emacs-diffs
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[Emacs-diffs] Changes to emacs/src/alloc.c [emacs-unicode-2]


From: Kenichi Handa
Subject: [Emacs-diffs] Changes to emacs/src/alloc.c [emacs-unicode-2]
Date: Mon, 08 Sep 2003 08:48:22 -0400

Index: emacs/src/alloc.c
diff -c /dev/null emacs/src/alloc.c:1.318.2.1
*** /dev/null   Mon Sep  8 08:48:22 2003
--- emacs/src/alloc.c   Mon Sep  8 08:48:09 2003
***************
*** 0 ****
--- 1,5746 ----
+ /* Storage allocation and gc for GNU Emacs Lisp interpreter.
+    Copyright (C) 1985, 86, 88, 93, 94, 95, 97, 98, 1999, 2000, 2001, 2002, 
2003
+       Free Software Foundation, Inc.
+ 
+ This file is part of GNU Emacs.
+ 
+ GNU Emacs is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2, or (at your option)
+ any later version.
+ 
+ GNU Emacs is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ GNU General Public License for more details.
+ 
+ You should have received a copy of the GNU General Public License
+ along with GNU Emacs; see the file COPYING.  If not, write to
+ the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA.  */
+ 
+ #include <config.h>
+ #include <stdio.h>
+ #include <limits.h>           /* For CHAR_BIT.  */
+ 
+ #ifdef ALLOC_DEBUG
+ #undef INLINE
+ #endif
+ 
+ /* Note that this declares bzero on OSF/1.  How dumb.  */
+ 
+ #include <signal.h>
+ 
+ /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
+    memory.  Can do this only if using gmalloc.c.  */
+ 
+ #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
+ #undef GC_MALLOC_CHECK
+ #endif
+ 
+ /* This file is part of the core Lisp implementation, and thus must
+    deal with the real data structures.  If the Lisp implementation is
+    replaced, this file likely will not be used.  */
+ 
+ #undef HIDE_LISP_IMPLEMENTATION
+ #include "lisp.h"
+ #include "process.h"
+ #include "intervals.h"
+ #include "puresize.h"
+ #include "buffer.h"
+ #include "window.h"
+ #include "keyboard.h"
+ #include "frame.h"
+ #include "blockinput.h"
+ #include "character.h"
+ #include "syssignal.h"
+ #include <setjmp.h>
+ 
+ #ifdef HAVE_UNISTD_H
+ #include <unistd.h>
+ #else
+ extern POINTER_TYPE *sbrk ();
+ #endif
+ 
+ #ifdef DOUG_LEA_MALLOC
+ 
+ #include <malloc.h>
+ /* malloc.h #defines this as size_t, at least in glibc2.  */
+ #ifndef __malloc_size_t
+ #define __malloc_size_t int
+ #endif
+ 
+ /* Specify maximum number of areas to mmap.  It would be nice to use a
+    value that explicitly means "no limit".  */
+ 
+ #define MMAP_MAX_AREAS 100000000
+ 
+ #else /* not DOUG_LEA_MALLOC */
+ 
+ /* The following come from gmalloc.c.  */
+ 
+ #define       __malloc_size_t         size_t
+ extern __malloc_size_t _bytes_used;
+ extern __malloc_size_t __malloc_extra_blocks;
+ 
+ #endif /* not DOUG_LEA_MALLOC */
+ 
+ /* Value of _bytes_used, when spare_memory was freed.  */
+ 
+ static __malloc_size_t bytes_used_when_full;
+ 
+ /* Mark, unmark, query mark bit of a Lisp string.  S must be a pointer
+    to a struct Lisp_String.  */
+ 
+ #define MARK_STRING(S)                ((S)->size |= ARRAY_MARK_FLAG)
+ #define UNMARK_STRING(S)      ((S)->size &= ~ARRAY_MARK_FLAG)
+ #define STRING_MARKED_P(S)    ((S)->size & ARRAY_MARK_FLAG)
+ 
+ #define VECTOR_MARK(V)                ((V)->size |= ARRAY_MARK_FLAG)
+ #define VECTOR_UNMARK(V)      ((V)->size &= ~ARRAY_MARK_FLAG)
+ #define VECTOR_MARKED_P(V)    ((V)->size & ARRAY_MARK_FLAG)
+ 
+ /* Value is the number of bytes/chars of S, a pointer to a struct
+    Lisp_String.  This must be used instead of STRING_BYTES (S) or
+    S->size during GC, because S->size contains the mark bit for
+    strings.  */
+ 
+ #define GC_STRING_BYTES(S)    (STRING_BYTES (S))
+ #define GC_STRING_CHARS(S)    ((S)->size & ~ARRAY_MARK_FLAG)
+ 
+ /* Number of bytes of consing done since the last gc.  */
+ 
+ int consing_since_gc;
+ 
+ /* Count the amount of consing of various sorts of space.  */
+ 
+ EMACS_INT cons_cells_consed;
+ EMACS_INT floats_consed;
+ EMACS_INT vector_cells_consed;
+ EMACS_INT symbols_consed;
+ EMACS_INT string_chars_consed;
+ EMACS_INT misc_objects_consed;
+ EMACS_INT intervals_consed;
+ EMACS_INT strings_consed;
+ 
+ /* Number of bytes of consing since GC before another GC should be done. */
+ 
+ EMACS_INT gc_cons_threshold;
+ 
+ /* Nonzero during GC.  */
+ 
+ int gc_in_progress;
+ 
+ /* Nonzero means abort if try to GC.
+    This is for code which is written on the assumption that
+    no GC will happen, so as to verify that assumption.  */
+ 
+ int abort_on_gc;
+ 
+ /* Nonzero means display messages at beginning and end of GC.  */
+ 
+ int garbage_collection_messages;
+ 
+ #ifndef VIRT_ADDR_VARIES
+ extern
+ #endif /* VIRT_ADDR_VARIES */
+ int malloc_sbrk_used;
+ 
+ #ifndef VIRT_ADDR_VARIES
+ extern
+ #endif /* VIRT_ADDR_VARIES */
+ int malloc_sbrk_unused;
+ 
+ /* Two limits controlling how much undo information to keep.  */
+ 
+ EMACS_INT undo_limit;
+ EMACS_INT undo_strong_limit;
+ 
+ /* Number of live and free conses etc.  */
+ 
+ static int total_conses, total_markers, total_symbols, total_vector_size;
+ static int total_free_conses, total_free_markers, total_free_symbols;
+ static int total_free_floats, total_floats;
+ 
+ /* Points to memory space allocated as "spare", to be freed if we run
+    out of memory.  */
+ 
+ static char *spare_memory;
+ 
+ /* Amount of spare memory to keep in reserve.  */
+ 
+ #define SPARE_MEMORY (1 << 14)
+ 
+ /* Number of extra blocks malloc should get when it needs more core.  */
+ 
+ static int malloc_hysteresis;
+ 
+ /* Non-nil means defun should do purecopy on the function definition.  */
+ 
+ Lisp_Object Vpurify_flag;
+ 
+ /* Non-nil means we are handling a memory-full error.  */
+ 
+ Lisp_Object Vmemory_full;
+ 
+ #ifndef HAVE_SHM
+ 
+ /* Force it into data space!  Initialize it to a nonzero value;
+    otherwise some compilers put it into BSS.  */
+ 
+ EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
+ #define PUREBEG (char *) pure
+ 
+ #else /* HAVE_SHM */
+ 
+ #define pure PURE_SEG_BITS   /* Use shared memory segment */
+ #define PUREBEG (char *)PURE_SEG_BITS
+ 
+ #endif /* HAVE_SHM */
+ 
+ /* Pointer to the pure area, and its size.  */
+ 
+ static char *purebeg;
+ static size_t pure_size;
+ 
+ /* Number of bytes of pure storage used before pure storage overflowed.
+    If this is non-zero, this implies that an overflow occurred.  */
+ 
+ static size_t pure_bytes_used_before_overflow;
+ 
+ /* Value is non-zero if P points into pure space.  */
+ 
+ #define PURE_POINTER_P(P)                                     \
+      (((PNTR_COMPARISON_TYPE) (P)                             \
+        < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size))       \
+       && ((PNTR_COMPARISON_TYPE) (P)                          \
+         >= (PNTR_COMPARISON_TYPE) purebeg))
+ 
+ /* Index in pure at which next pure object will be allocated.. */
+ 
+ EMACS_INT pure_bytes_used;
+ 
+ /* If nonzero, this is a warning delivered by malloc and not yet
+    displayed.  */
+ 
+ char *pending_malloc_warning;
+ 
+ /* Pre-computed signal argument for use when memory is exhausted.  */
+ 
+ Lisp_Object Vmemory_signal_data;
+ 
+ /* Maximum amount of C stack to save when a GC happens.  */
+ 
+ #ifndef MAX_SAVE_STACK
+ #define MAX_SAVE_STACK 16000
+ #endif
+ 
+ /* Buffer in which we save a copy of the C stack at each GC.  */
+ 
+ char *stack_copy;
+ int stack_copy_size;
+ 
+ /* Non-zero means ignore malloc warnings.  Set during initialization.
+    Currently not used.  */
+ 
+ int ignore_warnings;
+ 
+ Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
+ 
+ /* Hook run after GC has finished.  */
+ 
+ Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
+ 
+ Lisp_Object Vgc_elapsed;      /* accumulated elapsed time in GC  */
+ EMACS_INT gcs_done;           /* accumulated GCs  */
+ 
+ static void mark_buffer P_ ((Lisp_Object));
+ extern void mark_kboards P_ ((void));
+ static void gc_sweep P_ ((void));
+ static void mark_glyph_matrix P_ ((struct glyph_matrix *));
+ static void mark_face_cache P_ ((struct face_cache *));
+ 
+ #ifdef HAVE_WINDOW_SYSTEM
+ static void mark_image P_ ((struct image *));
+ static void mark_image_cache P_ ((struct frame *));
+ #endif /* HAVE_WINDOW_SYSTEM */
+ 
+ static struct Lisp_String *allocate_string P_ ((void));
+ static void compact_small_strings P_ ((void));
+ static void free_large_strings P_ ((void));
+ static void sweep_strings P_ ((void));
+ 
+ extern int message_enable_multibyte;
+ 
+ /* When scanning the C stack for live Lisp objects, Emacs keeps track
+    of what memory allocated via lisp_malloc is intended for what
+    purpose.  This enumeration specifies the type of memory.  */
+ 
+ enum mem_type
+ {
+   MEM_TYPE_NON_LISP,
+   MEM_TYPE_BUFFER,
+   MEM_TYPE_CONS,
+   MEM_TYPE_STRING,
+   MEM_TYPE_MISC,
+   MEM_TYPE_SYMBOL,
+   MEM_TYPE_FLOAT,
+   /* Keep the following vector-like types together, with
+      MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
+      first.  Or change the code of live_vector_p, for instance.  */
+   MEM_TYPE_VECTOR,
+   MEM_TYPE_PROCESS,
+   MEM_TYPE_HASH_TABLE,
+   MEM_TYPE_FRAME,
+   MEM_TYPE_WINDOW
+ };
+ 
+ #if GC_MARK_STACK || defined GC_MALLOC_CHECK
+ 
+ #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
+ #include <stdio.h>            /* For fprintf.  */
+ #endif
+ 
+ /* A unique object in pure space used to make some Lisp objects
+    on free lists recognizable in O(1).  */
+ 
+ Lisp_Object Vdead;
+ 
+ #ifdef GC_MALLOC_CHECK
+ 
+ enum mem_type allocated_mem_type;
+ int dont_register_blocks;
+ 
+ #endif /* GC_MALLOC_CHECK */
+ 
+ /* A node in the red-black tree describing allocated memory containing
+    Lisp data.  Each such block is recorded with its start and end
+    address when it is allocated, and removed from the tree when it
+    is freed.
+ 
+    A red-black tree is a balanced binary tree with the following
+    properties:
+ 
+    1. Every node is either red or black.
+    2. Every leaf is black.
+    3. If a node is red, then both of its children are black.
+    4. Every simple path from a node to a descendant leaf contains
+    the same number of black nodes.
+    5. The root is always black.
+ 
+    When nodes are inserted into the tree, or deleted from the tree,
+    the tree is "fixed" so that these properties are always true.
+ 
+    A red-black tree with N internal nodes has height at most 2
+    log(N+1).  Searches, insertions and deletions are done in O(log N).
+    Please see a text book about data structures for a detailed
+    description of red-black trees.  Any book worth its salt should
+    describe them.  */
+ 
+ struct mem_node
+ {
+   /* Children of this node.  These pointers are never NULL.  When there
+      is no child, the value is MEM_NIL, which points to a dummy node.  */
+   struct mem_node *left, *right;
+ 
+   /* The parent of this node.  In the root node, this is NULL.  */
+   struct mem_node *parent;
+ 
+   /* Start and end of allocated region.  */
+   void *start, *end;
+ 
+   /* Node color.  */
+   enum {MEM_BLACK, MEM_RED} color;
+ 
+   /* Memory type.  */
+   enum mem_type type;
+ };
+ 
+ /* Base address of stack.  Set in main.  */
+ 
+ Lisp_Object *stack_base;
+ 
+ /* Root of the tree describing allocated Lisp memory.  */
+ 
+ static struct mem_node *mem_root;
+ 
+ /* Lowest and highest known address in the heap.  */
+ 
+ static void *min_heap_address, *max_heap_address;
+ 
+ /* Sentinel node of the tree.  */
+ 
+ static struct mem_node mem_z;
+ #define MEM_NIL &mem_z
+ 
+ static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
+ static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum 
mem_type));
+ static void lisp_free P_ ((POINTER_TYPE *));
+ static void mark_stack P_ ((void));
+ static int live_vector_p P_ ((struct mem_node *, void *));
+ static int live_buffer_p P_ ((struct mem_node *, void *));
+ static int live_string_p P_ ((struct mem_node *, void *));
+ static int live_cons_p P_ ((struct mem_node *, void *));
+ static int live_symbol_p P_ ((struct mem_node *, void *));
+ static int live_float_p P_ ((struct mem_node *, void *));
+ static int live_misc_p P_ ((struct mem_node *, void *));
+ static void mark_maybe_object P_ ((Lisp_Object));
+ static void mark_memory P_ ((void *, void *));
+ static void mem_init P_ ((void));
+ static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
+ static void mem_insert_fixup P_ ((struct mem_node *));
+ static void mem_rotate_left P_ ((struct mem_node *));
+ static void mem_rotate_right P_ ((struct mem_node *));
+ static void mem_delete P_ ((struct mem_node *));
+ static void mem_delete_fixup P_ ((struct mem_node *));
+ static INLINE struct mem_node *mem_find P_ ((void *));
+ 
+ #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
+ static void check_gcpros P_ ((void));
+ #endif
+ 
+ #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
+ 
+ /* Recording what needs to be marked for gc.  */
+ 
+ struct gcpro *gcprolist;
+ 
+ /* Addresses of staticpro'd variables.  Initialize it to a nonzero
+    value; otherwise some compilers put it into BSS.  */
+ 
+ #define NSTATICS 1280
+ Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
+ 
+ /* Index of next unused slot in staticvec.  */
+ 
+ int staticidx = 0;
+ 
+ static POINTER_TYPE *pure_alloc P_ ((size_t, int));
+ 
+ 
+ /* Value is SZ rounded up to the next multiple of ALIGNMENT.
+    ALIGNMENT must be a power of 2.  */
+ 
+ #define ALIGN(ptr, ALIGNMENT) \
+   ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
+                    & ~((ALIGNMENT) - 1)))
+ 
+ 
+ 
+ /************************************************************************
+                               Malloc
+  ************************************************************************/
+ 
+ /* Function malloc calls this if it finds we are near exhausting storage.  */
+ 
+ void
+ malloc_warning (str)
+      char *str;
+ {
+   pending_malloc_warning = str;
+ }
+ 
+ 
+ /* Display an already-pending malloc warning.  */
+ 
+ void
+ display_malloc_warning ()
+ {
+   call3 (intern ("display-warning"),
+        intern ("alloc"),
+        build_string (pending_malloc_warning),
+        intern ("emergency"));
+   pending_malloc_warning = 0;
+ }
+ 
+ 
+ #ifdef DOUG_LEA_MALLOC
+ #  define BYTES_USED (mallinfo ().arena)
+ #else
+ #  define BYTES_USED _bytes_used
+ #endif
+ 
+ 
+ /* Called if malloc returns zero.  */
+ 
+ void
+ memory_full ()
+ {
+   Vmemory_full = Qt;
+ 
+ #ifndef SYSTEM_MALLOC
+   bytes_used_when_full = BYTES_USED;
+ #endif
+ 
+   /* The first time we get here, free the spare memory.  */
+   if (spare_memory)
+     {
+       free (spare_memory);
+       spare_memory = 0;
+     }
+ 
+   /* This used to call error, but if we've run out of memory, we could
+      get infinite recursion trying to build the string.  */
+   while (1)
+     Fsignal (Qnil, Vmemory_signal_data);
+ }
+ 
+ 
+ /* Called if we can't allocate relocatable space for a buffer.  */
+ 
+ void
+ buffer_memory_full ()
+ {
+   /* If buffers use the relocating allocator, no need to free
+      spare_memory, because we may have plenty of malloc space left
+      that we could get, and if we don't, the malloc that fails will
+      itself cause spare_memory to be freed.  If buffers don't use the
+      relocating allocator, treat this like any other failing
+      malloc.  */
+ 
+ #ifndef REL_ALLOC
+   memory_full ();
+ #endif
+ 
+   Vmemory_full = Qt;
+ 
+   /* This used to call error, but if we've run out of memory, we could
+      get infinite recursion trying to build the string.  */
+   while (1)
+     Fsignal (Qnil, Vmemory_signal_data);
+ }
+ 
+ 
+ /* Like malloc but check for no memory and block interrupt input..  */
+ 
+ POINTER_TYPE *
+ xmalloc (size)
+      size_t size;
+ {
+   register POINTER_TYPE *val;
+ 
+   BLOCK_INPUT;
+   val = (POINTER_TYPE *) malloc (size);
+   UNBLOCK_INPUT;
+ 
+   if (!val && size)
+     memory_full ();
+   return val;
+ }
+ 
+ 
+ /* Like realloc but check for no memory and block interrupt input..  */
+ 
+ POINTER_TYPE *
+ xrealloc (block, size)
+      POINTER_TYPE *block;
+      size_t size;
+ {
+   register POINTER_TYPE *val;
+ 
+   BLOCK_INPUT;
+   /* We must call malloc explicitly when BLOCK is 0, since some
+      reallocs don't do this.  */
+   if (! block)
+     val = (POINTER_TYPE *) malloc (size);
+   else
+     val = (POINTER_TYPE *) realloc (block, size);
+   UNBLOCK_INPUT;
+ 
+   if (!val && size) memory_full ();
+   return val;
+ }
+ 
+ 
+ /* Like free but block interrupt input..  */
+ 
+ void
+ xfree (block)
+      POINTER_TYPE *block;
+ {
+   BLOCK_INPUT;
+   free (block);
+   UNBLOCK_INPUT;
+ }
+ 
+ 
+ /* Like strdup, but uses xmalloc.  */
+ 
+ char *
+ xstrdup (s)
+      const char *s;
+ {
+   size_t len = strlen (s) + 1;
+   char *p = (char *) xmalloc (len);
+   bcopy (s, p, len);
+   return p;
+ }
+ 
+ 
+ /* Like malloc but used for allocating Lisp data.  NBYTES is the
+    number of bytes to allocate, TYPE describes the intended use of the
+    allcated memory block (for strings, for conses, ...).  */
+ 
+ static void *lisp_malloc_loser;
+ 
+ static POINTER_TYPE *
+ lisp_malloc (nbytes, type)
+      size_t nbytes;
+      enum mem_type type;
+ {
+   register void *val;
+ 
+   BLOCK_INPUT;
+ 
+ #ifdef GC_MALLOC_CHECK
+   allocated_mem_type = type;
+ #endif
+ 
+   val = (void *) malloc (nbytes);
+ 
+   /* If the memory just allocated cannot be addressed thru a Lisp
+      object's pointer, and it needs to be,
+      that's equivalent to running out of memory.  */
+   if (val && type != MEM_TYPE_NON_LISP)
+     {
+       Lisp_Object tem;
+       XSETCONS (tem, (char *) val + nbytes - 1);
+       if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
+       {
+         lisp_malloc_loser = val;
+         free (val);
+         val = 0;
+       }
+     }
+ 
+ #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
+   if (val && type != MEM_TYPE_NON_LISP)
+     mem_insert (val, (char *) val + nbytes, type);
+ #endif
+ 
+   UNBLOCK_INPUT;
+   if (!val && nbytes)
+     memory_full ();
+   return val;
+ }
+ 
+ /* Free BLOCK.  This must be called to free memory allocated with a
+    call to lisp_malloc.  */
+ 
+ static void
+ lisp_free (block)
+      POINTER_TYPE *block;
+ {
+   BLOCK_INPUT;
+   free (block);
+ #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
+   mem_delete (mem_find (block));
+ #endif
+   UNBLOCK_INPUT;
+ }
+ 
+ /* Allocation of aligned blocks of memory to store Lisp data.              */
+ /* The entry point is lisp_align_malloc which returns blocks of at most    */
+ /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary.  */
+ 
+ 
+ /* BLOCK_ALIGN has to be a power of 2.  */
+ #define BLOCK_ALIGN (1 << 10)
+ 
+ /* Padding to leave at the end of a malloc'd block.  This is to give
+    malloc a chance to minimize the amount of memory wasted to alignment.
+    It should be tuned to the particular malloc library used.
+    On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
+    posix_memalign on the other hand would ideally prefer a value of 4
+    because otherwise, there's 1020 bytes wasted between each ablocks.
+    But testing shows that those 1020 will most of the time be efficiently
+    used by malloc to place other objects, so a value of 0 is still preferable
+    unless you have a lot of cons&floats and virtually nothing else.  */
+ #define BLOCK_PADDING 0
+ #define BLOCK_BYTES \
+   (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
+ 
+ /* Internal data structures and constants.  */
+ 
+ #define ABLOCKS_SIZE 16
+ 
+ /* An aligned block of memory.  */
+ struct ablock
+ {
+   union
+   {
+     char payload[BLOCK_BYTES];
+     struct ablock *next_free;
+   } x;
+   /* `abase' is the aligned base of the ablocks.  */
+   /* It is overloaded to hold the virtual `busy' field that counts
+      the number of used ablock in the parent ablocks.
+      The first ablock has the `busy' field, the others have the `abase'
+      field.  To tell the difference, we assume that pointers will have
+      integer values larger than 2 * ABLOCKS_SIZE.  The lowest bit of `busy'
+      is used to tell whether the real base of the parent ablocks is `abase'
+      (if not, the word before the first ablock holds a pointer to the
+      real base).  */
+   struct ablocks *abase;
+   /* The padding of all but the last ablock is unused.  The padding of
+      the last ablock in an ablocks is not allocated.  */
+ #if BLOCK_PADDING
+   char padding[BLOCK_PADDING];
+ #endif
+ };
+ 
+ /* A bunch of consecutive aligned blocks.  */
+ struct ablocks
+ {
+   struct ablock blocks[ABLOCKS_SIZE];
+ };
+ 
+ /* Size of the block requested from malloc or memalign.  */
+ #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
+ 
+ #define ABLOCK_ABASE(block) \
+   (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE)   \
+    ? (struct ablocks *)(block)                                        \
+    : (block)->abase)
+ 
+ /* Virtual `busy' field.  */
+ #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
+ 
+ /* Pointer to the (not necessarily aligned) malloc block.  */
+ #ifdef HAVE_POSIX_MEMALIGN
+ #define ABLOCKS_BASE(abase) (abase)
+ #else
+ #define ABLOCKS_BASE(abase) \
+   (1 & (int) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
+ #endif
+ 
+ /* The list of free ablock.   */
+ static struct ablock *free_ablock;
+ 
+ /* Allocate an aligned block of nbytes.
+    Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
+    smaller or equal to BLOCK_BYTES.  */
+ static POINTER_TYPE *
+ lisp_align_malloc (nbytes, type)
+      size_t nbytes;
+      enum mem_type type;
+ {
+   void *base, *val;
+   struct ablocks *abase;
+ 
+   eassert (nbytes <= BLOCK_BYTES);
+ 
+   BLOCK_INPUT;
+ 
+ #ifdef GC_MALLOC_CHECK
+   allocated_mem_type = type;
+ #endif
+ 
+   if (!free_ablock)
+     {
+       int i, aligned;
+ 
+ #ifdef DOUG_LEA_MALLOC
+       /* Prevent mmap'ing the chunk.  Lisp data may not be mmap'ed
+        because mapped region contents are not preserved in
+        a dumped Emacs.  */
+       mallopt (M_MMAP_MAX, 0);
+ #endif
+ 
+ #ifdef HAVE_POSIX_MEMALIGN
+       {
+       int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
+       abase = err ? (base = NULL) : base;
+       }
+ #else
+       base = malloc (ABLOCKS_BYTES);
+       abase = ALIGN (base, BLOCK_ALIGN);
+ #endif
+ 
+       aligned = (base == abase);
+       if (!aligned)
+       ((void**)abase)[-1] = base;
+ 
+ #ifdef DOUG_LEA_MALLOC
+       /* Back to a reasonable maximum of mmap'ed areas.  */
+       mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
+ #endif
+ 
+       /* If the memory just allocated cannot be addressed thru a Lisp
+        object's pointer, and it needs to be, that's equivalent to
+        running out of memory.  */
+       if (type != MEM_TYPE_NON_LISP)
+       {
+         Lisp_Object tem;
+         char *end = (char *) base + ABLOCKS_BYTES - 1;
+         XSETCONS (tem, end);
+         if ((char *) XCONS (tem) != end)
+           {
+             lisp_malloc_loser = base;
+             free (base);
+             UNBLOCK_INPUT;
+             memory_full ();
+           }
+       }
+ 
+       /* Initialize the blocks and put them on the free list.
+        Is `base' was not properly aligned, we can't use the last block.  */
+       for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
+       {
+         abase->blocks[i].abase = abase;
+         abase->blocks[i].x.next_free = free_ablock;
+         free_ablock = &abase->blocks[i];
+       }
+       ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
+ 
+       eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
+       eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary 
*/
+       eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
+       eassert (ABLOCKS_BASE (abase) == base);
+       eassert (aligned == (int)ABLOCKS_BUSY (abase));
+     }
+ 
+   abase = ABLOCK_ABASE (free_ablock);
+   ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (int) ABLOCKS_BUSY (abase));
+   val = free_ablock;
+   free_ablock = free_ablock->x.next_free;
+ 
+ #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
+   if (val && type != MEM_TYPE_NON_LISP)
+     mem_insert (val, (char *) val + nbytes, type);
+ #endif
+ 
+   UNBLOCK_INPUT;
+   if (!val && nbytes)
+     memory_full ();
+ 
+   eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
+   return val;
+ }
+ 
+ static void
+ lisp_align_free (block)
+      POINTER_TYPE *block;
+ {
+   struct ablock *ablock = block;
+   struct ablocks *abase = ABLOCK_ABASE (ablock);
+ 
+   BLOCK_INPUT;
+ #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
+   mem_delete (mem_find (block));
+ #endif
+   /* Put on free list.  */
+   ablock->x.next_free = free_ablock;
+   free_ablock = ablock;
+   /* Update busy count.  */
+   ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (int) ABLOCKS_BUSY (abase));
+   
+   if (2 > (int) ABLOCKS_BUSY (abase))
+     { /* All the blocks are free.  */
+       int i = 0, aligned = (int) ABLOCKS_BUSY (abase);
+       struct ablock **tem = &free_ablock;
+       struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : 
ABLOCKS_SIZE - 1];
+ 
+       while (*tem)
+       {
+         if (*tem >= (struct ablock *) abase && *tem < atop)
+           {
+             i++;
+             *tem = (*tem)->x.next_free;
+           }
+         else
+           tem = &(*tem)->x.next_free;
+       }
+       eassert ((aligned & 1) == aligned);
+       eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
+       free (ABLOCKS_BASE (abase));
+     }
+   UNBLOCK_INPUT;
+ }
+ 
+ /* Return a new buffer structure allocated from the heap with
+    a call to lisp_malloc.  */
+ 
+ struct buffer *
+ allocate_buffer ()
+ {
+   struct buffer *b
+     = (struct buffer *) lisp_malloc (sizeof (struct buffer),
+                                    MEM_TYPE_BUFFER);
+   return b;
+ }
+ 
+ 
+ /* Arranging to disable input signals while we're in malloc.
+ 
+    This only works with GNU malloc.  To help out systems which can't
+    use GNU malloc, all the calls to malloc, realloc, and free
+    elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
+    pairs; unfortunately, we have no idea what C library functions
+    might call malloc, so we can't really protect them unless you're
+    using GNU malloc.  Fortunately, most of the major operating systems
+    can use GNU malloc.  */
+ 
+ #ifndef SYSTEM_MALLOC
+ #ifndef DOUG_LEA_MALLOC
+ extern void * (*__malloc_hook) P_ ((size_t));
+ extern void * (*__realloc_hook) P_ ((void *, size_t));
+ extern void (*__free_hook) P_ ((void *));
+ /* Else declared in malloc.h, perhaps with an extra arg.  */
+ #endif /* DOUG_LEA_MALLOC */
+ static void * (*old_malloc_hook) ();
+ static void * (*old_realloc_hook) ();
+ static void (*old_free_hook) ();
+ 
+ /* This function is used as the hook for free to call.  */
+ 
+ static void
+ emacs_blocked_free (ptr)
+      void *ptr;
+ {
+   BLOCK_INPUT;
+ 
+ #ifdef GC_MALLOC_CHECK
+   if (ptr)
+     {
+       struct mem_node *m;
+ 
+       m = mem_find (ptr);
+       if (m == MEM_NIL || m->start != ptr)
+       {
+         fprintf (stderr,
+                  "Freeing `%p' which wasn't allocated with malloc\n", ptr);
+         abort ();
+       }
+       else
+       {
+         /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
+         mem_delete (m);
+       }
+     }
+ #endif /* GC_MALLOC_CHECK */
+ 
+   __free_hook = old_free_hook;
+   free (ptr);
+ 
+   /* If we released our reserve (due to running out of memory),
+      and we have a fair amount free once again,
+      try to set aside another reserve in case we run out once more.  */
+   if (spare_memory == 0
+       /* Verify there is enough space that even with the malloc
+        hysteresis this call won't run out again.
+        The code here is correct as long as SPARE_MEMORY
+        is substantially larger than the block size malloc uses.  */
+       && (bytes_used_when_full
+         > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
+     spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
+ 
+   __free_hook = emacs_blocked_free;
+   UNBLOCK_INPUT;
+ }
+ 
+ 
+ /* If we released our reserve (due to running out of memory),
+    and we have a fair amount free once again,
+    try to set aside another reserve in case we run out once more.
+ 
+    This is called when a relocatable block is freed in ralloc.c.  */
+ 
+ void
+ refill_memory_reserve ()
+ {
+   if (spare_memory == 0)
+     spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
+ }
+ 
+ 
+ /* This function is the malloc hook that Emacs uses.  */
+ 
+ static void *
+ emacs_blocked_malloc (size)
+      size_t size;
+ {
+   void *value;
+ 
+   BLOCK_INPUT;
+   __malloc_hook = old_malloc_hook;
+ #ifdef DOUG_LEA_MALLOC
+     mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
+ #else
+     __malloc_extra_blocks = malloc_hysteresis;
+ #endif
+ 
+   value = (void *) malloc (size);
+ 
+ #ifdef GC_MALLOC_CHECK
+   {
+     struct mem_node *m = mem_find (value);
+     if (m != MEM_NIL)
+       {
+       fprintf (stderr, "Malloc returned %p which is already in use\n",
+                value);
+       fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
+                m->start, m->end, (char *) m->end - (char *) m->start,
+                m->type);
+       abort ();
+       }
+ 
+     if (!dont_register_blocks)
+       {
+       mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
+       allocated_mem_type = MEM_TYPE_NON_LISP;
+       }
+   }
+ #endif /* GC_MALLOC_CHECK */
+ 
+   __malloc_hook = emacs_blocked_malloc;
+   UNBLOCK_INPUT;
+ 
+   /* fprintf (stderr, "%p malloc\n", value); */
+   return value;
+ }
+ 
+ 
+ /* This function is the realloc hook that Emacs uses.  */
+ 
+ static void *
+ emacs_blocked_realloc (ptr, size)
+      void *ptr;
+      size_t size;
+ {
+   void *value;
+ 
+   BLOCK_INPUT;
+   __realloc_hook = old_realloc_hook;
+ 
+ #ifdef GC_MALLOC_CHECK
+   if (ptr)
+     {
+       struct mem_node *m = mem_find (ptr);
+       if (m == MEM_NIL || m->start != ptr)
+       {
+         fprintf (stderr,
+                  "Realloc of %p which wasn't allocated with malloc\n",
+                  ptr);
+         abort ();
+       }
+ 
+       mem_delete (m);
+     }
+ 
+   /* fprintf (stderr, "%p -> realloc\n", ptr); */
+ 
+   /* Prevent malloc from registering blocks.  */
+   dont_register_blocks = 1;
+ #endif /* GC_MALLOC_CHECK */
+ 
+   value = (void *) realloc (ptr, size);
+ 
+ #ifdef GC_MALLOC_CHECK
+   dont_register_blocks = 0;
+ 
+   {
+     struct mem_node *m = mem_find (value);
+     if (m != MEM_NIL)
+       {
+       fprintf (stderr, "Realloc returns memory that is already in use\n");
+       abort ();
+       }
+ 
+     /* Can't handle zero size regions in the red-black tree.  */
+     mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
+   }
+ 
+   /* fprintf (stderr, "%p <- realloc\n", value); */
+ #endif /* GC_MALLOC_CHECK */
+ 
+   __realloc_hook = emacs_blocked_realloc;
+   UNBLOCK_INPUT;
+ 
+   return value;
+ }
+ 
+ 
+ /* Called from main to set up malloc to use our hooks.  */
+ 
+ void
+ uninterrupt_malloc ()
+ {
+   if (__free_hook != emacs_blocked_free)
+     old_free_hook = __free_hook;
+   __free_hook = emacs_blocked_free;
+ 
+   if (__malloc_hook != emacs_blocked_malloc)
+     old_malloc_hook = __malloc_hook;
+   __malloc_hook = emacs_blocked_malloc;
+ 
+   if (__realloc_hook != emacs_blocked_realloc)
+     old_realloc_hook = __realloc_hook;
+   __realloc_hook = emacs_blocked_realloc;
+ }
+ 
+ #endif /* not SYSTEM_MALLOC */
+ 
+ 
+ 
+ /***********************************************************************
+                        Interval Allocation
+  ***********************************************************************/
+ 
+ /* Number of intervals allocated in an interval_block structure.
+    The 1020 is 1024 minus malloc overhead.  */
+ 
+ #define INTERVAL_BLOCK_SIZE \
+   ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
+ 
+ /* Intervals are allocated in chunks in form of an interval_block
+    structure.  */
+ 
+ struct interval_block
+ {
+   struct interval_block *next;
+   struct interval intervals[INTERVAL_BLOCK_SIZE];
+ };
+ 
+ /* Current interval block.  Its `next' pointer points to older
+    blocks.  */
+ 
+ struct interval_block *interval_block;
+ 
+ /* Index in interval_block above of the next unused interval
+    structure.  */
+ 
+ static int interval_block_index;
+ 
+ /* Number of free and live intervals.  */
+ 
+ static int total_free_intervals, total_intervals;
+ 
+ /* List of free intervals.  */
+ 
+ INTERVAL interval_free_list;
+ 
+ /* Total number of interval blocks now in use.  */
+ 
+ int n_interval_blocks;
+ 
+ 
+ /* Initialize interval allocation.  */
+ 
+ static void
+ init_intervals ()
+ {
+   interval_block
+     = (struct interval_block *) lisp_malloc (sizeof *interval_block,
+                                            MEM_TYPE_NON_LISP);
+   interval_block->next = 0;
+   bzero ((char *) interval_block->intervals, sizeof 
interval_block->intervals);
+   interval_block_index = 0;
+   interval_free_list = 0;
+   n_interval_blocks = 1;
+ }
+ 
+ 
+ /* Return a new interval.  */
+ 
+ INTERVAL
+ make_interval ()
+ {
+   INTERVAL val;
+ 
+   if (interval_free_list)
+     {
+       val = interval_free_list;
+       interval_free_list = INTERVAL_PARENT (interval_free_list);
+     }
+   else
+     {
+       if (interval_block_index == INTERVAL_BLOCK_SIZE)
+       {
+         register struct interval_block *newi;
+ 
+         newi = (struct interval_block *) lisp_malloc (sizeof *newi,
+                                                       MEM_TYPE_NON_LISP);
+ 
+         newi->next = interval_block;
+         interval_block = newi;
+         interval_block_index = 0;
+         n_interval_blocks++;
+       }
+       val = &interval_block->intervals[interval_block_index++];
+     }
+   consing_since_gc += sizeof (struct interval);
+   intervals_consed++;
+   RESET_INTERVAL (val);
+   val->gcmarkbit = 0;
+   return val;
+ }
+ 
+ 
+ /* Mark Lisp objects in interval I. */
+ 
+ static void
+ mark_interval (i, dummy)
+      register INTERVAL i;
+      Lisp_Object dummy;
+ {
+   eassert (!i->gcmarkbit);            /* Intervals are never shared.  */
+   i->gcmarkbit = 1;
+   mark_object (i->plist);
+ }
+ 
+ 
+ /* Mark the interval tree rooted in TREE.  Don't call this directly;
+    use the macro MARK_INTERVAL_TREE instead.  */
+ 
+ static void
+ mark_interval_tree (tree)
+      register INTERVAL tree;
+ {
+   /* No need to test if this tree has been marked already; this
+      function is always called through the MARK_INTERVAL_TREE macro,
+      which takes care of that.  */
+ 
+   traverse_intervals_noorder (tree, mark_interval, Qnil);
+ }
+ 
+ 
+ /* Mark the interval tree rooted in I.  */
+ 
+ #define MARK_INTERVAL_TREE(i)                         \
+   do {                                                        \
+     if (!NULL_INTERVAL_P (i) && !i->gcmarkbit)                \
+       mark_interval_tree (i);                         \
+   } while (0)
+ 
+ 
+ #define UNMARK_BALANCE_INTERVALS(i)                   \
+   do {                                                        \
+    if (! NULL_INTERVAL_P (i))                         \
+      (i) = balance_intervals (i);                     \
+   } while (0)
+ 
+ 
+ /* Number support.  If NO_UNION_TYPE isn't in effect, we
+    can't create number objects in macros.  */
+ #ifndef make_number
+ Lisp_Object
+ make_number (n)
+      int n;
+ {
+   Lisp_Object obj;
+   obj.s.val = n;
+   obj.s.type = Lisp_Int;
+   return obj;
+ }
+ #endif
+ 
+ /***********************************************************************
+                         String Allocation
+  ***********************************************************************/
+ 
+ /* Lisp_Strings are allocated in string_block structures.  When a new
+    string_block is allocated, all the Lisp_Strings it contains are
+    added to a free-list string_free_list.  When a new Lisp_String is
+    needed, it is taken from that list.  During the sweep phase of GC,
+    string_blocks that are entirely free are freed, except two which
+    we keep.
+ 
+    String data is allocated from sblock structures.  Strings larger
+    than LARGE_STRING_BYTES, get their own sblock, data for smaller
+    strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
+ 
+    Sblocks consist internally of sdata structures, one for each
+    Lisp_String.  The sdata structure points to the Lisp_String it
+    belongs to.  The Lisp_String points back to the `u.data' member of
+    its sdata structure.
+ 
+    When a Lisp_String is freed during GC, it is put back on
+    string_free_list, and its `data' member and its sdata's `string'
+    pointer is set to null.  The size of the string is recorded in the
+    `u.nbytes' member of the sdata.  So, sdata structures that are no
+    longer used, can be easily recognized, and it's easy to compact the
+    sblocks of small strings which we do in compact_small_strings.  */
+ 
+ /* Size in bytes of an sblock structure used for small strings.  This
+    is 8192 minus malloc overhead.  */
+ 
+ #define SBLOCK_SIZE 8188
+ 
+ /* Strings larger than this are considered large strings.  String data
+    for large strings is allocated from individual sblocks.  */
+ 
+ #define LARGE_STRING_BYTES 1024
+ 
+ /* Structure describing string memory sub-allocated from an sblock.
+    This is where the contents of Lisp strings are stored.  */
+ 
+ struct sdata
+ {
+   /* Back-pointer to the string this sdata belongs to.  If null, this
+      structure is free, and the NBYTES member of the union below
+      contains the string's byte size (the same value that STRING_BYTES
+      would return if STRING were non-null).  If non-null, STRING_BYTES
+      (STRING) is the size of the data, and DATA contains the string's
+      contents.  */
+   struct Lisp_String *string;
+ 
+ #ifdef GC_CHECK_STRING_BYTES
+ 
+   EMACS_INT nbytes;
+   unsigned char data[1];
+ 
+ #define SDATA_NBYTES(S)       (S)->nbytes
+ #define SDATA_DATA(S) (S)->data
+ 
+ #else /* not GC_CHECK_STRING_BYTES */
+ 
+   union
+   {
+     /* When STRING in non-null.  */
+     unsigned char data[1];
+ 
+     /* When STRING is null.  */
+     EMACS_INT nbytes;
+   } u;
+ 
+ 
+ #define SDATA_NBYTES(S)       (S)->u.nbytes
+ #define SDATA_DATA(S) (S)->u.data
+ 
+ #endif /* not GC_CHECK_STRING_BYTES */
+ };
+ 
+ 
+ /* Structure describing a block of memory which is sub-allocated to
+    obtain string data memory for strings.  Blocks for small strings
+    are of fixed size SBLOCK_SIZE.  Blocks for large strings are made
+    as large as needed.  */
+ 
+ struct sblock
+ {
+   /* Next in list.  */
+   struct sblock *next;
+ 
+   /* Pointer to the next free sdata block.  This points past the end
+      of the sblock if there isn't any space left in this block.  */
+   struct sdata *next_free;
+ 
+   /* Start of data.  */
+   struct sdata first_data;
+ };
+ 
+ /* Number of Lisp strings in a string_block structure.  The 1020 is
+    1024 minus malloc overhead.  */
+ 
+ #define STRING_BLOCK_SIZE \
+   ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
+ 
+ /* Structure describing a block from which Lisp_String structures
+    are allocated.  */
+ 
+ struct string_block
+ {
+   struct string_block *next;
+   struct Lisp_String strings[STRING_BLOCK_SIZE];
+ };
+ 
+ /* Head and tail of the list of sblock structures holding Lisp string
+    data.  We always allocate from current_sblock.  The NEXT pointers
+    in the sblock structures go from oldest_sblock to current_sblock.  */
+ 
+ static struct sblock *oldest_sblock, *current_sblock;
+ 
+ /* List of sblocks for large strings.  */
+ 
+ static struct sblock *large_sblocks;
+ 
+ /* List of string_block structures, and how many there are.  */
+ 
+ static struct string_block *string_blocks;
+ static int n_string_blocks;
+ 
+ /* Free-list of Lisp_Strings.  */
+ 
+ static struct Lisp_String *string_free_list;
+ 
+ /* Number of live and free Lisp_Strings.  */
+ 
+ static int total_strings, total_free_strings;
+ 
+ /* Number of bytes used by live strings.  */
+ 
+ static int total_string_size;
+ 
+ /* Given a pointer to a Lisp_String S which is on the free-list
+    string_free_list, return a pointer to its successor in the
+    free-list.  */
+ 
+ #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
+ 
+ /* Return a pointer to the sdata structure belonging to Lisp string S.
+    S must be live, i.e. S->data must not be null.  S->data is actually
+    a pointer to the `u.data' member of its sdata structure; the
+    structure starts at a constant offset in front of that.  */
+ 
+ #ifdef GC_CHECK_STRING_BYTES
+ 
+ #define SDATA_OF_STRING(S) \
+      ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
+                       - sizeof (EMACS_INT)))
+ 
+ #else /* not GC_CHECK_STRING_BYTES */
+ 
+ #define SDATA_OF_STRING(S) \
+      ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
+ 
+ #endif /* not GC_CHECK_STRING_BYTES */
+ 
+ /* Value is the size of an sdata structure large enough to hold NBYTES
+    bytes of string data.  The value returned includes a terminating
+    NUL byte, the size of the sdata structure, and padding.  */
+ 
+ #ifdef GC_CHECK_STRING_BYTES
+ 
+ #define SDATA_SIZE(NBYTES)                    \
+      ((sizeof (struct Lisp_String *)          \
+        + (NBYTES) + 1                         \
+        + sizeof (EMACS_INT)                   \
+        + sizeof (EMACS_INT) - 1)              \
+       & ~(sizeof (EMACS_INT) - 1))
+ 
+ #else /* not GC_CHECK_STRING_BYTES */
+ 
+ #define SDATA_SIZE(NBYTES)                    \
+      ((sizeof (struct Lisp_String *)          \
+        + (NBYTES) + 1                         \
+        + sizeof (EMACS_INT) - 1)              \
+       & ~(sizeof (EMACS_INT) - 1))
+ 
+ #endif /* not GC_CHECK_STRING_BYTES */
+ 
+ /* Initialize string allocation.  Called from init_alloc_once.  */
+ 
+ void
+ init_strings ()
+ {
+   total_strings = total_free_strings = total_string_size = 0;
+   oldest_sblock = current_sblock = large_sblocks = NULL;
+   string_blocks = NULL;
+   n_string_blocks = 0;
+   string_free_list = NULL;
+ }
+ 
+ 
+ #ifdef GC_CHECK_STRING_BYTES
+ 
+ static int check_string_bytes_count;
+ 
+ void check_string_bytes P_ ((int));
+ void check_sblock P_ ((struct sblock *));
+ 
+ #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
+ 
+ 
+ /* Like GC_STRING_BYTES, but with debugging check.  */
+ 
+ int
+ string_bytes (s)
+      struct Lisp_String *s;
+ {
+   int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
+   if (!PURE_POINTER_P (s)
+       && s->data
+       && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
+     abort ();
+   return nbytes;
+ }
+ 
+ /* Check validity of Lisp strings' string_bytes member in B.  */
+ 
+ void
+ check_sblock (b)
+      struct sblock *b;
+ {
+   struct sdata *from, *end, *from_end;
+ 
+   end = b->next_free;
+ 
+   for (from = &b->first_data; from < end; from = from_end)
+     {
+       /* Compute the next FROM here because copying below may
+        overwrite data we need to compute it.  */
+       int nbytes;
+ 
+       /* Check that the string size recorded in the string is the
+        same as the one recorded in the sdata structure. */
+       if (from->string)
+       CHECK_STRING_BYTES (from->string);
+ 
+       if (from->string)
+       nbytes = GC_STRING_BYTES (from->string);
+       else
+       nbytes = SDATA_NBYTES (from);
+ 
+       nbytes = SDATA_SIZE (nbytes);
+       from_end = (struct sdata *) ((char *) from + nbytes);
+     }
+ }
+ 
+ 
+ /* Check validity of Lisp strings' string_bytes member.  ALL_P
+    non-zero means check all strings, otherwise check only most
+    recently allocated strings.  Used for hunting a bug.  */
+ 
+ void
+ check_string_bytes (all_p)
+      int all_p;
+ {
+   if (all_p)
+     {
+       struct sblock *b;
+ 
+       for (b = large_sblocks; b; b = b->next)
+       {
+         struct Lisp_String *s = b->first_data.string;
+         if (s)
+           CHECK_STRING_BYTES (s);
+       }
+ 
+       for (b = oldest_sblock; b; b = b->next)
+       check_sblock (b);
+     }
+   else
+     check_sblock (current_sblock);
+ }
+ 
+ #endif /* GC_CHECK_STRING_BYTES */
+ 
+ 
+ /* Return a new Lisp_String.  */
+ 
+ static struct Lisp_String *
+ allocate_string ()
+ {
+   struct Lisp_String *s;
+ 
+   /* If the free-list is empty, allocate a new string_block, and
+      add all the Lisp_Strings in it to the free-list.  */
+   if (string_free_list == NULL)
+     {
+       struct string_block *b;
+       int i;
+ 
+       b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
+       bzero (b, sizeof *b);
+       b->next = string_blocks;
+       string_blocks = b;
+       ++n_string_blocks;
+ 
+       for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
+       {
+         s = b->strings + i;
+         NEXT_FREE_LISP_STRING (s) = string_free_list;
+         string_free_list = s;
+       }
+ 
+       total_free_strings += STRING_BLOCK_SIZE;
+     }
+ 
+   /* Pop a Lisp_String off the free-list.  */
+   s = string_free_list;
+   string_free_list = NEXT_FREE_LISP_STRING (s);
+ 
+   /* Probably not strictly necessary, but play it safe.  */
+   bzero (s, sizeof *s);
+ 
+   --total_free_strings;
+   ++total_strings;
+   ++strings_consed;
+   consing_since_gc += sizeof *s;
+ 
+ #ifdef GC_CHECK_STRING_BYTES
+   if (!noninteractive
+ #ifdef MAC_OS8
+       && current_sblock
+ #endif
+      )
+     {
+       if (++check_string_bytes_count == 200)
+       {
+         check_string_bytes_count = 0;
+         check_string_bytes (1);
+       }
+       else
+       check_string_bytes (0);
+     }
+ #endif /* GC_CHECK_STRING_BYTES */
+ 
+   return s;
+ }
+ 
+ 
+ /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
+    plus a NUL byte at the end.  Allocate an sdata structure for S, and
+    set S->data to its `u.data' member.  Store a NUL byte at the end of
+    S->data.  Set S->size to NCHARS and S->size_byte to NBYTES.  Free
+    S->data if it was initially non-null.  */
+ 
+ void
+ allocate_string_data (s, nchars, nbytes)
+      struct Lisp_String *s;
+      int nchars, nbytes;
+ {
+   struct sdata *data, *old_data;
+   struct sblock *b;
+   int needed, old_nbytes;
+ 
+   /* Determine the number of bytes needed to store NBYTES bytes
+      of string data.  */
+   needed = SDATA_SIZE (nbytes);
+ 
+   if (nbytes > LARGE_STRING_BYTES)
+     {
+       size_t size = sizeof *b - sizeof (struct sdata) + needed;
+ 
+ #ifdef DOUG_LEA_MALLOC
+       /* Prevent mmap'ing the chunk.  Lisp data may not be mmap'ed
+        because mapped region contents are not preserved in
+        a dumped Emacs.
+ 
+          In case you think of allowing it in a dumped Emacs at the
+          cost of not being able to re-dump, there's another reason:
+          mmap'ed data typically have an address towards the top of the
+          address space, which won't fit into an EMACS_INT (at least on
+          32-bit systems with the current tagging scheme).  --fx  */
+       mallopt (M_MMAP_MAX, 0);
+ #endif
+ 
+       b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
+ 
+ #ifdef DOUG_LEA_MALLOC
+       /* Back to a reasonable maximum of mmap'ed areas. */
+       mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
+ #endif
+ 
+       b->next_free = &b->first_data;
+       b->first_data.string = NULL;
+       b->next = large_sblocks;
+       large_sblocks = b;
+     }
+   else if (current_sblock == NULL
+          || (((char *) current_sblock + SBLOCK_SIZE
+               - (char *) current_sblock->next_free)
+              < needed))
+     {
+       /* Not enough room in the current sblock.  */
+       b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
+       b->next_free = &b->first_data;
+       b->first_data.string = NULL;
+       b->next = NULL;
+ 
+       if (current_sblock)
+       current_sblock->next = b;
+       else
+       oldest_sblock = b;
+       current_sblock = b;
+     }
+   else
+     b = current_sblock;
+ 
+   old_data = s->data ? SDATA_OF_STRING (s) : NULL;
+   old_nbytes = GC_STRING_BYTES (s);
+ 
+   data = b->next_free;
+   data->string = s;
+   s->data = SDATA_DATA (data);
+ #ifdef GC_CHECK_STRING_BYTES
+   SDATA_NBYTES (data) = nbytes;
+ #endif
+   s->size = nchars;
+   s->size_byte = nbytes;
+   s->data[nbytes] = '\0';
+   b->next_free = (struct sdata *) ((char *) data + needed);
+ 
+   /* If S had already data assigned, mark that as free by setting its
+      string back-pointer to null, and recording the size of the data
+      in it.  */
+   if (old_data)
+     {
+       SDATA_NBYTES (old_data) = old_nbytes;
+       old_data->string = NULL;
+     }
+ 
+   consing_since_gc += needed;
+ }
+ 
+ 
+ /* Sweep and compact strings.  */
+ 
+ static void
+ sweep_strings ()
+ {
+   struct string_block *b, *next;
+   struct string_block *live_blocks = NULL;
+ 
+   string_free_list = NULL;
+   total_strings = total_free_strings = 0;
+   total_string_size = 0;
+ 
+   /* Scan strings_blocks, free Lisp_Strings that aren't marked.  */
+   for (b = string_blocks; b; b = next)
+     {
+       int i, nfree = 0;
+       struct Lisp_String *free_list_before = string_free_list;
+ 
+       next = b->next;
+ 
+       for (i = 0; i < STRING_BLOCK_SIZE; ++i)
+       {
+         struct Lisp_String *s = b->strings + i;
+ 
+         if (s->data)
+           {
+             /* String was not on free-list before.  */
+             if (STRING_MARKED_P (s))
+               {
+                 /* String is live; unmark it and its intervals.  */
+                 UNMARK_STRING (s);
+ 
+                 if (!NULL_INTERVAL_P (s->intervals))
+                   UNMARK_BALANCE_INTERVALS (s->intervals);
+ 
+                 ++total_strings;
+                 total_string_size += STRING_BYTES (s);
+               }
+             else
+               {
+                 /* String is dead.  Put it on the free-list.  */
+                 struct sdata *data = SDATA_OF_STRING (s);
+ 
+                 /* Save the size of S in its sdata so that we know
+                    how large that is.  Reset the sdata's string
+                    back-pointer so that we know it's free.  */
+ #ifdef GC_CHECK_STRING_BYTES
+                 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
+                   abort ();
+ #else
+                 data->u.nbytes = GC_STRING_BYTES (s);
+ #endif
+                 data->string = NULL;
+ 
+                 /* Reset the strings's `data' member so that we
+                    know it's free.  */
+                 s->data = NULL;
+ 
+                 /* Put the string on the free-list.  */
+                 NEXT_FREE_LISP_STRING (s) = string_free_list;
+                 string_free_list = s;
+                 ++nfree;
+               }
+           }
+         else
+           {
+             /* S was on the free-list before.  Put it there again.  */
+             NEXT_FREE_LISP_STRING (s) = string_free_list;
+             string_free_list = s;
+             ++nfree;
+           }
+       }
+ 
+       /* Free blocks that contain free Lisp_Strings only, except
+        the first two of them.  */
+       if (nfree == STRING_BLOCK_SIZE
+         && total_free_strings > STRING_BLOCK_SIZE)
+       {
+         lisp_free (b);
+         --n_string_blocks;
+         string_free_list = free_list_before;
+       }
+       else
+       {
+         total_free_strings += nfree;
+         b->next = live_blocks;
+         live_blocks = b;
+       }
+     }
+ 
+   string_blocks = live_blocks;
+   free_large_strings ();
+   compact_small_strings ();
+ }
+ 
+ 
+ /* Free dead large strings.  */
+ 
+ static void
+ free_large_strings ()
+ {
+   struct sblock *b, *next;
+   struct sblock *live_blocks = NULL;
+ 
+   for (b = large_sblocks; b; b = next)
+     {
+       next = b->next;
+ 
+       if (b->first_data.string == NULL)
+       lisp_free (b);
+       else
+       {
+         b->next = live_blocks;
+         live_blocks = b;
+       }
+     }
+ 
+   large_sblocks = live_blocks;
+ }
+ 
+ 
+ /* Compact data of small strings.  Free sblocks that don't contain
+    data of live strings after compaction.  */
+ 
+ static void
+ compact_small_strings ()
+ {
+   struct sblock *b, *tb, *next;
+   struct sdata *from, *to, *end, *tb_end;
+   struct sdata *to_end, *from_end;
+ 
+   /* TB is the sblock we copy to, TO is the sdata within TB we copy
+      to, and TB_END is the end of TB.  */
+   tb = oldest_sblock;
+   tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
+   to = &tb->first_data;
+ 
+   /* Step through the blocks from the oldest to the youngest.  We
+      expect that old blocks will stabilize over time, so that less
+      copying will happen this way.  */
+   for (b = oldest_sblock; b; b = b->next)
+     {
+       end = b->next_free;
+       xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
+ 
+       for (from = &b->first_data; from < end; from = from_end)
+       {
+         /* Compute the next FROM here because copying below may
+            overwrite data we need to compute it.  */
+         int nbytes;
+ 
+ #ifdef GC_CHECK_STRING_BYTES
+         /* Check that the string size recorded in the string is the
+            same as the one recorded in the sdata structure. */
+         if (from->string
+             && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
+           abort ();
+ #endif /* GC_CHECK_STRING_BYTES */
+ 
+         if (from->string)
+           nbytes = GC_STRING_BYTES (from->string);
+         else
+           nbytes = SDATA_NBYTES (from);
+ 
+         nbytes = SDATA_SIZE (nbytes);
+         from_end = (struct sdata *) ((char *) from + nbytes);
+ 
+         /* FROM->string non-null means it's alive.  Copy its data.  */
+         if (from->string)
+           {
+             /* If TB is full, proceed with the next sblock.  */
+             to_end = (struct sdata *) ((char *) to + nbytes);
+             if (to_end > tb_end)
+               {
+                 tb->next_free = to;
+                 tb = tb->next;
+                 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
+                 to = &tb->first_data;
+                 to_end = (struct sdata *) ((char *) to + nbytes);
+               }
+ 
+             /* Copy, and update the string's `data' pointer.  */
+             if (from != to)
+               {
+                 xassert (tb != b || to <= from);
+                 safe_bcopy ((char *) from, (char *) to, nbytes);
+                 to->string->data = SDATA_DATA (to);
+               }
+ 
+             /* Advance past the sdata we copied to.  */
+             to = to_end;
+           }
+       }
+     }
+ 
+   /* The rest of the sblocks following TB don't contain live data, so
+      we can free them.  */
+   for (b = tb->next; b; b = next)
+     {
+       next = b->next;
+       lisp_free (b);
+     }
+ 
+   tb->next_free = to;
+   tb->next = NULL;
+   current_sblock = tb;
+ }
+ 
+ 
+ DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
+        doc: /* Return a newly created string of length LENGTH, with each 
element being INIT.
+ Both LENGTH and INIT must be numbers.  */)
+      (length, init)
+      Lisp_Object length, init;
+ {
+   register Lisp_Object val;
+   register unsigned char *p, *end;
+   int c, nbytes;
+ 
+   CHECK_NATNUM (length);
+   CHECK_NUMBER (init);
+ 
+   c = XINT (init);
+   if (ASCII_CHAR_P (c))
+     {
+       nbytes = XINT (length);
+       val = make_uninit_string (nbytes);
+       p = SDATA (val);
+       end = p + SCHARS (val);
+       while (p != end)
+       *p++ = c;
+     }
+   else
+     {
+       unsigned char str[MAX_MULTIBYTE_LENGTH];
+       int len = CHAR_STRING (c, str);
+ 
+       nbytes = len * XINT (length);
+       val = make_uninit_multibyte_string (XINT (length), nbytes);
+       p = SDATA (val);
+       end = p + nbytes;
+       while (p != end)
+       {
+         bcopy (str, p, len);
+         p += len;
+       }
+     }
+ 
+   *p = 0;
+   return val;
+ }
+ 
+ 
+ DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
+        doc: /* Return a new bool-vector of length LENGTH, using INIT for as 
each element.
+ LENGTH must be a number.  INIT matters only in whether it is t or nil.  */)
+      (length, init)
+      Lisp_Object length, init;
+ {
+   register Lisp_Object val;
+   struct Lisp_Bool_Vector *p;
+   int real_init, i;
+   int length_in_chars, length_in_elts, bits_per_value;
+ 
+   CHECK_NATNUM (length);
+ 
+   bits_per_value = sizeof (EMACS_INT) * BITS_PER_CHAR;
+ 
+   length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
+   length_in_chars = ((XFASTINT (length) + BITS_PER_CHAR - 1) / BITS_PER_CHAR);
+ 
+   /* We must allocate one more elements than LENGTH_IN_ELTS for the
+      slot `size' of the struct Lisp_Bool_Vector.  */
+   val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
+   p = XBOOL_VECTOR (val);
+ 
+   /* Get rid of any bits that would cause confusion.  */
+   p->vector_size = 0;
+   XSETBOOL_VECTOR (val, p);
+   p->size = XFASTINT (length);
+ 
+   real_init = (NILP (init) ? 0 : -1);
+   for (i = 0; i < length_in_chars ; i++)
+     p->data[i] = real_init;
+ 
+   /* Clear the extraneous bits in the last byte.  */
+   if (XINT (length) != length_in_chars * BITS_PER_CHAR)
+     XBOOL_VECTOR (val)->data[length_in_chars - 1]
+       &= (1 << (XINT (length) % BITS_PER_CHAR)) - 1;
+ 
+   return val;
+ }
+ 
+ 
+ /* Make a string from NBYTES bytes at CONTENTS, and compute the number
+    of characters from the contents.  This string may be unibyte or
+    multibyte, depending on the contents.  */
+ 
+ Lisp_Object
+ make_string (contents, nbytes)
+      const char *contents;
+      int nbytes;
+ {
+   register Lisp_Object val;
+   int nchars, multibyte_nbytes;
+ 
+   parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
+   if (nbytes == nchars || nbytes != multibyte_nbytes)
+     /* CONTENTS contains no multibyte sequences or contains an invalid
+        multibyte sequence.  We must make unibyte string.  */
+     val = make_unibyte_string (contents, nbytes);
+   else
+     val = make_multibyte_string (contents, nchars, nbytes);
+   return val;
+ }
+ 
+ 
+ /* Make an unibyte string from LENGTH bytes at CONTENTS.  */
+ 
+ Lisp_Object
+ make_unibyte_string (contents, length)
+      const char *contents;
+      int length;
+ {
+   register Lisp_Object val;
+   val = make_uninit_string (length);
+   bcopy (contents, SDATA (val), length);
+   STRING_SET_UNIBYTE (val);
+   return val;
+ }
+ 
+ 
+ /* Make a multibyte string from NCHARS characters occupying NBYTES
+    bytes at CONTENTS.  */
+ 
+ Lisp_Object
+ make_multibyte_string (contents, nchars, nbytes)
+      const char *contents;
+      int nchars, nbytes;
+ {
+   register Lisp_Object val;
+   val = make_uninit_multibyte_string (nchars, nbytes);
+   bcopy (contents, SDATA (val), nbytes);
+   return val;
+ }
+ 
+ 
+ /* Make a string from NCHARS characters occupying NBYTES bytes at
+    CONTENTS.  It is a multibyte string if NBYTES != NCHARS.  */
+ 
+ Lisp_Object
+ make_string_from_bytes (contents, nchars, nbytes)
+      const char *contents;
+      int nchars, nbytes;
+ {
+   register Lisp_Object val;
+   val = make_uninit_multibyte_string (nchars, nbytes);
+   bcopy (contents, SDATA (val), nbytes);
+   if (SBYTES (val) == SCHARS (val))
+     STRING_SET_UNIBYTE (val);
+   return val;
+ }
+ 
+ 
+ /* Make a string from NCHARS characters occupying NBYTES bytes at
+    CONTENTS.  The argument MULTIBYTE controls whether to label the
+    string as multibyte.  If NCHARS is negative, it counts the number of
+    characters by itself.  */
+ 
+ Lisp_Object
+ make_specified_string (contents, nchars, nbytes, multibyte)
+      const char *contents;
+      int nchars, nbytes;
+      int multibyte;
+ {
+   register Lisp_Object val;
+ 
+   if (nchars < 0)
+     {
+       if (multibyte)
+       nchars = multibyte_chars_in_text (contents, nbytes);
+       else
+       nchars = nbytes;
+     }
+   val = make_uninit_multibyte_string (nchars, nbytes);
+   bcopy (contents, SDATA (val), nbytes);
+   if (!multibyte)
+     STRING_SET_UNIBYTE (val);
+   return val;
+ }
+ 
+ 
+ /* Make a string from the data at STR, treating it as multibyte if the
+    data warrants.  */
+ 
+ Lisp_Object
+ build_string (str)
+      const char *str;
+ {
+   return make_string (str, strlen (str));
+ }
+ 
+ 
+ /* Return an unibyte Lisp_String set up to hold LENGTH characters
+    occupying LENGTH bytes.  */
+ 
+ Lisp_Object
+ make_uninit_string (length)
+      int length;
+ {
+   Lisp_Object val;
+   val = make_uninit_multibyte_string (length, length);
+   STRING_SET_UNIBYTE (val);
+   return val;
+ }
+ 
+ 
+ /* Return a multibyte Lisp_String set up to hold NCHARS characters
+    which occupy NBYTES bytes.  */
+ 
+ Lisp_Object
+ make_uninit_multibyte_string (nchars, nbytes)
+      int nchars, nbytes;
+ {
+   Lisp_Object string;
+   struct Lisp_String *s;
+ 
+   if (nchars < 0)
+     abort ();
+ 
+   s = allocate_string ();
+   allocate_string_data (s, nchars, nbytes);
+   XSETSTRING (string, s);
+   string_chars_consed += nbytes;
+   return string;
+ }
+ 
+ 
+ 
+ /***********************************************************************
+                          Float Allocation
+  ***********************************************************************/
+ 
+ /* We store float cells inside of float_blocks, allocating a new
+    float_block with malloc whenever necessary.  Float cells reclaimed
+    by GC are put on a free list to be reallocated before allocating
+    any new float cells from the latest float_block.  */
+ 
+ #define FLOAT_BLOCK_SIZE \
+   (((BLOCK_BYTES - sizeof (struct float_block *)) * CHAR_BIT) \
+    / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
+ 
+ #define GETMARKBIT(block,n)                           \
+   (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)]       \
+     >> ((n) % (sizeof(int) * CHAR_BIT)))              \
+    & 1)
+ 
+ #define SETMARKBIT(block,n)                           \
+   (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
+   |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
+ 
+ #define UNSETMARKBIT(block,n)                         \
+   (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
+   &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
+ 
+ #define FLOAT_BLOCK(fptr) \
+   ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
+ 
+ #define FLOAT_INDEX(fptr) \
+   ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
+ 
+ struct float_block
+ {
+   /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job.  */
+   struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
+   int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
+   struct float_block *next;
+ };
+ 
+ #define FLOAT_MARKED_P(fptr) \
+   GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
+ 
+ #define FLOAT_MARK(fptr) \
+   SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
+ 
+ #define FLOAT_UNMARK(fptr) \
+   UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
+ 
+ /* Current float_block.  */
+ 
+ struct float_block *float_block;
+ 
+ /* Index of first unused Lisp_Float in the current float_block.  */
+ 
+ int float_block_index;
+ 
+ /* Total number of float blocks now in use.  */
+ 
+ int n_float_blocks;
+ 
+ /* Free-list of Lisp_Floats.  */
+ 
+ struct Lisp_Float *float_free_list;
+ 
+ 
+ /* Initialize float allocation.  */
+ 
+ void
+ init_float ()
+ {
+   float_block = NULL;
+   float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block.   
*/
+   float_free_list = 0;
+   n_float_blocks = 0;
+ }
+ 
+ 
+ /* Explicitly free a float cell by putting it on the free-list.  */
+ 
+ void
+ free_float (ptr)
+      struct Lisp_Float *ptr;
+ {
+   *(struct Lisp_Float **)&ptr->data = float_free_list;
+   float_free_list = ptr;
+ }
+ 
+ 
+ /* Return a new float object with value FLOAT_VALUE.  */
+ 
+ Lisp_Object
+ make_float (float_value)
+      double float_value;
+ {
+   register Lisp_Object val;
+ 
+   if (float_free_list)
+     {
+       /* We use the data field for chaining the free list
+        so that we won't use the same field that has the mark bit.  */
+       XSETFLOAT (val, float_free_list);
+       float_free_list = *(struct Lisp_Float **)&float_free_list->data;
+     }
+   else
+     {
+       if (float_block_index == FLOAT_BLOCK_SIZE)
+       {
+         register struct float_block *new;
+ 
+         new = (struct float_block *) lisp_align_malloc (sizeof *new,
+                                                         MEM_TYPE_FLOAT);
+         new->next = float_block;
+         float_block = new;
+         float_block_index = 0;
+         n_float_blocks++;
+       }
+       XSETFLOAT (val, &float_block->floats[float_block_index++]);
+     }
+ 
+   XFLOAT_DATA (val) = float_value;
+   FLOAT_UNMARK (XFLOAT (val));
+   consing_since_gc += sizeof (struct Lisp_Float);
+   floats_consed++;
+   return val;
+ }
+ 
+ 
+ 
+ /***********************************************************************
+                          Cons Allocation
+  ***********************************************************************/
+ 
+ /* We store cons cells inside of cons_blocks, allocating a new
+    cons_block with malloc whenever necessary.  Cons cells reclaimed by
+    GC are put on a free list to be reallocated before allocating
+    any new cons cells from the latest cons_block.  */
+ 
+ #define CONS_BLOCK_SIZE \
+   (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
+    / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
+ 
+ #define CONS_BLOCK(fptr) \
+   ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
+ 
+ #define CONS_INDEX(fptr) \
+   ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
+ 
+ struct cons_block
+ {
+   /* Place `conses' at the beginning, to ease up CONS_INDEX's job.  */
+   struct Lisp_Cons conses[CONS_BLOCK_SIZE];
+   int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
+   struct cons_block *next;
+ };
+ 
+ #define CONS_MARKED_P(fptr) \
+   GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
+ 
+ #define CONS_MARK(fptr) \
+   SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
+ 
+ #define CONS_UNMARK(fptr) \
+   UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
+ 
+ /* Current cons_block.  */
+ 
+ struct cons_block *cons_block;
+ 
+ /* Index of first unused Lisp_Cons in the current block.  */
+ 
+ int cons_block_index;
+ 
+ /* Free-list of Lisp_Cons structures.  */
+ 
+ struct Lisp_Cons *cons_free_list;
+ 
+ /* Total number of cons blocks now in use.  */
+ 
+ int n_cons_blocks;
+ 
+ 
+ /* Initialize cons allocation.  */
+ 
+ void
+ init_cons ()
+ {
+   cons_block = NULL;
+   cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block.  */
+   cons_free_list = 0;
+   n_cons_blocks = 0;
+ }
+ 
+ 
+ /* Explicitly free a cons cell by putting it on the free-list.  */
+ 
+ void
+ free_cons (ptr)
+      struct Lisp_Cons *ptr;
+ {
+   *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
+ #if GC_MARK_STACK
+   ptr->car = Vdead;
+ #endif
+   cons_free_list = ptr;
+ }
+ 
+ 
+ DEFUN ("cons", Fcons, Scons, 2, 2, 0,
+        doc: /* Create a new cons, give it CAR and CDR as components, and 
return it.  */)
+      (car, cdr)
+      Lisp_Object car, cdr;
+ {
+   register Lisp_Object val;
+ 
+   if (cons_free_list)
+     {
+       /* We use the cdr for chaining the free list
+        so that we won't use the same field that has the mark bit.  */
+       XSETCONS (val, cons_free_list);
+       cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
+     }
+   else
+     {
+       if (cons_block_index == CONS_BLOCK_SIZE)
+       {
+         register struct cons_block *new;
+         new = (struct cons_block *) lisp_align_malloc (sizeof *new,
+                                                        MEM_TYPE_CONS);
+         new->next = cons_block;
+         cons_block = new;
+         cons_block_index = 0;
+         n_cons_blocks++;
+       }
+       XSETCONS (val, &cons_block->conses[cons_block_index++]);
+     }
+ 
+   XSETCAR (val, car);
+   XSETCDR (val, cdr);
+   CONS_UNMARK (XCONS (val));
+   consing_since_gc += sizeof (struct Lisp_Cons);
+   cons_cells_consed++;
+   return val;
+ }
+ 
+ 
+ /* Make a list of 2, 3, 4 or 5 specified objects.  */
+ 
+ Lisp_Object
+ list2 (arg1, arg2)
+      Lisp_Object arg1, arg2;
+ {
+   return Fcons (arg1, Fcons (arg2, Qnil));
+ }
+ 
+ 
+ Lisp_Object
+ list3 (arg1, arg2, arg3)
+      Lisp_Object arg1, arg2, arg3;
+ {
+   return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
+ }
+ 
+ 
+ Lisp_Object
+ list4 (arg1, arg2, arg3, arg4)
+      Lisp_Object arg1, arg2, arg3, arg4;
+ {
+   return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
+ }
+ 
+ 
+ Lisp_Object
+ list5 (arg1, arg2, arg3, arg4, arg5)
+      Lisp_Object arg1, arg2, arg3, arg4, arg5;
+ {
+   return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
+                                                      Fcons (arg5, Qnil)))));
+ }
+ 
+ 
+ DEFUN ("list", Flist, Slist, 0, MANY, 0,
+        doc: /* Return a newly created list with specified arguments as 
elements.
+ Any number of arguments, even zero arguments, are allowed.
+ usage: (list &rest OBJECTS)  */)
+      (nargs, args)
+      int nargs;
+      register Lisp_Object *args;
+ {
+   register Lisp_Object val;
+   val = Qnil;
+ 
+   while (nargs > 0)
+     {
+       nargs--;
+       val = Fcons (args[nargs], val);
+     }
+   return val;
+ }
+ 
+ 
+ DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
+        doc: /* Return a newly created list of length LENGTH, with each 
element being INIT.  */)
+      (length, init)
+      register Lisp_Object length, init;
+ {
+   register Lisp_Object val;
+   register int size;
+ 
+   CHECK_NATNUM (length);
+   size = XFASTINT (length);
+ 
+   val = Qnil;
+   while (size > 0)
+     {
+       val = Fcons (init, val);
+       --size;
+ 
+       if (size > 0)
+       {
+         val = Fcons (init, val);
+         --size;
+ 
+         if (size > 0)
+           {
+             val = Fcons (init, val);
+             --size;
+ 
+             if (size > 0)
+               {
+                 val = Fcons (init, val);
+                 --size;
+ 
+                 if (size > 0)
+                   {
+                     val = Fcons (init, val);
+                     --size;
+                   }
+               }
+           }
+       }
+ 
+       QUIT;
+     }
+ 
+   return val;
+ }
+ 
+ 
+ 
+ /***********************************************************************
+                          Vector Allocation
+  ***********************************************************************/
+ 
+ /* Singly-linked list of all vectors.  */
+ 
+ struct Lisp_Vector *all_vectors;
+ 
+ /* Total number of vector-like objects now in use.  */
+ 
+ int n_vectors;
+ 
+ 
+ /* Value is a pointer to a newly allocated Lisp_Vector structure
+    with room for LEN Lisp_Objects.  */
+ 
+ static struct Lisp_Vector *
+ allocate_vectorlike (len, type)
+      EMACS_INT len;
+      enum mem_type type;
+ {
+   struct Lisp_Vector *p;
+   size_t nbytes;
+ 
+ #ifdef DOUG_LEA_MALLOC
+   /* Prevent mmap'ing the chunk.  Lisp data may not be mmap'ed
+      because mapped region contents are not preserved in
+      a dumped Emacs.  */
+   mallopt (M_MMAP_MAX, 0);
+ #endif
+ 
+   nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
+   p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
+ 
+ #ifdef DOUG_LEA_MALLOC
+   /* Back to a reasonable maximum of mmap'ed areas.  */
+   mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
+ #endif
+ 
+   consing_since_gc += nbytes;
+   vector_cells_consed += len;
+ 
+   p->next = all_vectors;
+   all_vectors = p;
+   ++n_vectors;
+   return p;
+ }
+ 
+ 
+ /* Allocate a vector with NSLOTS slots.  */
+ 
+ struct Lisp_Vector *
+ allocate_vector (nslots)
+      EMACS_INT nslots;
+ {
+   struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
+   v->size = nslots;
+   return v;
+ }
+ 
+ 
+ /* Allocate other vector-like structures.  */
+ 
+ struct Lisp_Hash_Table *
+ allocate_hash_table ()
+ {
+   EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
+   struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
+   EMACS_INT i;
+ 
+   v->size = len;
+   for (i = 0; i < len; ++i)
+     v->contents[i] = Qnil;
+ 
+   return (struct Lisp_Hash_Table *) v;
+ }
+ 
+ 
+ struct window *
+ allocate_window ()
+ {
+   EMACS_INT len = VECSIZE (struct window);
+   struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
+   EMACS_INT i;
+ 
+   for (i = 0; i < len; ++i)
+     v->contents[i] = Qnil;
+   v->size = len;
+ 
+   return (struct window *) v;
+ }
+ 
+ 
+ struct frame *
+ allocate_frame ()
+ {
+   EMACS_INT len = VECSIZE (struct frame);
+   struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
+   EMACS_INT i;
+ 
+   for (i = 0; i < len; ++i)
+     v->contents[i] = make_number (0);
+   v->size = len;
+   return (struct frame *) v;
+ }
+ 
+ 
+ struct Lisp_Process *
+ allocate_process ()
+ {
+   EMACS_INT len = VECSIZE (struct Lisp_Process);
+   struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
+   EMACS_INT i;
+ 
+   for (i = 0; i < len; ++i)
+     v->contents[i] = Qnil;
+   v->size = len;
+ 
+   return (struct Lisp_Process *) v;
+ }
+ 
+ 
+ struct Lisp_Vector *
+ allocate_other_vector (len)
+      EMACS_INT len;
+ {
+   struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
+   EMACS_INT i;
+ 
+   for (i = 0; i < len; ++i)
+     v->contents[i] = Qnil;
+   v->size = len;
+ 
+   return v;
+ }
+ 
+ 
+ DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
+        doc: /* Return a newly created vector of length LENGTH, with each 
element being INIT.
+ See also the function `vector'.  */)
+      (length, init)
+      register Lisp_Object length, init;
+ {
+   Lisp_Object vector;
+   register EMACS_INT sizei;
+   register int index;
+   register struct Lisp_Vector *p;
+ 
+   CHECK_NATNUM (length);
+   sizei = XFASTINT (length);
+ 
+   p = allocate_vector (sizei);
+   for (index = 0; index < sizei; index++)
+     p->contents[index] = init;
+ 
+   XSETVECTOR (vector, p);
+   return vector;
+ }
+ 
+ 
+ DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
+        doc: /* Return a newly created vector with specified arguments as 
elements.
+ Any number of arguments, even zero arguments, are allowed.
+ usage: (vector &rest OBJECTS)  */)
+      (nargs, args)
+      register int nargs;
+      Lisp_Object *args;
+ {
+   register Lisp_Object len, val;
+   register int index;
+   register struct Lisp_Vector *p;
+ 
+   XSETFASTINT (len, nargs);
+   val = Fmake_vector (len, Qnil);
+   p = XVECTOR (val);
+   for (index = 0; index < nargs; index++)
+     p->contents[index] = args[index];
+   return val;
+ }
+ 
+ 
+ DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
+        doc: /* Create a byte-code object with specified arguments as elements.
+ The arguments should be the arglist, bytecode-string, constant vector,
+ stack size, (optional) doc string, and (optional) interactive spec.
+ The first four arguments are required; at most six have any
+ significance.
+ usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING 
INTERACTIVE-SPEC &rest ELEMENTS)  */)
+      (nargs, args)
+      register int nargs;
+      Lisp_Object *args;
+ {
+   register Lisp_Object len, val;
+   register int index;
+   register struct Lisp_Vector *p;
+ 
+   XSETFASTINT (len, nargs);
+   if (!NILP (Vpurify_flag))
+     val = make_pure_vector ((EMACS_INT) nargs);
+   else
+     val = Fmake_vector (len, Qnil);
+ 
+   if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
+     /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
+        earlier because they produced a raw 8-bit string for byte-code
+        and now such a byte-code string is loaded as multibyte while
+        raw 8-bit characters converted to multibyte form.  Thus, now we
+        must convert them back to the original unibyte form.  */
+     args[1] = Fstring_as_unibyte (args[1]);
+ 
+   p = XVECTOR (val);
+   for (index = 0; index < nargs; index++)
+     {
+       if (!NILP (Vpurify_flag))
+       args[index] = Fpurecopy (args[index]);
+       p->contents[index] = args[index];
+     }
+   XSETCOMPILED (val, p);
+   return val;
+ }
+ 
+ 
+ 
+ /***********************************************************************
+                          Symbol Allocation
+  ***********************************************************************/
+ 
+ /* Each symbol_block is just under 1020 bytes long, since malloc
+    really allocates in units of powers of two and uses 4 bytes for its
+    own overhead. */
+ 
+ #define SYMBOL_BLOCK_SIZE \
+   ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
+ 
+ struct symbol_block
+ {
+   struct symbol_block *next;
+   struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
+ };
+ 
+ /* Current symbol block and index of first unused Lisp_Symbol
+    structure in it.  */
+ 
+ struct symbol_block *symbol_block;
+ int symbol_block_index;
+ 
+ /* List of free symbols.  */
+ 
+ struct Lisp_Symbol *symbol_free_list;
+ 
+ /* Total number of symbol blocks now in use.  */
+ 
+ int n_symbol_blocks;
+ 
+ 
+ /* Initialize symbol allocation.  */
+ 
+ void
+ init_symbol ()
+ {
+   symbol_block = (struct symbol_block *) lisp_malloc (sizeof *symbol_block,
+                                                     MEM_TYPE_SYMBOL);
+   symbol_block->next = 0;
+   bzero ((char *) symbol_block->symbols, sizeof symbol_block->symbols);
+   symbol_block_index = 0;
+   symbol_free_list = 0;
+   n_symbol_blocks = 1;
+ }
+ 
+ 
+ DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
+        doc: /* Return a newly allocated uninterned symbol whose name is NAME.
+ Its value and function definition are void, and its property list is nil.  */)
+      (name)
+      Lisp_Object name;
+ {
+   register Lisp_Object val;
+   register struct Lisp_Symbol *p;
+ 
+   CHECK_STRING (name);
+ 
+   if (symbol_free_list)
+     {
+       XSETSYMBOL (val, symbol_free_list);
+       symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
+     }
+   else
+     {
+       if (symbol_block_index == SYMBOL_BLOCK_SIZE)
+       {
+         struct symbol_block *new;
+         new = (struct symbol_block *) lisp_malloc (sizeof *new,
+                                                    MEM_TYPE_SYMBOL);
+         new->next = symbol_block;
+         symbol_block = new;
+         symbol_block_index = 0;
+         n_symbol_blocks++;
+       }
+       XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index++]);
+     }
+ 
+   p = XSYMBOL (val);
+   p->xname = name;
+   p->plist = Qnil;
+   p->value = Qunbound;
+   p->function = Qunbound;
+   p->next = NULL;
+   p->gcmarkbit = 0;
+   p->interned = SYMBOL_UNINTERNED;
+   p->constant = 0;
+   p->indirect_variable = 0;
+   consing_since_gc += sizeof (struct Lisp_Symbol);
+   symbols_consed++;
+   return val;
+ }
+ 
+ 
+ 
+ /***********************************************************************
+                      Marker (Misc) Allocation
+  ***********************************************************************/
+ 
+ /* Allocation of markers and other objects that share that structure.
+    Works like allocation of conses. */
+ 
+ #define MARKER_BLOCK_SIZE \
+   ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
+ 
+ struct marker_block
+ {
+   struct marker_block *next;
+   union Lisp_Misc markers[MARKER_BLOCK_SIZE];
+ };
+ 
+ struct marker_block *marker_block;
+ int marker_block_index;
+ 
+ union Lisp_Misc *marker_free_list;
+ 
+ /* Total number of marker blocks now in use.  */
+ 
+ int n_marker_blocks;
+ 
+ void
+ init_marker ()
+ {
+   marker_block = (struct marker_block *) lisp_malloc (sizeof *marker_block,
+                                                     MEM_TYPE_MISC);
+   marker_block->next = 0;
+   bzero ((char *) marker_block->markers, sizeof marker_block->markers);
+   marker_block_index = 0;
+   marker_free_list = 0;
+   n_marker_blocks = 1;
+ }
+ 
+ /* Return a newly allocated Lisp_Misc object, with no substructure.  */
+ 
+ Lisp_Object
+ allocate_misc ()
+ {
+   Lisp_Object val;
+ 
+   if (marker_free_list)
+     {
+       XSETMISC (val, marker_free_list);
+       marker_free_list = marker_free_list->u_free.chain;
+     }
+   else
+     {
+       if (marker_block_index == MARKER_BLOCK_SIZE)
+       {
+         struct marker_block *new;
+         new = (struct marker_block *) lisp_malloc (sizeof *new,
+                                                    MEM_TYPE_MISC);
+         new->next = marker_block;
+         marker_block = new;
+         marker_block_index = 0;
+         n_marker_blocks++;
+       }
+       XSETMISC (val, &marker_block->markers[marker_block_index++]);
+     }
+ 
+   consing_since_gc += sizeof (union Lisp_Misc);
+   misc_objects_consed++;
+   XMARKER (val)->gcmarkbit = 0;
+   return val;
+ }
+ 
+ /* Return a Lisp_Misc_Save_Value object containing POINTER and
+    INTEGER.  This is used to package C values to call record_unwind_protect.
+    The unwind function can get the C values back using XSAVE_VALUE.  */
+ 
+ Lisp_Object
+ make_save_value (pointer, integer)
+      void *pointer;
+      int integer;
+ {
+   register Lisp_Object val;
+   register struct Lisp_Save_Value *p;
+ 
+   val = allocate_misc ();
+   XMISCTYPE (val) = Lisp_Misc_Save_Value;
+   p = XSAVE_VALUE (val);
+   p->pointer = pointer;
+   p->integer = integer;
+   return val;
+ }
+ 
+ DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
+        doc: /* Return a newly allocated marker which does not point at any 
place.  */)
+      ()
+ {
+   register Lisp_Object val;
+   register struct Lisp_Marker *p;
+ 
+   val = allocate_misc ();
+   XMISCTYPE (val) = Lisp_Misc_Marker;
+   p = XMARKER (val);
+   p->buffer = 0;
+   p->bytepos = 0;
+   p->charpos = 0;
+   p->next = NULL;
+   p->insertion_type = 0;
+   return val;
+ }
+ 
+ /* Put MARKER back on the free list after using it temporarily.  */
+ 
+ void
+ free_marker (marker)
+      Lisp_Object marker;
+ {
+   unchain_marker (XMARKER (marker));
+ 
+   XMISC (marker)->u_marker.type = Lisp_Misc_Free;
+   XMISC (marker)->u_free.chain = marker_free_list;
+   marker_free_list = XMISC (marker);
+ 
+   total_free_markers++;
+ }
+ 
+ 
+ /* Return a newly created vector or string with specified arguments as
+    elements.  If all the arguments are characters that can fit
+    in a string of events, make a string; otherwise, make a vector.
+ 
+    Any number of arguments, even zero arguments, are allowed.  */
+ 
+ Lisp_Object
+ make_event_array (nargs, args)
+      register int nargs;
+      Lisp_Object *args;
+ {
+   int i;
+ 
+   for (i = 0; i < nargs; i++)
+     /* The things that fit in a string
+        are characters that are in 0...127,
+        after discarding the meta bit and all the bits above it.  */
+     if (!INTEGERP (args[i])
+       || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
+       return Fvector (nargs, args);
+ 
+   /* Since the loop exited, we know that all the things in it are
+      characters, so we can make a string.  */
+   {
+     Lisp_Object result;
+ 
+     result = Fmake_string (make_number (nargs), make_number (0));
+     for (i = 0; i < nargs; i++)
+       {
+       SSET (result, i, XINT (args[i]));
+       /* Move the meta bit to the right place for a string char.  */
+       if (XINT (args[i]) & CHAR_META)
+         SSET (result, i, SREF (result, i) | 0x80);
+       }
+ 
+     return result;
+   }
+ }
+ 
+ 
+ 
+ /************************************************************************
+                          C Stack Marking
+  ************************************************************************/
+ 
+ #if GC_MARK_STACK || defined GC_MALLOC_CHECK
+ 
+ /* Conservative C stack marking requires a method to identify possibly
+    live Lisp objects given a pointer value.  We do this by keeping
+    track of blocks of Lisp data that are allocated in a red-black tree
+    (see also the comment of mem_node which is the type of nodes in
+    that tree).  Function lisp_malloc adds information for an allocated
+    block to the red-black tree with calls to mem_insert, and function
+    lisp_free removes it with mem_delete.  Functions live_string_p etc
+    call mem_find to lookup information about a given pointer in the
+    tree, and use that to determine if the pointer points to a Lisp
+    object or not.  */
+ 
+ /* Initialize this part of alloc.c.  */
+ 
+ static void
+ mem_init ()
+ {
+   mem_z.left = mem_z.right = MEM_NIL;
+   mem_z.parent = NULL;
+   mem_z.color = MEM_BLACK;
+   mem_z.start = mem_z.end = NULL;
+   mem_root = MEM_NIL;
+ }
+ 
+ 
+ /* Value is a pointer to the mem_node containing START.  Value is
+    MEM_NIL if there is no node in the tree containing START.  */
+ 
+ static INLINE struct mem_node *
+ mem_find (start)
+      void *start;
+ {
+   struct mem_node *p;
+ 
+   if (start < min_heap_address || start > max_heap_address)
+     return MEM_NIL;
+ 
+   /* Make the search always successful to speed up the loop below.  */
+   mem_z.start = start;
+   mem_z.end = (char *) start + 1;
+ 
+   p = mem_root;
+   while (start < p->start || start >= p->end)
+     p = start < p->start ? p->left : p->right;
+   return p;
+ }
+ 
+ 
+ /* Insert a new node into the tree for a block of memory with start
+    address START, end address END, and type TYPE.  Value is a
+    pointer to the node that was inserted.  */
+ 
+ static struct mem_node *
+ mem_insert (start, end, type)
+      void *start, *end;
+      enum mem_type type;
+ {
+   struct mem_node *c, *parent, *x;
+ 
+   if (start < min_heap_address)
+     min_heap_address = start;
+   if (end > max_heap_address)
+     max_heap_address = end;
+ 
+   /* See where in the tree a node for START belongs.  In this
+      particular application, it shouldn't happen that a node is already
+      present.  For debugging purposes, let's check that.  */
+   c = mem_root;
+   parent = NULL;
+ 
+ #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
+ 
+   while (c != MEM_NIL)
+     {
+       if (start >= c->start && start < c->end)
+       abort ();
+       parent = c;
+       c = start < c->start ? c->left : c->right;
+     }
+ 
+ #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
+ 
+   while (c != MEM_NIL)
+     {
+       parent = c;
+       c = start < c->start ? c->left : c->right;
+     }
+ 
+ #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
+ 
+   /* Create a new node.  */
+ #ifdef GC_MALLOC_CHECK
+   x = (struct mem_node *) _malloc_internal (sizeof *x);
+   if (x == NULL)
+     abort ();
+ #else
+   x = (struct mem_node *) xmalloc (sizeof *x);
+ #endif
+   x->start = start;
+   x->end = end;
+   x->type = type;
+   x->parent = parent;
+   x->left = x->right = MEM_NIL;
+   x->color = MEM_RED;
+ 
+   /* Insert it as child of PARENT or install it as root.  */
+   if (parent)
+     {
+       if (start < parent->start)
+       parent->left = x;
+       else
+       parent->right = x;
+     }
+   else
+     mem_root = x;
+ 
+   /* Re-establish red-black tree properties.  */
+   mem_insert_fixup (x);
+ 
+   return x;
+ }
+ 
+ 
+ /* Re-establish the red-black properties of the tree, and thereby
+    balance the tree, after node X has been inserted; X is always red.  */
+ 
+ static void
+ mem_insert_fixup (x)
+      struct mem_node *x;
+ {
+   while (x != mem_root && x->parent->color == MEM_RED)
+     {
+       /* X is red and its parent is red.  This is a violation of
+        red-black tree property #3.  */
+ 
+       if (x->parent == x->parent->parent->left)
+       {
+         /* We're on the left side of our grandparent, and Y is our
+            "uncle".  */
+         struct mem_node *y = x->parent->parent->right;
+ 
+         if (y->color == MEM_RED)
+           {
+             /* Uncle and parent are red but should be black because
+                X is red.  Change the colors accordingly and proceed
+                with the grandparent.  */
+             x->parent->color = MEM_BLACK;
+             y->color = MEM_BLACK;
+             x->parent->parent->color = MEM_RED;
+             x = x->parent->parent;
+             }
+         else
+           {
+             /* Parent and uncle have different colors; parent is
+                red, uncle is black.  */
+             if (x == x->parent->right)
+               {
+                 x = x->parent;
+                 mem_rotate_left (x);
+                 }
+ 
+             x->parent->color = MEM_BLACK;
+             x->parent->parent->color = MEM_RED;
+             mem_rotate_right (x->parent->parent);
+             }
+         }
+       else
+       {
+         /* This is the symmetrical case of above.  */
+         struct mem_node *y = x->parent->parent->left;
+ 
+         if (y->color == MEM_RED)
+           {
+             x->parent->color = MEM_BLACK;
+             y->color = MEM_BLACK;
+             x->parent->parent->color = MEM_RED;
+             x = x->parent->parent;
+             }
+         else
+           {
+             if (x == x->parent->left)
+               {
+                 x = x->parent;
+                 mem_rotate_right (x);
+               }
+ 
+             x->parent->color = MEM_BLACK;
+             x->parent->parent->color = MEM_RED;
+             mem_rotate_left (x->parent->parent);
+             }
+         }
+     }
+ 
+   /* The root may have been changed to red due to the algorithm.  Set
+      it to black so that property #5 is satisfied.  */
+   mem_root->color = MEM_BLACK;
+ }
+ 
+ 
+ /*   (x)                   (y)
+      / \                   / \
+     a   (y)      ===>    (x)  c
+         / \              / \
+        b   c            a   b  */
+ 
+ static void
+ mem_rotate_left (x)
+      struct mem_node *x;
+ {
+   struct mem_node *y;
+ 
+   /* Turn y's left sub-tree into x's right sub-tree.  */
+   y = x->right;
+   x->right = y->left;
+   if (y->left != MEM_NIL)
+     y->left->parent = x;
+ 
+   /* Y's parent was x's parent.  */
+   if (y != MEM_NIL)
+     y->parent = x->parent;
+ 
+   /* Get the parent to point to y instead of x.  */
+   if (x->parent)
+     {
+       if (x == x->parent->left)
+       x->parent->left = y;
+       else
+       x->parent->right = y;
+     }
+   else
+     mem_root = y;
+ 
+   /* Put x on y's left.  */
+   y->left = x;
+   if (x != MEM_NIL)
+     x->parent = y;
+ }
+ 
+ 
+ /*     (x)                (Y)
+        / \                / \
+      (y)  c      ===>    a  (x)
+      / \                    / \
+     a   b                  b   c  */
+ 
+ static void
+ mem_rotate_right (x)
+      struct mem_node *x;
+ {
+   struct mem_node *y = x->left;
+ 
+   x->left = y->right;
+   if (y->right != MEM_NIL)
+     y->right->parent = x;
+ 
+   if (y != MEM_NIL)
+     y->parent = x->parent;
+   if (x->parent)
+     {
+       if (x == x->parent->right)
+       x->parent->right = y;
+       else
+       x->parent->left = y;
+     }
+   else
+     mem_root = y;
+ 
+   y->right = x;
+   if (x != MEM_NIL)
+     x->parent = y;
+ }
+ 
+ 
+ /* Delete node Z from the tree.  If Z is null or MEM_NIL, do nothing.  */
+ 
+ static void
+ mem_delete (z)
+      struct mem_node *z;
+ {
+   struct mem_node *x, *y;
+ 
+   if (!z || z == MEM_NIL)
+     return;
+ 
+   if (z->left == MEM_NIL || z->right == MEM_NIL)
+     y = z;
+   else
+     {
+       y = z->right;
+       while (y->left != MEM_NIL)
+       y = y->left;
+     }
+ 
+   if (y->left != MEM_NIL)
+     x = y->left;
+   else
+     x = y->right;
+ 
+   x->parent = y->parent;
+   if (y->parent)
+     {
+       if (y == y->parent->left)
+       y->parent->left = x;
+       else
+       y->parent->right = x;
+     }
+   else
+     mem_root = x;
+ 
+   if (y != z)
+     {
+       z->start = y->start;
+       z->end = y->end;
+       z->type = y->type;
+     }
+ 
+   if (y->color == MEM_BLACK)
+     mem_delete_fixup (x);
+ 
+ #ifdef GC_MALLOC_CHECK
+   _free_internal (y);
+ #else
+   xfree (y);
+ #endif
+ }
+ 
+ 
+ /* Re-establish the red-black properties of the tree, after a
+    deletion.  */
+ 
+ static void
+ mem_delete_fixup (x)
+      struct mem_node *x;
+ {
+   while (x != mem_root && x->color == MEM_BLACK)
+     {
+       if (x == x->parent->left)
+       {
+         struct mem_node *w = x->parent->right;
+ 
+         if (w->color == MEM_RED)
+           {
+             w->color = MEM_BLACK;
+             x->parent->color = MEM_RED;
+             mem_rotate_left (x->parent);
+             w = x->parent->right;
+             }
+ 
+         if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
+           {
+             w->color = MEM_RED;
+             x = x->parent;
+             }
+         else
+           {
+             if (w->right->color == MEM_BLACK)
+               {
+                 w->left->color = MEM_BLACK;
+                 w->color = MEM_RED;
+                 mem_rotate_right (w);
+                 w = x->parent->right;
+                 }
+             w->color = x->parent->color;
+             x->parent->color = MEM_BLACK;
+             w->right->color = MEM_BLACK;
+             mem_rotate_left (x->parent);
+             x = mem_root;
+             }
+         }
+       else
+       {
+         struct mem_node *w = x->parent->left;
+ 
+         if (w->color == MEM_RED)
+           {
+             w->color = MEM_BLACK;
+             x->parent->color = MEM_RED;
+             mem_rotate_right (x->parent);
+             w = x->parent->left;
+             }
+ 
+         if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
+           {
+             w->color = MEM_RED;
+             x = x->parent;
+             }
+         else
+           {
+             if (w->left->color == MEM_BLACK)
+               {
+                 w->right->color = MEM_BLACK;
+                 w->color = MEM_RED;
+                 mem_rotate_left (w);
+                 w = x->parent->left;
+                 }
+ 
+             w->color = x->parent->color;
+             x->parent->color = MEM_BLACK;
+             w->left->color = MEM_BLACK;
+             mem_rotate_right (x->parent);
+             x = mem_root;
+             }
+         }
+     }
+ 
+   x->color = MEM_BLACK;
+ }
+ 
+ 
+ /* Value is non-zero if P is a pointer to a live Lisp string on
+    the heap.  M is a pointer to the mem_block for P.  */
+ 
+ static INLINE int
+ live_string_p (m, p)
+      struct mem_node *m;
+      void *p;
+ {
+   if (m->type == MEM_TYPE_STRING)
+     {
+       struct string_block *b = (struct string_block *) m->start;
+       int offset = (char *) p - (char *) &b->strings[0];
+ 
+       /* P must point to the start of a Lisp_String structure, and it
+        must not be on the free-list.  */
+       return (offset >= 0
+             && offset % sizeof b->strings[0] == 0
+             && ((struct Lisp_String *) p)->data != NULL);
+     }
+   else
+     return 0;
+ }
+ 
+ 
+ /* Value is non-zero if P is a pointer to a live Lisp cons on
+    the heap.  M is a pointer to the mem_block for P.  */
+ 
+ static INLINE int
+ live_cons_p (m, p)
+      struct mem_node *m;
+      void *p;
+ {
+   if (m->type == MEM_TYPE_CONS)
+     {
+       struct cons_block *b = (struct cons_block *) m->start;
+       int offset = (char *) p - (char *) &b->conses[0];
+ 
+       /* P must point to the start of a Lisp_Cons, not be
+        one of the unused cells in the current cons block,
+        and not be on the free-list.  */
+       return (offset >= 0
+             && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
+             && offset % sizeof b->conses[0] == 0
+             && (b != cons_block
+                 || offset / sizeof b->conses[0] < cons_block_index)
+             && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
+     }
+   else
+     return 0;
+ }
+ 
+ 
+ /* Value is non-zero if P is a pointer to a live Lisp symbol on
+    the heap.  M is a pointer to the mem_block for P.  */
+ 
+ static INLINE int
+ live_symbol_p (m, p)
+      struct mem_node *m;
+      void *p;
+ {
+   if (m->type == MEM_TYPE_SYMBOL)
+     {
+       struct symbol_block *b = (struct symbol_block *) m->start;
+       int offset = (char *) p - (char *) &b->symbols[0];
+ 
+       /* P must point to the start of a Lisp_Symbol, not be
+        one of the unused cells in the current symbol block,
+        and not be on the free-list.  */
+       return (offset >= 0
+             && offset % sizeof b->symbols[0] == 0
+             && (b != symbol_block
+                 || offset / sizeof b->symbols[0] < symbol_block_index)
+             && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
+     }
+   else
+     return 0;
+ }
+ 
+ 
+ /* Value is non-zero if P is a pointer to a live Lisp float on
+    the heap.  M is a pointer to the mem_block for P.  */
+ 
+ static INLINE int
+ live_float_p (m, p)
+      struct mem_node *m;
+      void *p;
+ {
+   if (m->type == MEM_TYPE_FLOAT)
+     {
+       struct float_block *b = (struct float_block *) m->start;
+       int offset = (char *) p - (char *) &b->floats[0];
+ 
+       /* P must point to the start of a Lisp_Float and not be
+        one of the unused cells in the current float block.  */
+       return (offset >= 0
+             && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
+             && offset % sizeof b->floats[0] == 0
+             && (b != float_block
+                 || offset / sizeof b->floats[0] < float_block_index));
+     }
+   else
+     return 0;
+ }
+ 
+ 
+ /* Value is non-zero if P is a pointer to a live Lisp Misc on
+    the heap.  M is a pointer to the mem_block for P.  */
+ 
+ static INLINE int
+ live_misc_p (m, p)
+      struct mem_node *m;
+      void *p;
+ {
+   if (m->type == MEM_TYPE_MISC)
+     {
+       struct marker_block *b = (struct marker_block *) m->start;
+       int offset = (char *) p - (char *) &b->markers[0];
+ 
+       /* P must point to the start of a Lisp_Misc, not be
+        one of the unused cells in the current misc block,
+        and not be on the free-list.  */
+       return (offset >= 0
+             && offset % sizeof b->markers[0] == 0
+             && (b != marker_block
+                 || offset / sizeof b->markers[0] < marker_block_index)
+             && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
+     }
+   else
+     return 0;
+ }
+ 
+ 
+ /* Value is non-zero if P is a pointer to a live vector-like object.
+    M is a pointer to the mem_block for P.  */
+ 
+ static INLINE int
+ live_vector_p (m, p)
+      struct mem_node *m;
+      void *p;
+ {
+   return (p == m->start
+         && m->type >= MEM_TYPE_VECTOR
+         && m->type <= MEM_TYPE_WINDOW);
+ }
+ 
+ 
+ /* Value is non-zero if P is a pointer to a live buffer.  M is a
+    pointer to the mem_block for P.  */
+ 
+ static INLINE int
+ live_buffer_p (m, p)
+      struct mem_node *m;
+      void *p;
+ {
+   /* P must point to the start of the block, and the buffer
+      must not have been killed.  */
+   return (m->type == MEM_TYPE_BUFFER
+         && p == m->start
+         && !NILP (((struct buffer *) p)->name));
+ }
+ 
+ #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
+ 
+ #if GC_MARK_STACK
+ 
+ #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
+ 
+ /* Array of objects that are kept alive because the C stack contains
+    a pattern that looks like a reference to them .  */
+ 
+ #define MAX_ZOMBIES 10
+ static Lisp_Object zombies[MAX_ZOMBIES];
+ 
+ /* Number of zombie objects.  */
+ 
+ static int nzombies;
+ 
+ /* Number of garbage collections.  */
+ 
+ static int ngcs;
+ 
+ /* Average percentage of zombies per collection.  */
+ 
+ static double avg_zombies;
+ 
+ /* Max. number of live and zombie objects.  */
+ 
+ static int max_live, max_zombies;
+ 
+ /* Average number of live objects per GC.  */
+ 
+ static double avg_live;
+ 
+ DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
+        doc: /* Show information about live and zombie objects.  */)
+      ()
+ {
+   Lisp_Object args[8], zombie_list = Qnil;
+   int i;
+   for (i = 0; i < nzombies; i++)
+     zombie_list = Fcons (zombies[i], zombie_list);
+   args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max 
%d/%d\nzombies: %S");
+   args[1] = make_number (ngcs);
+   args[2] = make_float (avg_live);
+   args[3] = make_float (avg_zombies);
+   args[4] = make_float (avg_zombies / avg_live / 100);
+   args[5] = make_number (max_live);
+   args[6] = make_number (max_zombies);
+   args[7] = zombie_list;
+   return Fmessage (8, args);
+ }
+ 
+ #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
+ 
+ 
+ /* Mark OBJ if we can prove it's a Lisp_Object.  */
+ 
+ static INLINE void
+ mark_maybe_object (obj)
+      Lisp_Object obj;
+ {
+   void *po = (void *) XPNTR (obj);
+   struct mem_node *m = mem_find (po);
+ 
+   if (m != MEM_NIL)
+     {
+       int mark_p = 0;
+ 
+       switch (XGCTYPE (obj))
+       {
+       case Lisp_String:
+         mark_p = (live_string_p (m, po)
+                   && !STRING_MARKED_P ((struct Lisp_String *) po));
+         break;
+ 
+       case Lisp_Cons:
+         mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
+         break;
+ 
+       case Lisp_Symbol:
+         mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
+         break;
+ 
+       case Lisp_Float:
+         mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
+         break;
+ 
+       case Lisp_Vectorlike:
+         /* Note: can't check GC_BUFFERP before we know it's a
+            buffer because checking that dereferences the pointer
+            PO which might point anywhere.  */
+         if (live_vector_p (m, po))
+           mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
+         else if (live_buffer_p (m, po))
+           mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
+         break;
+ 
+       case Lisp_Misc:
+         mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
+         break;
+ 
+       case Lisp_Int:
+       case Lisp_Type_Limit:
+         break;
+       }
+ 
+       if (mark_p)
+       {
+ #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
+         if (nzombies < MAX_ZOMBIES)
+           zombies[nzombies] = obj;
+         ++nzombies;
+ #endif
+         mark_object (obj);
+       }
+     }
+ }
+ 
+ 
+ /* If P points to Lisp data, mark that as live if it isn't already
+    marked.  */
+ 
+ static INLINE void
+ mark_maybe_pointer (p)
+      void *p;
+ {
+   struct mem_node *m;
+ 
+   /* Quickly rule out some values which can't point to Lisp data.  We
+      assume that Lisp data is aligned on even addresses.  */
+   if ((EMACS_INT) p & 1)
+     return;
+ 
+   m = mem_find (p);
+   if (m != MEM_NIL)
+     {
+       Lisp_Object obj = Qnil;
+ 
+       switch (m->type)
+       {
+       case MEM_TYPE_NON_LISP:
+         /* Nothing to do; not a pointer to Lisp memory.  */
+         break;
+ 
+       case MEM_TYPE_BUFFER:
+         if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
+           XSETVECTOR (obj, p);
+         break;
+ 
+       case MEM_TYPE_CONS:
+         if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
+           XSETCONS (obj, p);
+         break;
+ 
+       case MEM_TYPE_STRING:
+         if (live_string_p (m, p)
+             && !STRING_MARKED_P ((struct Lisp_String *) p))
+           XSETSTRING (obj, p);
+         break;
+ 
+       case MEM_TYPE_MISC:
+         if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
+           XSETMISC (obj, p);
+         break;
+ 
+       case MEM_TYPE_SYMBOL:
+         if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
+           XSETSYMBOL (obj, p);
+         break;
+ 
+       case MEM_TYPE_FLOAT:
+         if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
+           XSETFLOAT (obj, p);
+         break;
+ 
+       case MEM_TYPE_VECTOR:
+       case MEM_TYPE_PROCESS:
+       case MEM_TYPE_HASH_TABLE:
+       case MEM_TYPE_FRAME:
+       case MEM_TYPE_WINDOW:
+         if (live_vector_p (m, p))
+           {
+             Lisp_Object tem;
+             XSETVECTOR (tem, p);
+             if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
+               obj = tem;
+           }
+         break;
+ 
+       default:
+         abort ();
+       }
+ 
+       if (!GC_NILP (obj))
+       mark_object (obj);
+     }
+ }
+ 
+ 
+ /* Mark Lisp objects referenced from the address range START..END.  */
+ 
+ static void
+ mark_memory (start, end)
+      void *start, *end;
+ {
+   Lisp_Object *p;
+   void **pp;
+ 
+ #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
+   nzombies = 0;
+ #endif
+ 
+   /* Make START the pointer to the start of the memory region,
+      if it isn't already.  */
+   if (end < start)
+     {
+       void *tem = start;
+       start = end;
+       end = tem;
+     }
+ 
+   /* Mark Lisp_Objects.  */
+   for (p = (Lisp_Object *) start; (void *) p < end; ++p)
+     mark_maybe_object (*p);
+ 
+   /* Mark Lisp data pointed to.  This is necessary because, in some
+      situations, the C compiler optimizes Lisp objects away, so that
+      only a pointer to them remains.  Example:
+ 
+      DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
+      ()
+      {
+        Lisp_Object obj = build_string ("test");
+        struct Lisp_String *s = XSTRING (obj);
+        Fgarbage_collect ();
+        fprintf (stderr, "test `%s'\n", s->data);
+        return Qnil;
+      }
+ 
+      Here, `obj' isn't really used, and the compiler optimizes it
+      away.  The only reference to the life string is through the
+      pointer `s'.  */
+ 
+   for (pp = (void **) start; (void *) pp < end; ++pp)
+     mark_maybe_pointer (*pp);
+ }
+ 
+ /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
+    the GCC system configuration.  In gcc 3.2, the only systems for
+    which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
+    by others?) and ns32k-pc532-min.  */
+ 
+ #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
+ 
+ static int setjmp_tested_p, longjmps_done;
+ 
+ #define SETJMP_WILL_LIKELY_WORK "\
+ \n\
+ Emacs garbage collector has been changed to use conservative stack\n\
+ marking.  Emacs has determined that the method it uses to do the\n\
+ marking will likely work on your system, but this isn't sure.\n\
+ \n\
+ If you are a system-programmer, or can get the help of a local wizard\n\
+ who is, please take a look at the function mark_stack in alloc.c, and\n\
+ verify that the methods used are appropriate for your system.\n\
+ \n\
+ Please mail the result to <address@hidden>.\n\
+ "
+ 
+ #define SETJMP_WILL_NOT_WORK "\
+ \n\
+ Emacs garbage collector has been changed to use conservative stack\n\
+ marking.  Emacs has determined that the default method it uses to do the\n\
+ marking will not work on your system.  We will need a system-dependent\n\
+ solution for your system.\n\
+ \n\
+ Please take a look at the function mark_stack in alloc.c, and\n\
+ try to find a way to make it work on your system.\n\
+ \n\
+ Note that you may get false negatives, depending on the compiler.\n\
+ In particular, you need to use -O with GCC for this test.\n\
+ \n\
+ Please mail the result to <address@hidden>.\n\
+ "
+ 
+ 
+ /* Perform a quick check if it looks like setjmp saves registers in a
+    jmp_buf.  Print a message to stderr saying so.  When this test
+    succeeds, this is _not_ a proof that setjmp is sufficient for
+    conservative stack marking.  Only the sources or a disassembly
+    can prove that.  */
+ 
+ static void
+ test_setjmp ()
+ {
+   char buf[10];
+   register int x;
+   jmp_buf jbuf;
+   int result = 0;
+ 
+   /* Arrange for X to be put in a register.  */
+   sprintf (buf, "1");
+   x = strlen (buf);
+   x = 2 * x - 1;
+ 
+   setjmp (jbuf);
+   if (longjmps_done == 1)
+     {
+       /* Came here after the longjmp at the end of the function.
+ 
+          If x == 1, the longjmp has restored the register to its
+          value before the setjmp, and we can hope that setjmp
+          saves all such registers in the jmp_buf, although that
+        isn't sure.
+ 
+          For other values of X, either something really strange is
+          taking place, or the setjmp just didn't save the register.  */
+ 
+       if (x == 1)
+       fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
+       else
+       {
+         fprintf (stderr, SETJMP_WILL_NOT_WORK);
+         exit (1);
+       }
+     }
+ 
+   ++longjmps_done;
+   x = 2;
+   if (longjmps_done == 1)
+     longjmp (jbuf, 1);
+ }
+ 
+ #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
+ 
+ 
+ #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
+ 
+ /* Abort if anything GCPRO'd doesn't survive the GC.  */
+ 
+ static void
+ check_gcpros ()
+ {
+   struct gcpro *p;
+   int i;
+ 
+   for (p = gcprolist; p; p = p->next)
+     for (i = 0; i < p->nvars; ++i)
+       if (!survives_gc_p (p->var[i]))
+       /* FIXME: It's not necessarily a bug.  It might just be that the
+          GCPRO is unnecessary or should release the object sooner.  */
+       abort ();
+ }
+ 
+ #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
+ 
+ static void
+ dump_zombies ()
+ {
+   int i;
+ 
+   fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
+   for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
+     {
+       fprintf (stderr, "  %d = ", i);
+       debug_print (zombies[i]);
+     }
+ }
+ 
+ #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
+ 
+ 
+ /* Mark live Lisp objects on the C stack.
+ 
+    There are several system-dependent problems to consider when
+    porting this to new architectures:
+ 
+    Processor Registers
+ 
+    We have to mark Lisp objects in CPU registers that can hold local
+    variables or are used to pass parameters.
+ 
+    If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
+    something that either saves relevant registers on the stack, or
+    calls mark_maybe_object passing it each register's contents.
+ 
+    If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
+    implementation assumes that calling setjmp saves registers we need
+    to see in a jmp_buf which itself lies on the stack.  This doesn't
+    have to be true!  It must be verified for each system, possibly
+    by taking a look at the source code of setjmp.
+ 
+    Stack Layout
+ 
+    Architectures differ in the way their processor stack is organized.
+    For example, the stack might look like this
+ 
+      +----------------+
+      |  Lisp_Object   |  size = 4
+      +----------------+
+      | something else |  size = 2
+      +----------------+
+      |  Lisp_Object   |  size = 4
+      +----------------+
+      |        ...           |
+ 
+    In such a case, not every Lisp_Object will be aligned equally.  To
+    find all Lisp_Object on the stack it won't be sufficient to walk
+    the stack in steps of 4 bytes.  Instead, two passes will be
+    necessary, one starting at the start of the stack, and a second
+    pass starting at the start of the stack + 2.  Likewise, if the
+    minimal alignment of Lisp_Objects on the stack is 1, four passes
+    would be necessary, each one starting with one byte more offset
+    from the stack start.
+ 
+    The current code assumes by default that Lisp_Objects are aligned
+    equally on the stack.  */
+ 
+ static void
+ mark_stack ()
+ {
+   int i;
+   jmp_buf j;
+   volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
+   void *end;
+ 
+   /* This trick flushes the register windows so that all the state of
+      the process is contained in the stack.  */
+   /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
+      needed on ia64 too.  See mach_dep.c, where it also says inline
+      assembler doesn't work with relevant proprietary compilers.  */
+ #ifdef sparc
+   asm ("ta 3");
+ #endif
+ 
+   /* Save registers that we need to see on the stack.  We need to see
+      registers used to hold register variables and registers used to
+      pass parameters.  */
+ #ifdef GC_SAVE_REGISTERS_ON_STACK
+   GC_SAVE_REGISTERS_ON_STACK (end);
+ #else /* not GC_SAVE_REGISTERS_ON_STACK */
+ 
+ #ifndef GC_SETJMP_WORKS  /* If it hasn't been checked yet that
+                           setjmp will definitely work, test it
+                           and print a message with the result
+                           of the test.  */
+   if (!setjmp_tested_p)
+     {
+       setjmp_tested_p = 1;
+       test_setjmp ();
+     }
+ #endif /* GC_SETJMP_WORKS */
+ 
+   setjmp (j);
+   end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
+ #endif /* not GC_SAVE_REGISTERS_ON_STACK */
+ 
+   /* This assumes that the stack is a contiguous region in memory.  If
+      that's not the case, something has to be done here to iterate
+      over the stack segments.  */
+ #ifndef GC_LISP_OBJECT_ALIGNMENT
+ #ifdef __GNUC__
+ #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
+ #else
+ #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
+ #endif
+ #endif
+   for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
+     mark_memory ((char *) stack_base + i, end);
+ 
+ #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
+   check_gcpros ();
+ #endif
+ }
+ 
+ 
+ #endif /* GC_MARK_STACK != 0 */
+ 
+ 
+ 
+ /***********************************************************************
+                      Pure Storage Management
+  ***********************************************************************/
+ 
+ /* Allocate room for SIZE bytes from pure Lisp storage and return a
+    pointer to it.  TYPE is the Lisp type for which the memory is
+    allocated.  TYPE < 0 means it's not used for a Lisp object.
+ 
+    If store_pure_type_info is set and TYPE is >= 0, the type of
+    the allocated object is recorded in pure_types.  */
+ 
+ static POINTER_TYPE *
+ pure_alloc (size, type)
+      size_t size;
+      int type;
+ {
+   POINTER_TYPE *result;
+   size_t alignment = sizeof (EMACS_INT);
+ 
+   /* Give Lisp_Floats an extra alignment.  */
+   if (type == Lisp_Float)
+     {
+ #if defined __GNUC__ && __GNUC__ >= 2
+       alignment = __alignof (struct Lisp_Float);
+ #else
+       alignment = sizeof (struct Lisp_Float);
+ #endif
+     }
+ 
+  again:
+   result = ALIGN (purebeg + pure_bytes_used, alignment);
+   pure_bytes_used = ((char *)result - (char *)purebeg) + size;
+ 
+   if (pure_bytes_used <= pure_size)
+     return result;
+ 
+   /* Don't allocate a large amount here,
+      because it might get mmap'd and then its address
+      might not be usable.  */
+   purebeg = (char *) xmalloc (10000);
+   pure_size = 10000;
+   pure_bytes_used_before_overflow += pure_bytes_used - size;
+   pure_bytes_used = 0;
+   goto again;
+ }
+ 
+ 
+ /* Print a warning if PURESIZE is too small.  */
+ 
+ void
+ check_pure_size ()
+ {
+   if (pure_bytes_used_before_overflow)
+     message ("Pure Lisp storage overflow (approx. %d bytes needed)",
+            (int) (pure_bytes_used + pure_bytes_used_before_overflow));
+ }
+ 
+ 
+ /* Return a string allocated in pure space.  DATA is a buffer holding
+    NCHARS characters, and NBYTES bytes of string data.  MULTIBYTE
+    non-zero means make the result string multibyte.
+ 
+    Must get an error if pure storage is full, since if it cannot hold
+    a large string it may be able to hold conses that point to that
+    string; then the string is not protected from gc.  */
+ 
+ Lisp_Object
+ make_pure_string (data, nchars, nbytes, multibyte)
+      char *data;
+      int nchars, nbytes;
+      int multibyte;
+ {
+   Lisp_Object string;
+   struct Lisp_String *s;
+ 
+   s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
+   s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
+   s->size = nchars;
+   s->size_byte = multibyte ? nbytes : -1;
+   bcopy (data, s->data, nbytes);
+   s->data[nbytes] = '\0';
+   s->intervals = NULL_INTERVAL;
+   XSETSTRING (string, s);
+   return string;
+ }
+ 
+ 
+ /* Return a cons allocated from pure space.  Give it pure copies
+    of CAR as car and CDR as cdr.  */
+ 
+ Lisp_Object
+ pure_cons (car, cdr)
+      Lisp_Object car, cdr;
+ {
+   register Lisp_Object new;
+   struct Lisp_Cons *p;
+ 
+   p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
+   XSETCONS (new, p);
+   XSETCAR (new, Fpurecopy (car));
+   XSETCDR (new, Fpurecopy (cdr));
+   return new;
+ }
+ 
+ 
+ /* Value is a float object with value NUM allocated from pure space.  */
+ 
+ Lisp_Object
+ make_pure_float (num)
+      double num;
+ {
+   register Lisp_Object new;
+   struct Lisp_Float *p;
+ 
+   p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
+   XSETFLOAT (new, p);
+   XFLOAT_DATA (new) = num;
+   return new;
+ }
+ 
+ 
+ /* Return a vector with room for LEN Lisp_Objects allocated from
+    pure space.  */
+ 
+ Lisp_Object
+ make_pure_vector (len)
+      EMACS_INT len;
+ {
+   Lisp_Object new;
+   struct Lisp_Vector *p;
+   size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
+ 
+   p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
+   XSETVECTOR (new, p);
+   XVECTOR (new)->size = len;
+   return new;
+ }
+ 
+ 
+ DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
+        doc: /* Make a copy of OBJECT in pure storage.
+ Recursively copies contents of vectors and cons cells.
+ Does not copy symbols.  Copies strings without text properties.  */)
+      (obj)
+      register Lisp_Object obj;
+ {
+   if (NILP (Vpurify_flag))
+     return obj;
+ 
+   if (PURE_POINTER_P (XPNTR (obj)))
+     return obj;
+ 
+   if (CONSP (obj))
+     return pure_cons (XCAR (obj), XCDR (obj));
+   else if (FLOATP (obj))
+     return make_pure_float (XFLOAT_DATA (obj));
+   else if (STRINGP (obj))
+     return make_pure_string (SDATA (obj), SCHARS (obj),
+                            SBYTES (obj),
+                            STRING_MULTIBYTE (obj));
+   else if (COMPILEDP (obj) || VECTORP (obj))
+     {
+       register struct Lisp_Vector *vec;
+       register int i, size;
+ 
+       size = XVECTOR (obj)->size;
+       if (size & PSEUDOVECTOR_FLAG)
+       size &= PSEUDOVECTOR_SIZE_MASK;
+       vec = XVECTOR (make_pure_vector ((EMACS_INT) size));
+       for (i = 0; i < size; i++)
+       vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
+       if (COMPILEDP (obj))
+       XSETCOMPILED (obj, vec);
+       else
+       XSETVECTOR (obj, vec);
+       return obj;
+     }
+   else if (MARKERP (obj))
+     error ("Attempt to copy a marker to pure storage");
+ 
+   return obj;
+ }
+ 
+ 
+ 
+ /***********************************************************************
+                         Protection from GC
+  ***********************************************************************/
+ 
+ /* Put an entry in staticvec, pointing at the variable with address
+    VARADDRESS.  */
+ 
+ void
+ staticpro (varaddress)
+      Lisp_Object *varaddress;
+ {
+   staticvec[staticidx++] = varaddress;
+   if (staticidx >= NSTATICS)
+     abort ();
+ }
+ 
+ struct catchtag
+ {
+     Lisp_Object tag;
+     Lisp_Object val;
+     struct catchtag *next;
+ };
+ 
+ struct backtrace
+ {
+   struct backtrace *next;
+   Lisp_Object *function;
+   Lisp_Object *args;  /* Points to vector of args.  */
+   int nargs;          /* Length of vector.  */
+   /* If nargs is UNEVALLED, args points to slot holding list of
+      unevalled args.  */
+   char evalargs;
+ };
+ 
+ 
+ 
+ /***********************************************************************
+                         Protection from GC
+  ***********************************************************************/
+ 
+ /* Temporarily prevent garbage collection.  */
+ 
+ int
+ inhibit_garbage_collection ()
+ {
+   int count = SPECPDL_INDEX ();
+   int nbits = min (VALBITS, BITS_PER_INT);
+ 
+   specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 
1));
+   return count;
+ }
+ 
+ 
+ DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
+        doc: /* Reclaim storage for Lisp objects no longer needed.
+ Garbage collection happens automatically if you cons more than
+ `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
+ `garbage-collect' normally returns a list with info on amount of space in use:
+  ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
+   (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
+   (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
+   (USED-STRINGS . FREE-STRINGS))
+ However, if there was overflow in pure space, `garbage-collect'
+ returns nil, because real GC can't be done.  */)
+      ()
+ {
+   register struct specbinding *bind;
+   struct catchtag *catch;
+   struct handler *handler;
+   register struct backtrace *backlist;
+   char stack_top_variable;
+   register int i;
+   int message_p;
+   Lisp_Object total[8];
+   int count = SPECPDL_INDEX ();
+   EMACS_TIME t1, t2, t3;
+ 
+   if (abort_on_gc)
+     abort ();
+ 
+   EMACS_GET_TIME (t1);
+ 
+   /* Can't GC if pure storage overflowed because we can't determine
+      if something is a pure object or not.  */
+   if (pure_bytes_used_before_overflow)
+     return Qnil;
+ 
+   /* In case user calls debug_print during GC,
+      don't let that cause a recursive GC.  */
+   consing_since_gc = 0;
+ 
+   /* Save what's currently displayed in the echo area.  */
+   message_p = push_message ();
+   record_unwind_protect (pop_message_unwind, Qnil);
+ 
+   /* Save a copy of the contents of the stack, for debugging.  */
+ #if MAX_SAVE_STACK > 0
+   if (NILP (Vpurify_flag))
+     {
+       i = &stack_top_variable - stack_bottom;
+       if (i < 0) i = -i;
+       if (i < MAX_SAVE_STACK)
+       {
+         if (stack_copy == 0)
+           stack_copy = (char *) xmalloc (stack_copy_size = i);
+         else if (stack_copy_size < i)
+           stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
+         if (stack_copy)
+           {
+             if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
+               bcopy (stack_bottom, stack_copy, i);
+             else
+               bcopy (&stack_top_variable, stack_copy, i);
+           }
+       }
+     }
+ #endif /* MAX_SAVE_STACK > 0 */
+ 
+   if (garbage_collection_messages)
+     message1_nolog ("Garbage collecting...");
+ 
+   BLOCK_INPUT;
+ 
+   shrink_regexp_cache ();
+ 
+   /* Don't keep undo information around forever.  */
+   {
+     register struct buffer *nextb = all_buffers;
+ 
+     while (nextb)
+       {
+       /* If a buffer's undo list is Qt, that means that undo is
+          turned off in that buffer.  Calling truncate_undo_list on
+          Qt tends to return NULL, which effectively turns undo back on.
+          So don't call truncate_undo_list if undo_list is Qt.  */
+       if (! EQ (nextb->undo_list, Qt))
+         nextb->undo_list
+           = truncate_undo_list (nextb->undo_list, undo_limit,
+                                 undo_strong_limit);
+ 
+       /* Shrink buffer gaps, but skip indirect and dead buffers.  */
+       if (nextb->base_buffer == 0 && !NILP (nextb->name))
+         {
+           /* If a buffer's gap size is more than 10% of the buffer
+              size, or larger than 2000 bytes, then shrink it
+              accordingly.  Keep a minimum size of 20 bytes.  */
+           int size = min (2000, max (20, (nextb->text->z_byte / 10)));
+ 
+           if (nextb->text->gap_size > size)
+             {
+               struct buffer *save_current = current_buffer;
+               current_buffer = nextb;
+               make_gap (-(nextb->text->gap_size - size));
+               current_buffer = save_current;
+             }
+         }
+ 
+       nextb = nextb->next;
+       }
+   }
+ 
+   gc_in_progress = 1;
+ 
+   /* clear_marks (); */
+ 
+   /* Mark all the special slots that serve as the roots of accessibility.
+ 
+      Usually the special slots to mark are contained in particular structures.
+      Then we know no slot is marked twice because the structures don't 
overlap.
+      In some cases, the structures point to the slots to be marked.
+      For these, we use MARKBIT to avoid double marking of the slot.  */
+ 
+   for (i = 0; i < staticidx; i++)
+     mark_object (*staticvec[i]);
+ 
+ #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
+      || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
+   mark_stack ();
+ #else
+   {
+     register struct gcpro *tail;
+     for (tail = gcprolist; tail; tail = tail->next)
+       for (i = 0; i < tail->nvars; i++)
+       if (!XMARKBIT (tail->var[i]))
+         {
+           mark_object (tail->var[i]);
+           XMARK (tail->var[i]);
+         }
+   }
+ #endif
+ 
+   mark_byte_stack ();
+   for (bind = specpdl; bind != specpdl_ptr; bind++)
+     {
+       mark_object (bind->symbol);
+       mark_object (bind->old_value);
+     }
+   for (catch = catchlist; catch; catch = catch->next)
+     {
+       mark_object (catch->tag);
+       mark_object (catch->val);
+     }
+   for (handler = handlerlist; handler; handler = handler->next)
+     {
+       mark_object (handler->handler);
+       mark_object (handler->var);
+     }
+   for (backlist = backtrace_list; backlist; backlist = backlist->next)
+     {
+       if (!XMARKBIT (*backlist->function))
+       {
+         mark_object (*backlist->function);
+         XMARK (*backlist->function);
+       }
+       if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
+       i = 0;
+       else
+       i = backlist->nargs - 1;
+       for (; i >= 0; i--)
+       if (!XMARKBIT (backlist->args[i]))
+         {
+           mark_object (backlist->args[i]);
+           XMARK (backlist->args[i]);
+         }
+     }
+   mark_kboards ();
+ 
+   /* Look thru every buffer's undo list
+      for elements that update markers that were not marked,
+      and delete them.  */
+   {
+     register struct buffer *nextb = all_buffers;
+ 
+     while (nextb)
+       {
+       /* If a buffer's undo list is Qt, that means that undo is
+          turned off in that buffer.  Calling truncate_undo_list on
+          Qt tends to return NULL, which effectively turns undo back on.
+          So don't call truncate_undo_list if undo_list is Qt.  */
+       if (! EQ (nextb->undo_list, Qt))
+         {
+           Lisp_Object tail, prev;
+           tail = nextb->undo_list;
+           prev = Qnil;
+           while (CONSP (tail))
+             {
+               if (GC_CONSP (XCAR (tail))
+                   && GC_MARKERP (XCAR (XCAR (tail)))
+                   && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
+                 {
+                   if (NILP (prev))
+                     nextb->undo_list = tail = XCDR (tail);
+                   else
+                     {
+                       tail = XCDR (tail);
+                       XSETCDR (prev, tail);
+                     }
+                 }
+               else
+                 {
+                   prev = tail;
+                   tail = XCDR (tail);
+                 }
+             }
+         }
+ 
+       nextb = nextb->next;
+       }
+   }
+ 
+ #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
+   mark_stack ();
+ #endif
+ 
+ #ifdef USE_GTK
+   {
+     extern void xg_mark_data ();
+     xg_mark_data ();
+   }
+ #endif
+ 
+   gc_sweep ();
+ 
+   /* Clear the mark bits that we set in certain root slots.  */
+ 
+ #if (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE \
+      || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
+   {
+     register struct gcpro *tail;
+ 
+     for (tail = gcprolist; tail; tail = tail->next)
+       for (i = 0; i < tail->nvars; i++)
+       XUNMARK (tail->var[i]);
+   }
+ #endif
+ 
+   unmark_byte_stack ();
+   for (backlist = backtrace_list; backlist; backlist = backlist->next)
+     {
+       XUNMARK (*backlist->function);
+       if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
+       i = 0;
+       else
+       i = backlist->nargs - 1;
+       for (; i >= 0; i--)
+       XUNMARK (backlist->args[i]);
+     }
+   VECTOR_UNMARK (&buffer_defaults);
+   VECTOR_UNMARK (&buffer_local_symbols);
+ 
+ #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
+   dump_zombies ();
+ #endif
+ 
+   UNBLOCK_INPUT;
+ 
+   /* clear_marks (); */
+   gc_in_progress = 0;
+ 
+   consing_since_gc = 0;
+   if (gc_cons_threshold < 10000)
+     gc_cons_threshold = 10000;
+ 
+   if (garbage_collection_messages)
+     {
+       if (message_p || minibuf_level > 0)
+       restore_message ();
+       else
+       message1_nolog ("Garbage collecting...done");
+     }
+ 
+   unbind_to (count, Qnil);
+ 
+   total[0] = Fcons (make_number (total_conses),
+                   make_number (total_free_conses));
+   total[1] = Fcons (make_number (total_symbols),
+                   make_number (total_free_symbols));
+   total[2] = Fcons (make_number (total_markers),
+                   make_number (total_free_markers));
+   total[3] = make_number (total_string_size);
+   total[4] = make_number (total_vector_size);
+   total[5] = Fcons (make_number (total_floats),
+                   make_number (total_free_floats));
+   total[6] = Fcons (make_number (total_intervals),
+                   make_number (total_free_intervals));
+   total[7] = Fcons (make_number (total_strings),
+                   make_number (total_free_strings));
+ 
+ #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
+   {
+     /* Compute average percentage of zombies.  */
+     double nlive = 0;
+ 
+     for (i = 0; i < 7; ++i)
+       if (CONSP (total[i]))
+       nlive += XFASTINT (XCAR (total[i]));
+ 
+     avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
+     max_live = max (nlive, max_live);
+     avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
+     max_zombies = max (nzombies, max_zombies);
+     ++ngcs;
+     }
+ #endif
+ 
+   if (!NILP (Vpost_gc_hook))
+     {
+       int count = inhibit_garbage_collection ();
+       safe_run_hooks (Qpost_gc_hook);
+       unbind_to (count, Qnil);
+     }
+ 
+   /* Accumulate statistics.  */
+   EMACS_GET_TIME (t2);
+   EMACS_SUB_TIME (t3, t2, t1);
+   if (FLOATP (Vgc_elapsed))
+     Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
+                             EMACS_SECS (t3) +
+                             EMACS_USECS (t3) * 1.0e-6);
+   gcs_done++;
+ 
+   return Flist (sizeof total / sizeof *total, total);
+ }
+ 
+ 
+ /* Mark Lisp objects in glyph matrix MATRIX.  Currently the
+    only interesting objects referenced from glyphs are strings.  */
+ 
+ static void
+ mark_glyph_matrix (matrix)
+      struct glyph_matrix *matrix;
+ {
+   struct glyph_row *row = matrix->rows;
+   struct glyph_row *end = row + matrix->nrows;
+ 
+   for (; row < end; ++row)
+     if (row->enabled_p)
+       {
+       int area;
+       for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
+         {
+           struct glyph *glyph = row->glyphs[area];
+           struct glyph *end_glyph = glyph + row->used[area];
+ 
+           for (; glyph < end_glyph; ++glyph)
+             if (GC_STRINGP (glyph->object)
+                 && !STRING_MARKED_P (XSTRING (glyph->object)))
+               mark_object (glyph->object);
+         }
+       }
+ }
+ 
+ 
+ /* Mark Lisp faces in the face cache C.  */
+ 
+ static void
+ mark_face_cache (c)
+      struct face_cache *c;
+ {
+   if (c)
+     {
+       int i, j;
+       for (i = 0; i < c->used; ++i)
+       {
+         struct face *face = FACE_FROM_ID (c->f, i);
+ 
+         if (face)
+           {
+             for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
+               mark_object (face->lface[j]);
+           }
+       }
+     }
+ }
+ 
+ 
+ #ifdef HAVE_WINDOW_SYSTEM
+ 
+ /* Mark Lisp objects in image IMG.  */
+ 
+ static void
+ mark_image (img)
+      struct image *img;
+ {
+   mark_object (img->spec);
+ 
+   if (!NILP (img->data.lisp_val))
+     mark_object (img->data.lisp_val);
+ }
+ 
+ 
+ /* Mark Lisp objects in image cache of frame F.  It's done this way so
+    that we don't have to include xterm.h here.  */
+ 
+ static void
+ mark_image_cache (f)
+      struct frame *f;
+ {
+   forall_images_in_image_cache (f, mark_image);
+ }
+ 
+ #endif /* HAVE_X_WINDOWS */
+ 
+ 
+ 
+ /* Mark reference to a Lisp_Object.
+    If the object referred to has not been seen yet, recursively mark
+    all the references contained in it.  */
+ 
+ #define LAST_MARKED_SIZE 500
+ Lisp_Object last_marked[LAST_MARKED_SIZE];
+ int last_marked_index;
+ 
+ /* For debugging--call abort when we cdr down this many
+    links of a list, in mark_object.  In debugging,
+    the call to abort will hit a breakpoint.
+    Normally this is zero and the check never goes off.  */
+ int mark_object_loop_halt;
+ 
+ void
+ mark_object (arg)
+      Lisp_Object arg;
+ {
+   register Lisp_Object obj = arg;
+ #ifdef GC_CHECK_MARKED_OBJECTS
+   void *po;
+   struct mem_node *m;
+ #endif
+   int cdr_count = 0;
+ 
+  loop:
+   XUNMARK (obj);
+ 
+   if (PURE_POINTER_P (XPNTR (obj)))
+     return;
+ 
+   last_marked[last_marked_index++] = obj;
+   if (last_marked_index == LAST_MARKED_SIZE)
+     last_marked_index = 0;
+ 
+   /* Perform some sanity checks on the objects marked here.  Abort if
+      we encounter an object we know is bogus.  This increases GC time
+      by ~80%, and requires compilation with GC_MARK_STACK != 0.  */
+ #ifdef GC_CHECK_MARKED_OBJECTS
+ 
+   po = (void *) XPNTR (obj);
+ 
+   /* Check that the object pointed to by PO is known to be a Lisp
+      structure allocated from the heap.  */
+ #define CHECK_ALLOCATED()                     \
+   do {                                                \
+     m = mem_find (po);                                \
+     if (m == MEM_NIL)                         \
+       abort ();                                       \
+   } while (0)
+ 
+   /* Check that the object pointed to by PO is live, using predicate
+      function LIVEP.  */
+ #define CHECK_LIVE(LIVEP)                     \
+   do {                                                \
+     if (!LIVEP (m, po))                               \
+       abort ();                                       \
+   } while (0)
+ 
+   /* Check both of the above conditions.  */
+ #define CHECK_ALLOCATED_AND_LIVE(LIVEP)               \
+   do {                                                \
+     CHECK_ALLOCATED ();                               \
+     CHECK_LIVE (LIVEP);                               \
+   } while (0)                                 \
+ 
+ #else /* not GC_CHECK_MARKED_OBJECTS */
+ 
+ #define CHECK_ALLOCATED()             (void) 0
+ #define CHECK_LIVE(LIVEP)             (void) 0
+ #define CHECK_ALLOCATED_AND_LIVE(LIVEP)       (void) 0
+ 
+ #endif /* not GC_CHECK_MARKED_OBJECTS */
+ 
+   switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
+     {
+     case Lisp_String:
+       {
+       register struct Lisp_String *ptr = XSTRING (obj);
+       CHECK_ALLOCATED_AND_LIVE (live_string_p);
+       MARK_INTERVAL_TREE (ptr->intervals);
+       MARK_STRING (ptr);
+ #ifdef GC_CHECK_STRING_BYTES
+       /* Check that the string size recorded in the string is the
+          same as the one recorded in the sdata structure. */
+       CHECK_STRING_BYTES (ptr);
+ #endif /* GC_CHECK_STRING_BYTES */
+       }
+       break;
+ 
+     case Lisp_Vectorlike:
+ #ifdef GC_CHECK_MARKED_OBJECTS
+       m = mem_find (po);
+       if (m == MEM_NIL && !GC_SUBRP (obj)
+         && po != &buffer_defaults
+         && po != &buffer_local_symbols)
+       abort ();
+ #endif /* GC_CHECK_MARKED_OBJECTS */
+ 
+       if (GC_BUFFERP (obj))
+       {
+         if (!VECTOR_MARKED_P (XBUFFER (obj)))
+           {
+ #ifdef GC_CHECK_MARKED_OBJECTS
+             if (po != &buffer_defaults && po != &buffer_local_symbols)
+               {
+                 struct buffer *b;
+                 for (b = all_buffers; b && b != po; b = b->next)
+                   ;
+                 if (b == NULL)
+                   abort ();
+               }
+ #endif /* GC_CHECK_MARKED_OBJECTS */
+             mark_buffer (obj);
+           }
+       }
+       else if (GC_SUBRP (obj))
+       break;
+       else if (GC_COMPILEDP (obj))
+       /* We could treat this just like a vector, but it is better to
+          save the COMPILED_CONSTANTS element for last and avoid
+          recursion there.  */
+       {
+         register struct Lisp_Vector *ptr = XVECTOR (obj);
+         register EMACS_INT size = ptr->size;
+         register int i;
+ 
+         if (VECTOR_MARKED_P (ptr))
+           break;   /* Already marked */
+ 
+         CHECK_LIVE (live_vector_p);
+         VECTOR_MARK (ptr);    /* Else mark it */
+         size &= PSEUDOVECTOR_SIZE_MASK;
+         for (i = 0; i < size; i++) /* and then mark its elements */
+           {
+             if (i != COMPILED_CONSTANTS)
+               mark_object (ptr->contents[i]);
+           }
+         obj = ptr->contents[COMPILED_CONSTANTS];
+         goto loop;
+       }
+       else if (GC_FRAMEP (obj))
+       {
+         register struct frame *ptr = XFRAME (obj);
+ 
+         if (VECTOR_MARKED_P (ptr)) break;   /* Already marked */
+         VECTOR_MARK (ptr);                  /* Else mark it */
+ 
+         CHECK_LIVE (live_vector_p);
+         mark_object (ptr->name);
+         mark_object (ptr->icon_name);
+         mark_object (ptr->title);
+         mark_object (ptr->focus_frame);
+         mark_object (ptr->selected_window);
+         mark_object (ptr->minibuffer_window);
+         mark_object (ptr->param_alist);
+         mark_object (ptr->scroll_bars);
+         mark_object (ptr->condemned_scroll_bars);
+         mark_object (ptr->menu_bar_items);
+         mark_object (ptr->face_alist);
+         mark_object (ptr->menu_bar_vector);
+         mark_object (ptr->buffer_predicate);
+         mark_object (ptr->buffer_list);
+         mark_object (ptr->menu_bar_window);
+         mark_object (ptr->tool_bar_window);
+         mark_face_cache (ptr->face_cache);
+ #ifdef HAVE_WINDOW_SYSTEM
+         mark_image_cache (ptr);
+         mark_object (ptr->tool_bar_items);
+         mark_object (ptr->desired_tool_bar_string);
+         mark_object (ptr->current_tool_bar_string);
+ #endif /* HAVE_WINDOW_SYSTEM */
+       }
+       else if (GC_BOOL_VECTOR_P (obj))
+       {
+         register struct Lisp_Vector *ptr = XVECTOR (obj);
+ 
+         if (VECTOR_MARKED_P (ptr))
+           break;   /* Already marked */
+         CHECK_LIVE (live_vector_p);
+         VECTOR_MARK (ptr);    /* Else mark it */
+       }
+       else if (GC_WINDOWP (obj))
+       {
+         register struct Lisp_Vector *ptr = XVECTOR (obj);
+         struct window *w = XWINDOW (obj);
+         register int i;
+ 
+         /* Stop if already marked.  */
+         if (VECTOR_MARKED_P (ptr))
+           break;
+ 
+         /* Mark it.  */
+         CHECK_LIVE (live_vector_p);
+         VECTOR_MARK (ptr);
+ 
+         /* There is no Lisp data above The member CURRENT_MATRIX in
+            struct WINDOW.  Stop marking when that slot is reached.  */
+         for (i = 0;
+              (char *) &ptr->contents[i] < (char *) &w->current_matrix;
+              i++)
+           mark_object (ptr->contents[i]);
+ 
+         /* Mark glyphs for leaf windows.  Marking window matrices is
+            sufficient because frame matrices use the same glyph
+            memory.  */
+         if (NILP (w->hchild)
+             && NILP (w->vchild)
+             && w->current_matrix)
+           {
+             mark_glyph_matrix (w->current_matrix);
+             mark_glyph_matrix (w->desired_matrix);
+           }
+       }
+       else if (GC_HASH_TABLE_P (obj))
+       {
+         struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
+ 
+         /* Stop if already marked.  */
+         if (VECTOR_MARKED_P (h))
+           break;
+ 
+         /* Mark it.  */
+         CHECK_LIVE (live_vector_p);
+         VECTOR_MARK (h);
+ 
+         /* Mark contents.  */
+         /* Do not mark next_free or next_weak.
+            Being in the next_weak chain
+            should not keep the hash table alive.
+            No need to mark `count' since it is an integer.  */
+         mark_object (h->test);
+         mark_object (h->weak);
+         mark_object (h->rehash_size);
+         mark_object (h->rehash_threshold);
+         mark_object (h->hash);
+         mark_object (h->next);
+         mark_object (h->index);
+         mark_object (h->user_hash_function);
+         mark_object (h->user_cmp_function);
+ 
+         /* If hash table is not weak, mark all keys and values.
+            For weak tables, mark only the vector.  */
+         if (GC_NILP (h->weak))
+           mark_object (h->key_and_value);
+         else
+           VECTOR_MARK (XVECTOR (h->key_and_value));
+       }
+       else
+       {
+         register struct Lisp_Vector *ptr = XVECTOR (obj);
+         register EMACS_INT size = ptr->size;
+         register int i;
+ 
+         if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
+         CHECK_LIVE (live_vector_p);
+         VECTOR_MARK (ptr);    /* Else mark it */
+         if (size & PSEUDOVECTOR_FLAG)
+           size &= PSEUDOVECTOR_SIZE_MASK;
+ 
+         for (i = 0; i < size; i++) /* and then mark its elements */
+           mark_object (ptr->contents[i]);
+       }
+       break;
+ 
+     case Lisp_Symbol:
+       {
+       register struct Lisp_Symbol *ptr = XSYMBOL (obj);
+       struct Lisp_Symbol *ptrx;
+ 
+       if (ptr->gcmarkbit) break;
+       CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
+       ptr->gcmarkbit = 1;
+       mark_object (ptr->value);
+       mark_object (ptr->function);
+       mark_object (ptr->plist);
+ 
+       if (!PURE_POINTER_P (XSTRING (ptr->xname)))
+         MARK_STRING (XSTRING (ptr->xname));
+       MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
+ 
+       /* Note that we do not mark the obarray of the symbol.
+          It is safe not to do so because nothing accesses that
+          slot except to check whether it is nil.  */
+       ptr = ptr->next;
+       if (ptr)
+         {
+           ptrx = ptr;         /* Use of ptrx avoids compiler bug on Sun */
+           XSETSYMBOL (obj, ptrx);
+           goto loop;
+         }
+       }
+       break;
+ 
+     case Lisp_Misc:
+       CHECK_ALLOCATED_AND_LIVE (live_misc_p);
+       if (XMARKER (obj)->gcmarkbit)
+       break;
+       XMARKER (obj)->gcmarkbit = 1;
+       switch (XMISCTYPE (obj))
+       {
+       case Lisp_Misc_Buffer_Local_Value:
+       case Lisp_Misc_Some_Buffer_Local_Value:
+         {
+           register struct Lisp_Buffer_Local_Value *ptr
+             = XBUFFER_LOCAL_VALUE (obj);
+           /* If the cdr is nil, avoid recursion for the car.  */
+           if (EQ (ptr->cdr, Qnil))
+             {
+               obj = ptr->realvalue;
+               goto loop;
+             }
+           mark_object (ptr->realvalue);
+           mark_object (ptr->buffer);
+           mark_object (ptr->frame);
+           obj = ptr->cdr;
+           goto loop;
+         }
+ 
+       case Lisp_Misc_Marker:
+         /* DO NOT mark thru the marker's chain.
+            The buffer's markers chain does not preserve markers from gc;
+            instead, markers are removed from the chain when freed by gc.  */
+       case Lisp_Misc_Intfwd:
+       case Lisp_Misc_Boolfwd:
+       case Lisp_Misc_Objfwd:
+       case Lisp_Misc_Buffer_Objfwd:
+       case Lisp_Misc_Kboard_Objfwd:
+         /* Don't bother with Lisp_Buffer_Objfwd,
+            since all markable slots in current buffer marked anyway.  */
+         /* Don't need to do Lisp_Objfwd, since the places they point
+            are protected with staticpro.  */
+       case Lisp_Misc_Save_Value:
+         break;
+ 
+       case Lisp_Misc_Overlay:
+         {
+           struct Lisp_Overlay *ptr = XOVERLAY (obj);
+           mark_object (ptr->start);
+           mark_object (ptr->end);
+           mark_object (ptr->plist);
+           if (ptr->next)
+             {
+               XSETMISC (obj, ptr->next);
+               goto loop;
+             }
+         }
+         break;
+ 
+       default:
+         abort ();
+       }
+       break;
+ 
+     case Lisp_Cons:
+       {
+       register struct Lisp_Cons *ptr = XCONS (obj);
+       if (CONS_MARKED_P (ptr)) break;
+       CHECK_ALLOCATED_AND_LIVE (live_cons_p);
+       CONS_MARK (ptr);
+       /* If the cdr is nil, avoid recursion for the car.  */
+       if (EQ (ptr->cdr, Qnil))
+         {
+           obj = ptr->car;
+           cdr_count = 0;
+           goto loop;
+         }
+       mark_object (ptr->car);
+       obj = ptr->cdr;
+       cdr_count++;
+       if (cdr_count == mark_object_loop_halt)
+         abort ();
+       goto loop;
+       }
+ 
+     case Lisp_Float:
+       CHECK_ALLOCATED_AND_LIVE (live_float_p);
+       FLOAT_MARK (XFLOAT (obj));
+       break;
+ 
+     case Lisp_Int:
+       break;
+ 
+     default:
+       abort ();
+     }
+ 
+ #undef CHECK_LIVE
+ #undef CHECK_ALLOCATED
+ #undef CHECK_ALLOCATED_AND_LIVE
+ }
+ 
+ /* Mark the pointers in a buffer structure.  */
+ 
+ static void
+ mark_buffer (buf)
+      Lisp_Object buf;
+ {
+   register struct buffer *buffer = XBUFFER (buf);
+   register Lisp_Object *ptr, tmp;
+   Lisp_Object base_buffer;
+ 
+   VECTOR_MARK (buffer);
+ 
+   MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
+ 
+   if (CONSP (buffer->undo_list))
+     {
+       Lisp_Object tail;
+       tail = buffer->undo_list;
+ 
+       /* We mark the undo list specially because
+        its pointers to markers should be weak.  */
+ 
+       while (CONSP (tail))
+       {
+         register struct Lisp_Cons *ptr = XCONS (tail);
+ 
+         if (CONS_MARKED_P (ptr))
+           break;
+         CONS_MARK (ptr);
+         if (GC_CONSP (ptr->car)
+             && !CONS_MARKED_P (XCONS (ptr->car))
+             && GC_MARKERP (XCAR (ptr->car)))
+           {
+             CONS_MARK (XCONS (ptr->car));
+             mark_object (XCDR (ptr->car));
+           }
+         else
+           mark_object (ptr->car);
+ 
+         if (CONSP (ptr->cdr))
+           tail = ptr->cdr;
+         else
+           break;
+       }
+ 
+       mark_object (XCDR (tail));
+     }
+   else
+     mark_object (buffer->undo_list);
+ 
+   if (buffer->overlays_before)
+     {
+       XSETMISC (tmp, buffer->overlays_before);
+       mark_object (tmp);
+     }
+   if (buffer->overlays_after)
+     {
+       XSETMISC (tmp, buffer->overlays_after);
+       mark_object (tmp);
+     }
+ 
+   for (ptr = &buffer->name;
+        (char *)ptr < (char *)buffer + sizeof (struct buffer);
+        ptr++)
+     mark_object (*ptr);
+ 
+   /* If this is an indirect buffer, mark its base buffer.  */
+   if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
+     {
+       XSETBUFFER (base_buffer, buffer->base_buffer);
+       mark_buffer (base_buffer);
+     }
+ }
+ 
+ 
+ /* Value is non-zero if OBJ will survive the current GC because it's
+    either marked or does not need to be marked to survive.  */
+ 
+ int
+ survives_gc_p (obj)
+      Lisp_Object obj;
+ {
+   int survives_p;
+ 
+   switch (XGCTYPE (obj))
+     {
+     case Lisp_Int:
+       survives_p = 1;
+       break;
+ 
+     case Lisp_Symbol:
+       survives_p = XSYMBOL (obj)->gcmarkbit;
+       break;
+ 
+     case Lisp_Misc:
+       survives_p = XMARKER (obj)->gcmarkbit;
+       break;
+ 
+     case Lisp_String:
+       survives_p = STRING_MARKED_P (XSTRING (obj));
+       break;
+ 
+     case Lisp_Vectorlike:
+       survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
+       break;
+ 
+     case Lisp_Cons:
+       survives_p = CONS_MARKED_P (XCONS (obj));
+       break;
+ 
+     case Lisp_Float:
+       survives_p = FLOAT_MARKED_P (XFLOAT (obj));
+       break;
+ 
+     default:
+       abort ();
+     }
+ 
+   return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
+ }
+ 
+ 
+ 
+ /* Sweep: find all structures not marked, and free them. */
+ 
+ static void
+ gc_sweep ()
+ {
+   /* Remove or mark entries in weak hash tables.
+      This must be done before any object is unmarked.  */
+   sweep_weak_hash_tables ();
+ 
+   sweep_strings ();
+ #ifdef GC_CHECK_STRING_BYTES
+   if (!noninteractive)
+     check_string_bytes (1);
+ #endif
+ 
+   /* Put all unmarked conses on free list */
+   {
+     register struct cons_block *cblk;
+     struct cons_block **cprev = &cons_block;
+     register int lim = cons_block_index;
+     register int num_free = 0, num_used = 0;
+ 
+     cons_free_list = 0;
+ 
+     for (cblk = cons_block; cblk; cblk = *cprev)
+       {
+       register int i;
+       int this_free = 0;
+       for (i = 0; i < lim; i++)
+         if (!CONS_MARKED_P (&cblk->conses[i]))
+           {
+             this_free++;
+             *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
+             cons_free_list = &cblk->conses[i];
+ #if GC_MARK_STACK
+             cons_free_list->car = Vdead;
+ #endif
+           }
+         else
+           {
+             num_used++;
+             CONS_UNMARK (&cblk->conses[i]);
+           }
+       lim = CONS_BLOCK_SIZE;
+       /* If this block contains only free conses and we have already
+          seen more than two blocks worth of free conses then deallocate
+          this block.  */
+       if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
+         {
+           *cprev = cblk->next;
+           /* Unhook from the free list.  */
+           cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
+           lisp_align_free (cblk);
+           n_cons_blocks--;
+         }
+       else
+         {
+           num_free += this_free;
+           cprev = &cblk->next;
+         }
+       }
+     total_conses = num_used;
+     total_free_conses = num_free;
+   }
+ 
+   /* Put all unmarked floats on free list */
+   {
+     register struct float_block *fblk;
+     struct float_block **fprev = &float_block;
+     register int lim = float_block_index;
+     register int num_free = 0, num_used = 0;
+ 
+     float_free_list = 0;
+ 
+     for (fblk = float_block; fblk; fblk = *fprev)
+       {
+       register int i;
+       int this_free = 0;
+       for (i = 0; i < lim; i++)
+         if (!FLOAT_MARKED_P (&fblk->floats[i]))
+           {
+             this_free++;
+             *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
+             float_free_list = &fblk->floats[i];
+           }
+         else
+           {
+             num_used++;
+             FLOAT_UNMARK (&fblk->floats[i]);
+           }
+       lim = FLOAT_BLOCK_SIZE;
+       /* If this block contains only free floats and we have already
+          seen more than two blocks worth of free floats then deallocate
+          this block.  */
+       if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
+         {
+           *fprev = fblk->next;
+           /* Unhook from the free list.  */
+           float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
+           lisp_align_free (fblk);
+           n_float_blocks--;
+         }
+       else
+         {
+           num_free += this_free;
+           fprev = &fblk->next;
+         }
+       }
+     total_floats = num_used;
+     total_free_floats = num_free;
+   }
+ 
+   /* Put all unmarked intervals on free list */
+   {
+     register struct interval_block *iblk;
+     struct interval_block **iprev = &interval_block;
+     register int lim = interval_block_index;
+     register int num_free = 0, num_used = 0;
+ 
+     interval_free_list = 0;
+ 
+     for (iblk = interval_block; iblk; iblk = *iprev)
+       {
+       register int i;
+       int this_free = 0;
+ 
+       for (i = 0; i < lim; i++)
+         {
+           if (!iblk->intervals[i].gcmarkbit)
+             {
+               SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
+               interval_free_list = &iblk->intervals[i];
+               this_free++;
+             }
+           else
+             {
+               num_used++;
+               iblk->intervals[i].gcmarkbit = 0;
+             }
+         }
+       lim = INTERVAL_BLOCK_SIZE;
+       /* If this block contains only free intervals and we have already
+          seen more than two blocks worth of free intervals then
+          deallocate this block.  */
+       if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
+         {
+           *iprev = iblk->next;
+           /* Unhook from the free list.  */
+           interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
+           lisp_free (iblk);
+           n_interval_blocks--;
+         }
+       else
+         {
+           num_free += this_free;
+           iprev = &iblk->next;
+         }
+       }
+     total_intervals = num_used;
+     total_free_intervals = num_free;
+   }
+ 
+   /* Put all unmarked symbols on free list */
+   {
+     register struct symbol_block *sblk;
+     struct symbol_block **sprev = &symbol_block;
+     register int lim = symbol_block_index;
+     register int num_free = 0, num_used = 0;
+ 
+     symbol_free_list = NULL;
+ 
+     for (sblk = symbol_block; sblk; sblk = *sprev)
+       {
+       int this_free = 0;
+       struct Lisp_Symbol *sym = sblk->symbols;
+       struct Lisp_Symbol *end = sym + lim;
+ 
+       for (; sym < end; ++sym)
+         {
+           /* Check if the symbol was created during loadup.  In such a case
+              it might be pointed to by pure bytecode which we don't trace,
+              so we conservatively assume that it is live.  */
+           int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
+ 
+           if (!sym->gcmarkbit && !pure_p)
+             {
+               *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
+               symbol_free_list = sym;
+ #if GC_MARK_STACK
+               symbol_free_list->function = Vdead;
+ #endif
+               ++this_free;
+             }
+           else
+             {
+               ++num_used;
+               if (!pure_p)
+                 UNMARK_STRING (XSTRING (sym->xname));
+               sym->gcmarkbit = 0;
+             }
+         }
+ 
+       lim = SYMBOL_BLOCK_SIZE;
+       /* If this block contains only free symbols and we have already
+          seen more than two blocks worth of free symbols then deallocate
+          this block.  */
+       if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
+         {
+           *sprev = sblk->next;
+           /* Unhook from the free list.  */
+           symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
+           lisp_free (sblk);
+           n_symbol_blocks--;
+         }
+       else
+         {
+           num_free += this_free;
+           sprev = &sblk->next;
+         }
+       }
+     total_symbols = num_used;
+     total_free_symbols = num_free;
+   }
+ 
+   /* Put all unmarked misc's on free list.
+      For a marker, first unchain it from the buffer it points into.  */
+   {
+     register struct marker_block *mblk;
+     struct marker_block **mprev = &marker_block;
+     register int lim = marker_block_index;
+     register int num_free = 0, num_used = 0;
+ 
+     marker_free_list = 0;
+ 
+     for (mblk = marker_block; mblk; mblk = *mprev)
+       {
+       register int i;
+       int this_free = 0;
+ 
+       for (i = 0; i < lim; i++)
+         {
+           if (!mblk->markers[i].u_marker.gcmarkbit)
+             {
+               if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
+                 unchain_marker (&mblk->markers[i].u_marker);
+               /* Set the type of the freed object to Lisp_Misc_Free.
+                  We could leave the type alone, since nobody checks it,
+                  but this might catch bugs faster.  */
+               mblk->markers[i].u_marker.type = Lisp_Misc_Free;
+               mblk->markers[i].u_free.chain = marker_free_list;
+               marker_free_list = &mblk->markers[i];
+               this_free++;
+             }
+           else
+             {
+               num_used++;
+               mblk->markers[i].u_marker.gcmarkbit = 0;
+             }
+         }
+       lim = MARKER_BLOCK_SIZE;
+       /* If this block contains only free markers and we have already
+          seen more than two blocks worth of free markers then deallocate
+          this block.  */
+       if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
+         {
+           *mprev = mblk->next;
+           /* Unhook from the free list.  */
+           marker_free_list = mblk->markers[0].u_free.chain;
+           lisp_free (mblk);
+           n_marker_blocks--;
+         }
+       else
+         {
+           num_free += this_free;
+           mprev = &mblk->next;
+         }
+       }
+ 
+     total_markers = num_used;
+     total_free_markers = num_free;
+   }
+ 
+   /* Free all unmarked buffers */
+   {
+     register struct buffer *buffer = all_buffers, *prev = 0, *next;
+ 
+     while (buffer)
+       if (!VECTOR_MARKED_P (buffer))
+       {
+         if (prev)
+           prev->next = buffer->next;
+         else
+           all_buffers = buffer->next;
+         next = buffer->next;
+         lisp_free (buffer);
+         buffer = next;
+       }
+       else
+       {
+         VECTOR_UNMARK (buffer);
+         UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
+         prev = buffer, buffer = buffer->next;
+       }
+   }
+ 
+   /* Free all unmarked vectors */
+   {
+     register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
+     total_vector_size = 0;
+ 
+     while (vector)
+       if (!VECTOR_MARKED_P (vector))
+       {
+         if (prev)
+           prev->next = vector->next;
+         else
+           all_vectors = vector->next;
+         next = vector->next;
+         lisp_free (vector);
+         n_vectors--;
+         vector = next;
+ 
+       }
+       else
+       {
+         VECTOR_UNMARK (vector);
+         if (vector->size & PSEUDOVECTOR_FLAG)
+           total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
+         else
+           total_vector_size += vector->size;
+         prev = vector, vector = vector->next;
+       }
+   }
+ 
+ #ifdef GC_CHECK_STRING_BYTES
+   if (!noninteractive)
+     check_string_bytes (1);
+ #endif
+ }
+ 
+ 
+ 
+ 
+ /* Debugging aids.  */
+ 
+ DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
+        doc: /* Return the address of the last byte Emacs has allocated, 
divided by 1024.
+ This may be helpful in debugging Emacs's memory usage.
+ We divide the value by 1024 to make sure it fits in a Lisp integer.  */)
+      ()
+ {
+   Lisp_Object end;
+ 
+   XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
+ 
+   return end;
+ }
+ 
+ DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
+        doc: /* Return a list of counters that measure how much consing there 
has been.
+ Each of these counters increments for a certain kind of object.
+ The counters wrap around from the largest positive integer to zero.
+ Garbage collection does not decrease them.
+ The elements of the value are as follows:
+   (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
+ All are in units of 1 = one object consed
+ except for VECTOR-CELLS and STRING-CHARS, which count the total length of
+ objects consed.
+ MISCS include overlays, markers, and some internal types.
+ Frames, windows, buffers, and subprocesses count as vectors
+   (but the contents of a buffer's text do not count here).  */)
+      ()
+ {
+   Lisp_Object consed[8];
+ 
+   consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
+   consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
+   consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
+   consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
+   consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
+   consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
+   consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
+   consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
+ 
+   return Flist (8, consed);
+ }
+ 
+ int suppress_checking;
+ void
+ die (msg, file, line)
+      const char *msg;
+      const char *file;
+      int line;
+ {
+   fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
+          file, line, msg);
+   abort ();
+ }
+ 
+ /* Initialization */
+ 
+ void
+ init_alloc_once ()
+ {
+   /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet!  */
+   purebeg = PUREBEG;
+   pure_size = PURESIZE;
+   pure_bytes_used = 0;
+   pure_bytes_used_before_overflow = 0;
+ 
+   /* Initialize the list of free aligned blocks.  */
+   free_ablock = NULL;
+ 
+ #if GC_MARK_STACK || defined GC_MALLOC_CHECK
+   mem_init ();
+   Vdead = make_pure_string ("DEAD", 4, 4, 0);
+ #endif
+ 
+   all_vectors = 0;
+   ignore_warnings = 1;
+ #ifdef DOUG_LEA_MALLOC
+   mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
+   mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
+   mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
+ #endif
+   init_strings ();
+   init_cons ();
+   init_symbol ();
+   init_marker ();
+   init_float ();
+   init_intervals ();
+ 
+ #ifdef REL_ALLOC
+   malloc_hysteresis = 32;
+ #else
+   malloc_hysteresis = 0;
+ #endif
+ 
+   spare_memory = (char *) malloc (SPARE_MEMORY);
+ 
+   ignore_warnings = 0;
+   gcprolist = 0;
+   byte_stack_list = 0;
+   staticidx = 0;
+   consing_since_gc = 0;
+   gc_cons_threshold = 100000 * sizeof (Lisp_Object);
+ #ifdef VIRT_ADDR_VARIES
+   malloc_sbrk_unused = 1<<22; /* A large number */
+   malloc_sbrk_used = 100000;  /* as reasonable as any number */
+ #endif /* VIRT_ADDR_VARIES */
+ }
+ 
+ void
+ init_alloc ()
+ {
+   gcprolist = 0;
+   byte_stack_list = 0;
+ #if GC_MARK_STACK
+ #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
+   setjmp_tested_p = longjmps_done = 0;
+ #endif
+ #endif
+   Vgc_elapsed = make_float (0.0);
+   gcs_done = 0;
+ }
+ 
+ void
+ syms_of_alloc ()
+ {
+   DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
+             doc: /* *Number of bytes of consing between garbage collections.
+ Garbage collection can happen automatically once this many bytes have been
+ allocated since the last garbage collection.  All data types count.
+ 
+ Garbage collection happens automatically only when `eval' is called.
+ 
+ By binding this temporarily to a large number, you can effectively
+ prevent garbage collection during a part of the program.  */);
+ 
+   DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
+             doc: /* Number of bytes of sharable Lisp data allocated so far.  
*/);
+ 
+   DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
+             doc: /* Number of cons cells that have been consed so far.  */);
+ 
+   DEFVAR_INT ("floats-consed", &floats_consed,
+             doc: /* Number of floats that have been consed so far.  */);
+ 
+   DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
+             doc: /* Number of vector cells that have been consed so far.  */);
+ 
+   DEFVAR_INT ("symbols-consed", &symbols_consed,
+             doc: /* Number of symbols that have been consed so far.  */);
+ 
+   DEFVAR_INT ("string-chars-consed", &string_chars_consed,
+             doc: /* Number of string characters that have been consed so far. 
 */);
+ 
+   DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
+             doc: /* Number of miscellaneous objects that have been consed so 
far.  */);
+ 
+   DEFVAR_INT ("intervals-consed", &intervals_consed,
+             doc: /* Number of intervals that have been consed so far.  */);
+ 
+   DEFVAR_INT ("strings-consed", &strings_consed,
+             doc: /* Number of strings that have been consed so far.  */);
+ 
+   DEFVAR_LISP ("purify-flag", &Vpurify_flag,
+              doc: /* Non-nil means loading Lisp code in order to dump an 
executable.
+ This means that certain objects should be allocated in shared (pure) space.  
*/);
+ 
+   DEFVAR_INT ("undo-limit", &undo_limit,
+             doc: /* Keep no more undo information once it exceeds this size.
+ This limit is applied when garbage collection happens.
+ The size is counted as the number of bytes occupied,
+ which includes both saved text and other data.  */);
+   undo_limit = 20000;
+ 
+   DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
+             doc: /* Don't keep more than this much size of undo information.
+ A command which pushes past this size is itself forgotten.
+ This limit is applied when garbage collection happens.
+ The size is counted as the number of bytes occupied,
+ which includes both saved text and other data.  */);
+   undo_strong_limit = 30000;
+ 
+   DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
+              doc: /* Non-nil means display messages at start and end of 
garbage collection.  */);
+   garbage_collection_messages = 0;
+ 
+   DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
+              doc: /* Hook run after garbage collection has finished.  */);
+   Vpost_gc_hook = Qnil;
+   Qpost_gc_hook = intern ("post-gc-hook");
+   staticpro (&Qpost_gc_hook);
+ 
+   DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
+              doc: /* Precomputed `signal' argument for memory-full error.  
*/);
+   /* We build this in advance because if we wait until we need it, we might
+      not be able to allocate the memory to hold it.  */
+   Vmemory_signal_data
+     = list2 (Qerror,
+            build_string ("Memory exhausted--use M-x save-some-buffers then 
exit and restart Emacs"));
+ 
+   DEFVAR_LISP ("memory-full", &Vmemory_full,
+              doc: /* Non-nil means we are handling a memory-full error.  */);
+   Vmemory_full = Qnil;
+ 
+   staticpro (&Qgc_cons_threshold);
+   Qgc_cons_threshold = intern ("gc-cons-threshold");
+ 
+   staticpro (&Qchar_table_extra_slots);
+   Qchar_table_extra_slots = intern ("char-table-extra-slots");
+ 
+   DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
+              doc: /* Accumulated time elapsed in garbage collections.
+ The time is in seconds as a floating point value.  */);
+   DEFVAR_INT ("gcs-done", &gcs_done,
+             doc: /* Accumulated number of garbage collections done.  */);
+ 
+   defsubr (&Scons);
+   defsubr (&Slist);
+   defsubr (&Svector);
+   defsubr (&Smake_byte_code);
+   defsubr (&Smake_list);
+   defsubr (&Smake_vector);
+   defsubr (&Smake_string);
+   defsubr (&Smake_bool_vector);
+   defsubr (&Smake_symbol);
+   defsubr (&Smake_marker);
+   defsubr (&Spurecopy);
+   defsubr (&Sgarbage_collect);
+   defsubr (&Smemory_limit);
+   defsubr (&Smemory_use_counts);
+ 
+ #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
+   defsubr (&Sgc_status);
+ #endif
+ }




reply via email to

[Prev in Thread] Current Thread [Next in Thread]