prefactor for the onset of this regime in fluid-
particle coupling. The regime appears because the hy-
drodynamic coupling between the particles and the sur-
rounding fluid is now fully established. [14]

The match between Stokes’ prediction and our nu-
merical results can be appreciated in Fig. 4(b), where
a Stokes-type decay has been fitted to our data. The
agreement is not very convincing. However, the agree-
ment between the bare-mass prediction of Eq. (18) is su-
perior to the one in which the virtual mass is used [34]
(not shown here); the latter type of decay was originally
suggested by Lobaskin and Diinweg. [14] The superiority
of the bare-mass result is reasonable, since Felderhof [44]
has shown that for a porous sphere the virtual-mass de-
cay regime is absent. Unfortunately, the porous sphere
solution of Felderhof [44] does not match better in the
Stokes-type regime, as the regime sets in after sound-
waves have had sufficient time to propagate the size of
the colloid (also see the next paragraph) due to the pres-
ence of the unphysical decay.

We have indicated three characteristic times related to
sound propagation in the LB in Fig. 4(b). The speed of
sound in LB is given by

=3 (%) 19

where o is the lattice spacing, At is the time step, and the
prefactor stems from the dimensionality of the grid. The
three times are t, = o /vs, tag = 2R/vs, and ty, = L/vs,
i.e., the time required for sound waves to propagate one
lattice spacing, the diameter of the raspberry, and the
length of the box, respectively. We will now discuss the
relevance of these times.

For the filled sphere, in which the MD beads are
roughly 1o apart, we find possible signatures of the prop-
agation of sound between the MD beads, as can be in-
ferred from the short-time oscillations. The first dip in
the VACF roughly coincides with t,, as indicated by the
black dashed line in Fig. 4(b). These oscillations may also
be related to the magnitude of the effective friction that
the added coupling points in the interior bring about. At
the time it takes sound to propagate the diameter of the
sphere (t2r), we find a small dip in the VACF, see the
dashed gray line in Fig. 4(b). This dip is similar to the
one observed in Ref. [22] and is caused by the compress-
ibility of the LB fluid. [34]

Note that the Stokesian regime of decay appears to be
delimited by the time it takes sound to travel the distance
of the box (t1,, dotted gray line in Fig. 4(b)). However,
for our specific choice of parameters, this time is close to
the viscous time it takes momentum to diffuse by one col-
loidal radius ¢, = pR?/n = 97. This viscous time is the
relevant time scale for the development of hydrodynamic
memory effects. [34, 43] We have a stricter separation of
sonic and viscous time scales than in Refs. [21, 22], i.e.,
ty/tar > 1. Therefore, our results do not display sound
undulations (back tracking) in the long-time power-law
regime.

(III) After a sufficiently long time, the hydrodynamic
interactions with the surrounding fluid result in a per-
sistence of the velocity (non-exponential decay) as the
vorticity diffuses away from the particle. These hydro-



(a) o (b)
1 L= =) I I . I I 0-6 -rmll T T IIIIIII T T IIIII!I T o
Quiescent ]l
Thermalized —&— 0.5 1t top t
0.8 Ballistic — : I
Fitted Stokes i
Power Law
S 06k Exponential - S
by Force (Q) b
= Force (T) =
by 04 | K5
0.2
0 ml L L II'IIII L L IIIIIlI L L II"II
1072 107" 10° 10"
t/t
(c)
T II T T II T T II T 0-6 II T T II T T II T T II T T II T II T
v, m
05 |- -
v, 1
_ 04 | —
S
=
=4 03 | -
"Z:' L
0.2 | ]
0.1 | -
10—7 -II 2I L II 1I L IIOI L II1I L II2I L II3| ] OE ::":"" :' O L II1I L II2I L II3I
107 10~ 10 10 10 10 107 10~ 10 10 10 10
t/t t/t

FIG. 4. (color online) The velocity auto-correlation function (VACF) C7 () as a function of time ¢ expressed in the MD time
unit 7. The graphs show results for a filled raspberry of radius R = 30 in a box of length . = 1000, with LB parameters as
given in the text. (a) The initial decay of the VACF. The red squares with error bars show the result for a thermalized LB, the
blue solid curve gives the result of a quiescent experiment, and the green dashed line shows the predicted unphysical-coupling
decay inherent to LB. (b) Log-linear plot of the initial and intermediate decay of the VACF. The dashed orange curve gives the
expected Stokes’ decay. An arrow indicates the position where the correspondence is reasonable. The vertical lines indicate the
time for sound waves to propagate through the system over certain lengths: one lattice spacing (¢», dashed black), roughly the
inter-bead separation; the raspberry’s hydrodynamic diameter (¢2r, dashed gray); and the box length (¢, dotted gray). (c)
Log-log plot of the long-time decay. The magenta line shows the power-law decay. The unphysical-coupling, fitted Stokes’, and
final exponential-decay (purple dashed, indicated by an arrow) curves are shown for completeness. (d) The time-dependent
Green-Kubo value of the translational mobility u7 (t) obtained from the quiescent (blue solid curve) and thermalized (red
squares with error bars) LB result. The solid cyan line shows the result of a quiescent force experiment (,uf, derived from
the terminal velocity v:), while the dashed cyan line shows the result of a thermal-averaged force experiment (ﬂ{, from the
time-averaged terminal velocity o).

dynamic memory effects lead to an algebraic decay of the has the following form
(A)VACF; the so-called ‘long-time tail’. [45] This decay 1
CE(0) = T5m/plmnt) (20)

CE(t) = nI/p(4mnt) =52, (21)

for the translational and rotational motion, respec-



tively. [34, 43, 46, 47] Figure 4(c) shows this power-law
decay for the translational motion more clearly. The cor-
respondence with the quiescent data is excellent. Here,
we additionally incorporated a prefactor that accounts
for the finite size of the simulation box, using the Hasi-
moto scaling expression [8] to obtain a match for both
the prefactor and exponent via a fitting procedure that
is within 1% of the theoretical prediction. Note that
within the error bar, which gives the standard error, the
decay is captured by the thermalized result. The ther-
mal data is not very convincing, but it was the best that
could be achieved within a reasonable time frame for our
choice of parameters. Only for L > 30R is the regime,
over which there is power-law decay, more pronounced,
however, larger box sizes require even longer sampling.
Our result is similar to the observations of Refs. [14, 15].

(IV) For the quiescent data, there is a third exponen-
tial decay in the data when ¢ > 7, see the purple dashed
line in Fig. 4(c). Analysis shows that this decay has a
small exponent that depends on the size of the simula-
tion box. The exponential decay for ¢t > 7 is most likely
(A) a numerical or (B) a method artifact. For the former
(A), the decay could be due to the low velocity of both
the particle and the fluid. It is conceivable that the ve-
locity of the fluid decays faster than that of the particle,
therefore causing another unphysical-coupling regime to
set in. For the latter possibility (B), it could be that
the back-velocity that is applied to the fluid in the qui-
escent experiment unfavorably affects the long-time tail.
Indeed, this could explain why the exponent has box-size
dependence. For the thermal data it is not possible to
judge whether a third exponential regime sets in, since
the error bar is too large. However, since the thermal-
ized LB fluid has a far greater local flow profile than the
quiescent result (for long times), it is likely that such a
regime is absent in case (A). Since no back-velocity is
applied to the fluid the regime would be absent if it is a
method artifact (B).

Finally, we considered the Green-Kubo relation for the
VACF by taking the anti-derivative

!
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for the thermalized data. The expression for the quies-
cent data is similar. Figure 4(d) shows the resulting time-
dependent translational mobility % (). We obtained the
value of pf = pt(t 1+ 00) = 1.37-107 202 17~ from the
quiescent data for the box of length L = 1000. The data
for the thermalized LB has a slightly lower value than the
quiescent result, which can in part be attributed to the
deviation that was already present at short times. In ad-
dition to determining p from the VACFs we performed a
quiescent and thermalized force experiment. The result is
shown using the solid and dashed cyan lines in Fig. 4(d),
respectively. We arrived at pf = 1.38 - 107 202%e 177!
for the quiescent data and % =1.32-10720%¢ 1771 for
the thermalized data. The results from the VACF and
the force experiments correspond within the error, but
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there is a discrepancy between the thermal and quiescent
data. This deviation can be explained by the way these
experiments are carried out and indicate a fundamental
shortcoming of the quiescent experiments, as alluded to
above and as will become more clear when we discuss the
effect of box size in Section ITT A 2.
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FIG. 5. (color online) Auto-correlation functions for a hollow
raspberry of radius R = 30 in a box of length L = 800 as
a function of time t expressed in the MD time unit 7. The
LB parameters are as given in the text. The use of sym-
bols is the same as in Fig. 4. (a) Velocity auto-correlation
function (VACF) CZ(t) for the thermal (red squares with
error bars) and quiescent (blue curve) calculations. The
unphysical-coupling (dashed green), the fitted Stokes de-
cay (orange dashed), fitted final exponential-decay (purple
dashed) curves, and power-law decay (magenta) are also
shown. The two dashed vertical lines show the time it takes
for sound to travel the particle’s hydrodynamic diameter (t2r,
dashed) and the box length (¢, dotted), respectively. (b) The
angular-velocity auto-correlation function (AVACF) C£(t) for
the same parameters.



In order to examine the difference between the hol-
low and filled raspberry model, we carried out similar
experiments for a hollow-raspberry sphere in a box of
length L = 800. We find similar regimes as in Fig. 4.
For the hollow raspberry there is weaker coupling with
fluid. This is caused by the spatial distribution of cou-
pling points, not the amount of points, [26] as we will
see in Section IIT A 2. This results in weaker decay of
the unphysical-coupling regime, which therefore matches
the exponential form of Eq. (17) more closely. Note that
the existence of the power-law behavior is more convinc-
ingly shown by our AVACF data, see Fig. 5(b), as the
fitted function and measured decay correspond well over
a decade in time. The presence of the long-time exponen-
tial decay in the AVACF indicates that this third expo-
nential decay is more likely an artifact of type (A) than
of type (B), since no back torque is applied in this ex-
periment. It is unclear whether the modified coupling
scheme by Mackay et al. [28] shows a similar decay. Fi-
nally, it should be noted that for the hollow raspberry
VACEF there is the same deviation between the quies-
cent and thermalized LB results as shown in Fig. 4(a).
However, the thermal and quiescent data for the AVACF
match well throughout.

2. The Influence of Lattice Spacing

Thus far, we have examined only the results of the (an-
gular) velocity experiments, and shown that these cor-
respond — at least amongst themselves — to the results
of force experiments for the same system. Let us now
consider the effect of the lattice spacing of the simple
cubic crystal on the hydrodynamic coupling between the
spheres. This simple cubic geometry is unlike a physical
crystal, in the sense that all particles translate and rotate
in unison; an effect of there being only a single particle in
a box with periodic boundary conditions. There is exper-
imental evidence that such systems may be realized. [48—
50] The uniformity of the periodic structure makes the
solutions to Stokes’ equations for this geometry analyt-
ically tractable. Such calculations were performed, for
example, in the work of Hasimoto [8] and of Hofman et
al. [4]

Figure 6(a) shows the change in velocity v(t) dur-
ing a force experiment, see Fig. 3(a), for a number of
box sizes L using the filled raspberry model. Note that
for larger L the friction experienced by the particle is
smaller, as the hydrodynamic-interaction contribution of
periodic images is reduced. However, the time it takes
for the stationary state to set in is increased, as it takes
longer to transfer momentum between the particle and
its images. From the terminal velocities in the station-
ary state we determined the mobility.

In order to establish the mobility at infinite dilution
(one particle in bulk), we fitted our data using a poly-
nomial of the Hasimoto form a + b/L + ¢/L? [8] in the
range where this form is expected to be valid and extrap-
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olated to L T oo. The resulting value for a is the bulk
translational mobility

1
T
, 23
Ho 67T77R%1 ( )

with RT the translational hydrodynamic radius. We were
thus able to determine the extrapolated value pd" and si-
multaneously the effective hydrodynamic radius of our
raspberry colloid, using Eq. (23). This extrapolation
refers to the ‘fitting’ part of our ‘filling + fitting’ for-
malism. These two parameters pf and R} allowed us
to de-dimensionalize the box length and the measured
translational mobility, as shown in Fig. 6b.

In Figs. 6(b,c) we compare the quality of our result
for the box-size dependence with the analytic result by
Hasimoto [8] (dashed red curve) and the numerical cal-
culations by Hofman et al. [4] (dashed green curve). Fig-
ure 6(c) shows the fractional deviation f between our
data and the two literature results, as well as the differ-
ence between the Hasimoto (Ha) and Hofman et al. (Ho)
data. For the data points provided by Hofman et al. [4]
we used a polynomial fit of the form 1+ a/L + b/L? to
represent these as a curve. Note that the analytic and
numerical expressions of Refs. [4, 8] correspond well for
box sizes greater than L ~ 5.0R}. That is, within the
error that can be expected for the fitting procedure that
we applied to the data by Hofman et al., there is good
agreement between their and Hasimoto’s data over this
range. The discrepancy for smaller box sizes can be ex-
plained by the truncation of the series expansion that
was used in Hasimoto’s work.

Our raspberry results (Ra) agree reasonably well with
the data of Hofman et al. over the range L > 5.0R],
but there is also a clear signature of systematic deviation
present in f. This implies that our data differs substan-
tially from the values of Ref. [4] in the 1/L3 term. A
similar range of agreement and small-box-size deviation
can be observed between our data and that of Hasimoto.
However, in spite of this, our data is much closer to the
results of Hofman et al. than those of Hasimoto; by al-
most an order of magnitude in f for L | QRg. We will
discuss the origin of the systematic deviation between our
data and that of Ref. [4] next.

The discrepancy between our data and the result by
Hofman et al. brings us back to the difference that
we observed between the VACFs obtained from the ve-
locity and temperature experiments carried out in Sec-
tion IITA 1, see Fig. 4(a). Remember that in the quies-
cent experiments a homogeneous and instantaneous ve-
locity has to be applied to the fluid in order to ensure zero
net movement of the system, see Fig. 3(d). Similarly, for
the quiescent force experiment, a constant homogeneous
force density is applied to the fluid, see Fig. 3(a). Conse-
quently, this velocity and force are also applied directly
to fluid nodes that are coupled to raspberry MD beads.
The effective force applied to the colloid can therefore be
calculated by subtracting the integrated fluid force-field
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FIG. 6. (color online) (a) The velocity v(t) as a function of time ¢ expressed in the MD time unit 7 obtained from force
experiments for a selection of box sizes L. (b) The dependence of the particle’s translational mobility u? (expressed in terms of
the bulk translational mobility ,ug) on the inverse box length 1/L times the hydrodynamic diameter (twice the hydrodynamic
radius R} ). The blue circles show results obtained from the velocity experiment. The black crosses give the results of the force
experiment, corrected for the counter force applied inside of the raspberry, as explained in detail in the main text. The red
dashed curve shows the analytic expression by Hasimoto [8] and the green dashed curve shows a polynomial fit to the numerical
data of Hofman et al. [4] The vertical dashed black line indicates the value of L for which the spheres are separated by one
lattice spacing (L = 2R} + o). (c) Fractional deviation f as a function of 2R} /L. The solid blue curve shows the difference
between the theoretical expressions of Hasimoto and Hofman. The red circles and green squares indicate the difference between
our raspberry experiment and the Hasimoto and Hofman expressions, respectively. The magenta pluses and black crosses give
the difference between the force-corrected data and the Hasimoto and Hofman expressions, respectively. The gray horizontal
line indicates a fractional deviation of 2.5%.

over the volume of the raspberry. This calculation yields velocities and forces do not need to be applied. These
A B3 counter velocities and forces are therefore a likely can-

fg=f <1 _ 7T) , (24) didate for the observed discrepancies. This implies that

3L3 the force/velocity experiments are unsuited to analyze

where f is the force directly applied to the central bead the hydrodynamic properties of ﬁnite systems in their
of our raspberry construct. Analogously, the counter ve- present form. The fact that there is a mismatch between

locity affects time evolution of the VACF. For the ther- the therma}l and qui?scer}t results in Flg 4(?? is thus not
malized experiments this was not an issue, since counter an expression of a violation of the equipartition theorem



or fluctuation dissipation. Nor is it correct to argue that
this is a consequence of the porosity of the particle. The
counter-force is only used to counter momentum transfer
to the periodic system by the force applied to the parti-
cle. The behavior in the limit of the infinite system is,
however, accurately captured, as the back velocity and
force vanish.

We took the effective force of Eq. (24) to determine the
‘corrected’ value of uT (Co) using Eq. (9) as a function
of the box size, see Fig. 6(b). Note that the correspon-
dence between the result by Hofman et al. and our data
is thus greatly improved and that the systematic devia-
tion is removed for large box sizes. Moreover, for small
box sizes the deviation between our corrected result and
the literature values is substantially reduced, although a
systematic difference remains. Within the error, the data
corresponds much closer to the curve through the data
by Hofman et al. than it does to the Hasimoto result.

From our corrected data, we estimated the range over
which the raspberry is able to accurately reproduce hy-
drodynamics interactions (f < 2.5%) in our system.
For this particular model we found the criterion to be
L= 2.8R{, which can be extrapolated to other spatial
arrangements of the colloids. It is likely that this crite-
rion can be extended to smaller boxes, as we will see in
the following and in Ref. [7]. The normalized results for
a hollow raspberry lie on top of the filled ones shown in
Fig. 6(b) within the error bar. However, the values for
the effective hydrodynamic radii RI differ: 3.530 and
3.470 for the filled and hollow model, respectively.

We continued our verification of the quality of the
filled and hollow raspberry model, by examining hydro-
dynamic coupling between spheres rotating in unison in
the same geometry as before, see Fig. 3(c). Figure 7
shows a comparison of our results to the expression given
by Hofman et al. [4] for the box-size dependence of the
rotational mobility pff. The procedure used to generate
this data is analogous to that outlined for the transla-
tional experiments. Using

" 1
= —— 25
"= S (RT)° (25)

we determined the effective hydrodynamic radius Rﬁ
from our data. Note that while there is still a systematic
component to f, see Fig. 7(b), the agreement between
our result and literature is excellent for both models.

This further demonstrates the plausibility of our asser-
tion that the high level of deviation for the translational
mobility is caused by the back-force/velocity that is ap-
plied homogeneously to the fluid, since a similar correc-
tion is not required for the rotational experiments. How-
ever, there is a fundamental difference between the exper-
iments. The rotational motion exposes the fluid to con-
stantly varying coupling points (the MD beads), whereas
for translational motion the fluid could more easily find
a pathway of least resistance.

Again, we observed that the effective hydrodynamic
radii obtained for the hollow and filled raspberry differ
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FIG. 7. (color online) (a) The dependence of the particle’s
rotational mobility uft (expressed in terms of the bulk rota-
tional mobility p& ) on the inverse box length times the hydro-
dynamic diameter (twice the hydrodynamic radius RE). The
blue circles show results obtained for the filled raspberry and
the green squares for the hollow raspberry. The red dashed
curve shows the expression given by Hofman et al. [4] The ver-
tical dashed black line indicates the value of L, for which the
spheres are separated by one lattice spacing. (b) Fractional
deviation f as a function of 2R /L. The blue circles and
green squares indicate the difference between the filled and
hollow raspberry and analytic expression, respectively. The
gray horizontal line indicates a fractional deviation of 2.5%.

significantly, 3.38¢c and 3.540, respectively. It should be
stressed that the fact that behavior of % is the same for
both models, does not imply hydrodynamic consistency
of the model, when we compare the value of RZ and Rf
for the same model, which we will do next.

To further assess the significance of the difference in
effective hydrodynamic radius, we repeated our experi-
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FIG. 8. (color online) The bulk effective hydrodynamic radii
(translational R}, rotational Rf) for the filled (F), hollow
(H), and dense (D) raspberry models, respectively, as a func-
tion of the friction coefficient expressed in LB units (time 7
and mass mg).

ments for two other values of the bare friction (3. The
results for the box-size dependence were in quantita-
tive agreement. Our results for the hydrodynamic radii
are summarized in Fig. 8. These effective hydrody-
namic radii were obtained, as before, by extrapolation to
the bulk value of the mobility and utilizing the Stokes-
Einstein relation. Note that the translational and rota-
tional radius of the hollow raspberry differ substantially.
This result is in agreement with the findings of Ollila et
al. [26, 27] The mismatch occurs for all values of the fric-
tion coefficient that we examined.

We also performed experiments with a hollow rasp-
berry that had the same number of surface beads as the
total number of beads used in the filled raspberry — we re-
fer to this model as the ‘dense’ raspberry. This allowed us
to examine the hypothesis that we simply obtained an in-
creased effective friction with greater bead numbers used
in the filled raspberry, leading to a better match between
rotational and translational hydrodynamic radius. [27] A
similar discrepancy between RY and Rf® was found for
the dense model, see Fig. 8. In fact, the deviation is
slightly increased. This can be attributed to an overall
improvement of the coupling, which forces the transla-
tional radius towards the no-slip value more quickly than
that of the rotation. In the limit of much greater num-
bers of coupling points, the dense shell and filled sphere’s
porosity should vanish and give correspondence to the
solid-sphere result. [26]

Finally, we examined the fluid-particle coupling to de-
termine the cause of the inconsistency between the ef-
fective hydrodynamic radii that were obtained using the
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FIG. 9. (color online) Comparison of the flow field around
a filled and hollow raspberry, respectively, undergoing a con-
stant rotation. (a) Two dimensional plane through the center
of the sphere with a normal that is parallel to the axis of
rotation. The result for the filled raspberry is shown on the
left and for the hollow variant on the right. The color coding
gives the magnitude of the fluid velocity on the grid (blue
lines). The thick black circle roughly indicates the position of
the coupling points (at |r| = R). The dashed blue semi circle
and half square serve as guides to the eye for the structure
of the flow field inside the raspberry. (b) Magnitude of the
fluid velocity v(r) — expressed in MD units of time, 7, and
position o — as a function of position r along the black vertical
divide in (a). Only the value inside of the raspberry is shown
for the filled (red, solid) and hollow (blue, dashed) particle.

hollow raspberry model. Figure 9(a) shows the flow field
around a hollow and filled spherical raspberry, rotating at
constant angular velocity about the axis pointing into the



page. From the flow field it becomes apparent that the
coupling of the raspberry to the fluid has more lattice ar-
tifacts for the hollow raspberry than for the filled one (is
less smooth), indicating poorer coupling. We quantified
this difference further by examining the fluid velocity in-
side the particle, see Fig. 9(b). While the filled raspberry
shows a linear increase in the velocity with the distance
from the center (similar to the so-called ‘Rankine vortex
state’), the hollow raspberry shows a clear kink in the ve-
locity profile. This kink can be attributed to the dimin-
ished fluid-particle coupling away from the shell of MD
beads. Effectively, the hollow shell raspberry achieves a
low Brinkman length only close to the shell, whereas the
filled raspberry achieves low permeability throughout.

B. Dumbbell in a Simple Cubic Crystal

Thus far, we have concentrated on the quality of the
raspberry approximation for convex objects, namely the
specific case of a spherical particle. In order to assess the
raspberry model’s ability to capture the hydrodynamic
properties of a non-convex particle, we considered two
dumbbell-shaped raspberries, as shown in Fig. 2. We
took care to create a raspberry model for which the two
spheres touch, when the effective hydrodynamic radius
of the MD beads is taken into account, see Fig. 2 (left).
Note that for a dumbbell-shaped particle the hydrody-
namic mobility tensor (HMT) has a diagonal form, with
translational mobilities in the top-left 3 x 3 block (sub-
matrix) and rotational ones in the lower-right 3 x 3 block.
There are no cross-coupling terms due to symmetry con-
siderations. [51, 52]

Our results for the dumbbell particles are qualitatively
similar to the ones shown for the spherical colloid dis-
cussed above. Namely, we found the box-size depen-
dence to be of the form p3, = ug'; (14 ai/L+b;/L?),
with X either R or T and ¢ either L or ||, and a; and
b; coefficients. However, we could not compare our re-
sults to analytic calculations, since, to the best of our
knowledge, such expressions have not been formulated
for dumbbell-shaped particles. We therefore considered
the extrapolated bulk mobility coefficients only. Using
both quiescent and thermalized simulations we verified
that the HMT had the expected form. In particular, all
off-diagonal coeflicients were orders of magnitude smaller
than the diagonal elements and zero within the error
bars. Moreover, we found that for both the translational
and rotational mobility sub-matrices, the two entries cor-
responding to perpendicular motion were equal (within
the error) and the parallel component was larger, as ex-
pected. Table I lists these mobility coefficients. In order
to de-dimensionalize the results, we divided the mobility
coefficients by the translational and rotational mobility
coeflicient of a sphere with radius R = 30, respectively.

To validate our model for the simulation of anisotropic
non-convex particles, we compared our data with the re-
sults obtained using the HYDROSUB and HYDRO++
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Method | pf/pg | pl/ws | wfi/ws | wf/uf
d="70 /d=2.00 um
Rasp. ()] 0.78 £0.01] 0.70 £ 0.01] 0.61 £ 0.01] 0.28 £ 0.01
Rasp. (F)|0.77 £ 0.01| 0.69 + 0.01| 0.55 £ 0.01| 0.27 £ 0.01
53, 54] | 0.77 4 0.01| 0.70 4 0.01| 0.55 £ 0.01| 0.27 4 0.01
d=50 /d=1.43 ym
Rasp. ()] 0.83 £0.01] 0.75 £ 0.01] 0.67 £ 0.01] 0.39 £ 0.01
Rasp. (F)| 0.82 £ 0.01| 0.74 = 0.01| 0.59  0.01 | 0.36 £ 0.01
53, 54] | 0.82 £ 0.01| 0.75 £ 0.01| 0.60 £ 0.01| 0.37 £ 0.01

TABLE I. Comparison for a dumbbell-shaped particle be-
tween the results obtained using the raspberry model — both
hollow (H) and filled (F) —and HYDROSUB/HYDRO++ [53,
54] for the translational (T) and rotational (R) mobilities in
the direction parallel (||) and perpendicular (L) to the main
axis in bulk fluid. The mobilities are normalized by the bulk
values for a sphere with the same radius as one of the spheres
comprising the dumbbell.

program. [53, 54] These are tools used to evaluate the
hydrodynamic properties of macromolecules and have
been successfully utilized in comparisons to experimen-
tal data for solid anisotropic colloids. [55] We determined
the HMT using the methods of Refs. [53, 54] for dumb-
bells consisting of two spheres with radii R = 1.0 ym
at positions (£1.0,0,0) pm (touching) and (£0.714, 0, 0)
pum (separated), respectively, in a fluid of viscosity 1073
kgm~'s™! and density 10> kgm™3 with temperature
T = 293.15 K. We assumed that the particle has the
same density as the fluid. The numerical algorithm is
parametrized as follows: H = 26, Hpax = 1.5 - 107,
Ruax = 80.0 - 1078, and NpriaLs = 10,000; which are
internal commands. The number of intervals for the dis-
tance distribution was set to 30. By applying the same
numerical parameters to the case of a single sphere we
obtained the reference data used to normalize the result.

The results of this comparison are summarized in Ta-
ble I, in which we give the mobilities for the filled and
hollow raspberry, as well as the ones determined using
the methods of Refs. [53, 54]. The agreement for the
bulk mobilities is excellent for the translational bulk mo-
bilities of all three data sets. However, it is clear that
for the hollow raspberry there is a significant difference
in the rotational mobility ratio with respect to the result
for the filled and HYDROSUB/HYDRO++ simulations
that lies well outside of the error bar of the average of
the latter two. This confirms that our ‘filling + fitting’
procedure is effective for more complex (non-convex) ge-
ometries, as expected.

IV. DISCUSSION

In Section IIT we have demonstrated that our ‘filling +
fitting’ formalism leads to excellent agreement between
established theoretical and numerical results for the hy-
drodynamic behavior of convex and non-convex solid par-



ticles. By ‘filling and fitting’ one significantly improves
the agreement between the effective hydrodynamic radii
obtained by translational and rotational experiments, re-
spectively, allowing the point-coupling LB model to de-
scribe solid particles. The improvement is related to a
reduced permeability throughout the particle — in line
with the findings of Ref. [26]. The hollow-shell raspberry
achieves this only locally. [14, 15, 27, 29] In this section
we discuss this discrepancy between the effective hydro-
dynamic radii in more detail and place our work in the
context of previous studies.

The fractional difference in hydrodynamic radii of ap-
proximately 0.10/3.40 = 0.03 for the hollow raspberry
may seem perfectly acceptable for most applications.
However, one should be careful, since this small frac-
tion can lead to a 10% discrepancy between the expected
translational and rotational mobility; had we assumed
the effective hydrodynamic radius for rotational motion
to be the same as that for translational motion. In pro-
cesses involving both translation and rotation, this could
lead to significant deviation from the desired behavior.

A closer examination of the data presented in the orig-
inal raspberry paper by Lobaskin and Diinweg [14] shows
that the trends in matching to the results of Refs. [4, 8-
11] with effective hydrodynamic radii observed in our
work, are captured by their data points. Lobaskin and
Diinweg erroneously assumed that the radius of the par-
ticle was the same as the radius R at which they po-
sitioned their MD beads. However, within the numeri-
cal uncertainty present in their results and the computa-
tional abilities of the time, this extrapolation to bulk was
completely justifiable. By re-examining the data points
of Ref. [14], we conclude that it is possible to fit the fol-
lowing bulk mobilities

kpT

T B

= (0.97 + 0.02 . 26

to = ( )67mR’ (26)
ksT

R _ (0.90 +0.02)—2~__. 2

1o = (0.90 £0.0 )SMR3 (27)

This indicates that there is indeed an effective radius,
RT = (1.03 £0.02)R and RE = (1.03 & 0.01)R, but the
data is not of sufficient quality to assess whether there is
a difference between the effective translational and rota-
tional hydrodynamic radius in their measurements.

Chatterji and Horbach [15] carried out a more thor-
ough examination of the effective translational hydrody-
namic radius. However, they did not provide results for
the rotational hydrodynamic radius, they only comment
on having carried out such experiments. Our results in
Fig. 8 for the value of R} for the hollow raspberry are in
quantitative agreement with Ref. [15]. We therefore deem
it likely that a similar discrepancy would be present in
the data of Ref. [15], especially considering our observa-
tions and those of Refs. [26, 27].

Finally, Poblete et al. [22] did not report a differ-
ence in the bulk hydrodynamic radii using their MPCD
method for a hollow raspberry. They instead found agree-
ment between the two. However, it is unclear how ac-
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curately Poblete et al. could extrapolate their results
to the bulk value, as in MPCD one always works with
thermalized and therefore noisy data. In addition, it is
not obvious how large the effect (R # RJ*) would be
for their high-speed-of-sound systems. Furthermore, the
grid-shifts that are typically applied in MPCD to restore
Galilean invariance, may substantially reduce any such
lattice-discretization and porosity effects.

The inconsistency between the translational and rota-
tional mobility in the raspberry model was first pointed
out by Ollila et al. [26, 27] In Ref. [26] it was contended
that these inconsistencies are representative of the prop-
erties of the point-coupling method. Namely, that the ob-
jects modeled using this formalism are porous. Ollila et
al. argue that this porosity leads to problems when using
this type of model to describe solid objects. Especially
models that fit for this value should be considered suspect
according to Ref. [26], as there may be inconsistencies in
the fitted hydrodynamic radius for various hydrodynamic
experiments. This assessment may seem in direct contra-
diction of our observations. However, Ollila et al. do not
exclude the possibility of finding numerical parameters
for which a quality fit can be made. We have shown
here, as well as in Ref. [7], that our ‘fitting + filling’ for-
malism works well to match the simulations to analytic
results for solid particles over a wide range of param-
eters. That is we obtained numerically consistency for
physically relevant hydrodynamic experiments.

It should be noted that the excellent agreement shown
between the simulation results and analytic expressions
for porous spheres in Ref. [26] is not without caveats. In
particular, Ollila et al. indicate that it is necessary to
use particle radius for the coupling points that is ‘incom-
mensurate’ with the lattice to obtain the excellent corre-
spondence for the translational properties of the porous
particles without fitting. Due to the properties of the
interpolation scheme, this incommensurability criterion
and the subsequent choice of a particle radius that yields
correspondence, can be treated on the same footing as a
fit parameter. Moreover, Ollila et al. require an effec-
tive hydrodynamic radius to obtain an equally excellent
correspondence for the rotational properties of their par-
ticles.

We have performed our simulations with both station-
ary and moving particles at positions and in directions
both commensurate and incommensurate with the lat-
tice. In all these experiments, we did not find a sizable
change in the effective radii, nor a breakdown of the cor-
respondence between the two. We thus argue that our
“filling + fitting’ method is a cleaner and more forthright
way of approaching matching the simulations to ana-
lytic results for solid objects. In addition, we believe
that an equally excellent correspondence between theory
and simulations could have been achieved in Ref. [26], by
dropping the incommensurability criterion and fitting for
both effective hydrodynamic radii.

Finally, in relation to the work of Refs. [26, 27] another
observation should be made. In both papers the number



of coupling points used to obtain correspondence between
the theory and simulations is rather large. Such a high
number of points is acceptable in addressing questions of
a fundamental nature, but it may prove problematic in
performing simulations with high numbers of particles,
as is typical for self-assembly and crystallization stud-
ies. [56]

The algorithm may become prohibitively expensive for
such a high number of coupling points. Lowering the
overall number of coupling points and specifically their
local density is of particular relevance to GPU-based LB
implementations. The force applied to the nodes of the
LB grid by a coupling point is calculated using so-called
‘atomicAdd’ operations. These operations can be used
to avoid race conditions that arise from colliding mem-
ory requests. However, for high numbers of particles close
to a specific LB node (high coupling-point density), the
use of the atomicAdd operation can cause the program
to slow down significantly. Therefore, reducing the num-
ber of local coupling points is of paramount importance
and our ‘filling + fitting’ procedure is thus numerically
favorable to models that require a higher coupling-point
density.

With regards to the filling procedure, we obtained rea-
sonable consistency for the translational and rotational
mobility for the number of MD beads that we added to
the interior of the particle. However, it is quite likely that
similar results may be achieved by adding far fewer par-
ticles to the interior of the model, which will further im-
prove the computational performance of a simulation. It
is worth noting that by increasing the radius of the rasp-
berry, the problem may be substantially reduced as well,
as the difference between the effective radii becomes less
important for larger R. The need for filling, increasing
R, or both should be examined on a per-simulation-study
basis.

Finally, a comment on the short-time behavior of the
raspberry particles is appropriate. As originally shown in
Ref. [14], the Ahlrichs and Diinweg interpolated point-
coupling scheme [13] has problems in reproducing the
short-time properties of the (A)VACF that are expected
for a solid no-slip particle [34] or even a porous col-
loid, [44] due to the presence of an unphysical coupling
regime. The correct zero-time value of C¥(0) = 3kgT/m
is achieved, but there is no decay to CL(t > 0) =
3kpT /m*, with m* the virtual mass, over a time scale
related to the propagation of sound. [34] Instead, a much
lower plateau value for CT (¢ > 0) is reached. Felder-
hof [44] has pointed out that the secondary (virtual mass)
regime is not present in a porous colloid, which is thus
in agreement with our findings and contradicts the ear-
lier report by Lobaskin and Diinweg. [14] However, the
behavior predicted in Ref. [44] is also not accurately cap-
tured, since the unphysical coupling regime interferes
with the onset of the proper short-time decay.

It has been suggested that the modified coupling
scheme by Mackay et al. [28] may resolve these issues.
However, examination of the VACF's reported in Ref. [29]
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reveal that the double exponential-type decay shown in
their fluid-mass dominated result is not captured by the
result of Ref. [34], as is reported in Ref. [29] (but not
demonstrated using fitting procedures). This is, again,
expected on the basis of the results by Felderhof [44].
Unfortunately, it is also not clear that the predictions of
Ref. [44] are more accurately reproduced. Furthermore,
an analysis of the results of the oscillatory experiments in
Ref. [26] does not yield significant additional insight into
the short-time quality of the Mackay et al. algorithm. In
particular, it is unclear whether this algorithm was used
in this work. Also, the period of the oscillation is suf-
ficiently long to obfuscate any short-time discrepancies
that may be present.

V. CONCLUSION AND OUTLOOK

Summarizing, we have re-examined the properties of
the hybrid LB and Langevin MD scheme for simulat-
ing colloids developed by Lobaskin and Diinweg, [14] the
so-called ‘raspberry’ model. We studied this model us-
ing a variety of classic fluid dynamics experiments that
predominantly focused on the long-time mobility proper-
ties of these particles. We considered the hydrodynamic
properties of spherical raspberries, as well as dumbbell-
shaped raspberry particles in the low Reynolds number
limit. Our results show that the proper solid-particle mo-
bility in this limit is reproduced to a surprising degree of
accuracy over a wide range of viscosities for both convex
and non-convex particle shapes.

From our combined data we can draw the following
conclusions concerning the quality of the raspberry model
and our ‘filling + fitting’ procedure to match its hydro-
dynamic properties to that of a solid object in a low-
Reynolds-number fluid.

e Using a raspberry model to approximate a parti-
cle’s coupling to an LB fluid gives rise to an ef-
fective hydrodynamic radius. This effective radius
must be properly taken into account in matching to
the (experimental) system of interest. Our result
is in agreement with the findings of Chatterji and
Horbach. [15] We have commented on the claims of
Ollila et al. [26, 27] that correspondence between
simulations and theory can be obtained without
such a fit parameter and we have argued that their
result could be a result of a fortuitous choice of
particle radius.

e The short-time properties of a no-slip or perme-
able colloid are not faithfully reproduced by the
Ahlrichs and Diinweg interpolated point-coupling
scheme, [13] as was first pointed out in Ref. [14].

e The traditional ‘hollow’ raspberry model — an
empty shell of MD coupling beads that describes
the particle’s surface — gives rise to a discrepancy
between the translational and rotational effective



hydrodynamic radius. This effect was first pointed
out by Ollila et al. [26, 27] and discussed in the
context of porous particle dynamics.

e We find that the aforementioned mismatch, when
considered in the context of reproducing the hy-
drodynamic behavior of a solid particle, can be re-
duced within an acceptable numerical tolerance by
‘filling’ the raspberry and ‘fitting’ for the effective
hydrodynamic radius. This is not in disagreement
with the assessment of Ollila et al. [26] that such
a filling procedure is inherently problematic. Our
result merely demonstrates that for reasonable LB
parameters the hydrodynamic properties of a solid
particle can be effectively matched and to within a
far higher tolerance than is possible for the hollow
variant.

e The ‘filling + fitting’ procedure can be used to
improve the raspberry model’s ability to simulate
both convex and non-convex solid particles. We
verified this for the specific case of a dumbbell-
shaped particle, but our results may be safely ex-
trapolated to more complicated shapes. However,
the effective hydrodynamic radius of the raspberry
must be properly taken into account. That is,
the MD beads must be positioned in such a way
that the effective hydrodynamic hull, which forms
around these points, approximates the shape of the
particle of interest.

e The result of Ollila et al. [27] suggest that a regime
can be found for which the hull is sufficiently shrunk
that it matches with the imposed position of the
coupling points. However, a prohibitive number
of coupling points may be required to achieve this
condition. This is especially problematic for GPU-
based algorithms. Our ‘filling + fitting’ procedure
allows us to use a substantially reduced number of
coupling points and still obtains excellent numeri-
cal agreement.

e The force and velocity experiments traditionally
performed to determine the translational mobility
in a cubic geometry with periodic boundary condi-
tions are problematic for small boxes compared to
the particle size. The back force/velocity density
that must be applied to the fluid to maintain zero
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center of mass velocity, leads to difficulties in inter-
pretation the mobility data that is obtained from
these experiments. We find that the net/effective
force acting on the particle is given by the applied
force minus the back force density integrated over
the volume that the raspberry occupies. Utilizing
this net force gives a better match with numeri-
cal results for the solution to Stokes’ equations for
solid particles in this geometry. [4, 8, 9] A similar
consideration applies to the velocity experiment,
where it leads to the observed systematic (albeit
small) disagreement between the thermal and qui-
escent data at intermediate and long time scales. A
possible solution to this problem is to identify the
node locations at which the particle is found and
to only apply the properly-rescaled counter force
elsewhere.

From the above, it becomes clear that the raspberry
model is an excellent way to approximate long-time
regime of the fluid-particle coupling for a solid object
in an LB algorithm. However, there remain several open
problems to be addressed in future studies. We have
shown that the short-time behavior of the raspberry
model (for the LB parameters used in this manuscript) is
quite different from the low Reynolds number solution to
Stokes’ equations. [34, 44] This raises the question of how
accurately the short-time regime of colloid dynamics can
be captured using the raspberry or any point-coupling
model. An faithful reproduction of such short-time pro-
cesses would be relevant for, e.g., nucleation and crys-
tallization. Despite this concern, our analysis stresses
the power of the original our ‘filled + fitted’ raspberry
model as a means to approximate translational as well as
rotational fluid-particle coupling.
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