emacs-diffs
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[Emacs-diffs] Changes to emacs/gc/reclaim.c [Boehm-versions]


From: Dave Love
Subject: [Emacs-diffs] Changes to emacs/gc/reclaim.c [Boehm-versions]
Date: Mon, 16 Jun 2003 11:20:06 -0400

Index: emacs/gc/reclaim.c
diff -c /dev/null emacs/gc/reclaim.c:1.2.2.1.2.1
*** /dev/null   Mon Jun 16 11:20:06 2003
--- emacs/gc/reclaim.c  Mon Jun 16 11:19:52 2003
***************
*** 0 ****
--- 1,1061 ----
+ /* 
+  * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
+  * Copyright (c) 1991-1996 by Xerox Corporation.  All rights reserved.
+  * Copyright (c) 1996-1999 by Silicon Graphics.  All rights reserved.
+  * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved.
+  *
+  * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
+  * OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
+  *
+  * Permission is hereby granted to use or copy this program
+  * for any purpose,  provided the above notices are retained on all copies.
+  * Permission to modify the code and to distribute modified code is granted,
+  * provided the above notices are retained, and a notice that the code was
+  * modified is included with the above copyright notice.
+  */
+ 
+ #include <stdio.h>
+ #include "private/gc_priv.h"
+ 
+ signed_word GC_mem_found = 0;
+                       /* Number of words of memory reclaimed     */
+ 
+ #if defined(PARALLEL_MARK) || defined(THREAD_LOCAL_ALLOC)
+   word GC_fl_builder_count = 0;
+       /* Number of threads currently building free lists without      */
+       /* holding GC lock.  It is not safe to collect if this is       */
+       /* nonzero.                                                     */
+ #endif /* PARALLEL_MARK */
+ 
+ /* We defer printing of leaked objects until we're done with the GC   */
+ /* cycle, since the routine for printing objects needs to run outside */
+ /* the collector, e.g. without the allocation lock.                   */
+ #define MAX_LEAKED 40
+ ptr_t GC_leaked[MAX_LEAKED];
+ unsigned GC_n_leaked = 0;
+ 
+ GC_bool GC_have_errors = FALSE;
+ 
+ void GC_add_leaked(leaked)
+ ptr_t leaked;
+ {
+     if (GC_n_leaked < MAX_LEAKED) {
+       GC_have_errors = TRUE;
+       GC_leaked[GC_n_leaked++] = leaked;
+       /* Make sure it's not reclaimed this cycle */
+         GC_set_mark_bit(leaked);
+     }
+ }
+ 
+ static GC_bool printing_errors = FALSE;
+ /* Print all objects on the list after printing any smashed objs.     */
+ /* Clear both lists.                                                  */
+ void GC_print_all_errors ()
+ {
+     unsigned i;
+ 
+     LOCK();
+     if (printing_errors) {
+       UNLOCK();
+       return;
+     }
+     printing_errors = TRUE;
+     UNLOCK();
+     if (GC_debugging_started) GC_print_all_smashed();
+     for (i = 0; i < GC_n_leaked; ++i) {
+       ptr_t p = GC_leaked[i];
+       if (HDR(p) -> hb_obj_kind == PTRFREE) {
+           GC_err_printf0("Leaked atomic object at ");
+       } else {
+           GC_err_printf0("Leaked composite object at ");
+       }
+       GC_print_heap_obj(p);
+       GC_err_printf0("\n");
+       GC_free(p);
+       GC_leaked[i] = 0;
+     }
+     GC_n_leaked = 0;
+     printing_errors = FALSE;
+ }
+ 
+ 
+ #   define FOUND_FREE(hblk, word_no) \
+       { \
+          GC_add_leaked((ptr_t)hblk + WORDS_TO_BYTES(word_no)); \
+       }
+ 
+ /*
+  * reclaim phase
+  *
+  */
+ 
+ 
+ /*
+  * Test whether a block is completely empty, i.e. contains no marked
+  * objects.  This does not require the block to be in physical
+  * memory.
+  */
+  
+ GC_bool GC_block_empty(hhdr)
+ register hdr * hhdr;
+ {
+     /* We treat hb_marks as an array of words here, even if it is     */
+     /* actually an array of bytes.  Since we only check for zero, there       
*/
+     /* are no endian-ness issues.                                     */
+     register word *p = (word *)(&(hhdr -> hb_marks[0]));
+     register word * plim =
+           (word *)(&(hhdr -> hb_marks[MARK_BITS_SZ]));
+     while (p < plim) {
+       if (*p++) return(FALSE);
+     }
+     return(TRUE);
+ }
+ 
+ /* The following functions sometimes return a DONT_KNOW value. */
+ #define DONT_KNOW  2
+ 
+ #ifdef SMALL_CONFIG
+ # define GC_block_nearly_full1(hhdr, pat1) DONT_KNOW
+ # define GC_block_nearly_full3(hhdr, pat1, pat2) DONT_KNOW
+ # define GC_block_nearly_full(hhdr) DONT_KNOW
+ #endif
+ 
+ #if !defined(SMALL_CONFIG) && defined(USE_MARK_BYTES)
+ 
+ # define GC_block_nearly_full1(hhdr, pat1) GC_block_nearly_full(hhdr)
+ # define GC_block_nearly_full3(hhdr, pat1, pat2) GC_block_nearly_full(hhdr)
+ 
+  
+ GC_bool GC_block_nearly_full(hhdr)
+ register hdr * hhdr;
+ {
+     /* We again treat hb_marks as an array of words, even though it   */
+     /* isn't.  We first sum up all the words, resulting in a word     */
+     /* containing 4 or 8 separate partial sums.                       */
+     /* We then sum the bytes in the word of partial sums.             */
+     /* This is still endian independant.  This fails if the partial   */
+     /* sums can overflow.                                             */
+ #   if (BYTES_TO_WORDS(MARK_BITS_SZ)) >= 256
+       --> potential overflow; fix the code
+ #   endif
+     register word *p = (word *)(&(hhdr -> hb_marks[0]));
+     register word * plim =
+           (word *)(&(hhdr -> hb_marks[MARK_BITS_SZ]));
+     word sum_vector = 0;
+     unsigned sum;
+     while (p < plim) {
+       sum_vector += *p;
+       ++p;
+     }
+     sum = 0;
+     while (sum_vector > 0) {
+       sum += sum_vector & 0xff;
+       sum_vector >>= 8;
+     }
+     return (sum > BYTES_TO_WORDS(7*HBLKSIZE/8)/(hhdr -> hb_sz));
+ }
+ #endif  /* USE_MARK_BYTES */
+ 
+ #if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
+ 
+ /*
+  * Test whether nearly all of the mark words consist of the same
+  * repeating pattern.
+  */
+ #define FULL_THRESHOLD (MARK_BITS_SZ/16)
+ 
+ GC_bool GC_block_nearly_full1(hhdr, pat1)
+ hdr *hhdr;
+ word pat1;
+ {
+     unsigned i;
+     unsigned misses = 0;
+     GC_ASSERT((MARK_BITS_SZ & 1) == 0);
+     for (i = 0; i < MARK_BITS_SZ; ++i) {
+       if ((hhdr -> hb_marks[i] | ~pat1) != ONES) {
+           if (++misses > FULL_THRESHOLD) return FALSE;
+       }
+     }
+     return TRUE;
+ }
+ 
+ /*
+  * Test whether the same repeating 3 word pattern occurs in nearly
+  * all the mark bit slots.
+  * This is used as a heuristic, so we're a bit sloppy and ignore
+  * the last one or two words.
+  */
+ GC_bool GC_block_nearly_full3(hhdr, pat1, pat2, pat3)
+ hdr *hhdr;
+ word pat1, pat2, pat3;
+ {
+     unsigned i;
+     unsigned misses = 0;
+ 
+     if (MARK_BITS_SZ < 4) {
+       return DONT_KNOW;
+     }
+     for (i = 0; i < MARK_BITS_SZ - 2; i += 3) {
+       if ((hhdr -> hb_marks[i] | ~pat1) != ONES) {
+           if (++misses > FULL_THRESHOLD) return FALSE;
+       }
+       if ((hhdr -> hb_marks[i+1] | ~pat2) != ONES) {
+           if (++misses > FULL_THRESHOLD) return FALSE;
+       }
+       if ((hhdr -> hb_marks[i+2] | ~pat3) != ONES) {
+           if (++misses > FULL_THRESHOLD) return FALSE;
+       }
+     }
+     return TRUE;
+ }
+ 
+ /* Check whether a small object block is nearly full by looking at only */
+ /* the mark bits.                                                     */
+ /* We manually precomputed the mark bit patterns that need to be      */
+ /* checked for, and we give up on the ones that are unlikely to occur,        
*/
+ /* or have period > 3.                                                        
*/
+ /* This would be a lot easier with a mark bit per object instead of per       
*/
+ /* word, but that would rewuire computing object numbers in the mark  */
+ /* loop, which would require different data structures ...            */
+ GC_bool GC_block_nearly_full(hhdr)
+ hdr *hhdr;
+ {
+     int sz = hhdr -> hb_sz;
+ 
+ #   if CPP_WORDSZ != 32 && CPP_WORDSZ != 64
+       return DONT_KNOW;       /* Shouldn't be used in any standard config.    
*/
+ #   endif
+ #   if CPP_WORDSZ == 32
+       switch(sz) {
+         case 1:
+         return GC_block_nearly_full1(hhdr, 0xffffffffl);
+       case 2:
+         return GC_block_nearly_full1(hhdr, 0x55555555l);
+       case 4:
+         return GC_block_nearly_full1(hhdr, 0x11111111l);
+       case 6:
+         return GC_block_nearly_full3(hhdr, 0x41041041l,
+                                             0x10410410l,
+                                              0x04104104l);
+       case 8:
+         return GC_block_nearly_full1(hhdr, 0x01010101l);
+       case 12:
+         return GC_block_nearly_full3(hhdr, 0x01001001l,
+                                             0x10010010l,
+                                              0x00100100l);
+       case 16:
+         return GC_block_nearly_full1(hhdr, 0x00010001l);
+       case 32:
+         return GC_block_nearly_full1(hhdr, 0x00000001l);
+       default:
+         return DONT_KNOW;
+       }
+ #   endif
+ #   if CPP_WORDSZ == 64
+       switch(sz) {
+         case 1:
+         return GC_block_nearly_full1(hhdr, 0xffffffffffffffffl);
+       case 2:
+         return GC_block_nearly_full1(hhdr, 0x5555555555555555l);
+       case 4:
+         return GC_block_nearly_full1(hhdr, 0x1111111111111111l);
+       case 6:
+         return GC_block_nearly_full3(hhdr, 0x1041041041041041l,
+                                              0x4104104104104104l,
+                                                0x0410410410410410l);
+       case 8:
+         return GC_block_nearly_full1(hhdr, 0x0101010101010101l);
+       case 12:
+         return GC_block_nearly_full3(hhdr, 0x1001001001001001l,
+                                              0x0100100100100100l,
+                                                0x0010010010010010l);
+       case 16:
+         return GC_block_nearly_full1(hhdr, 0x0001000100010001l);
+       case 32:
+         return GC_block_nearly_full1(hhdr, 0x0000000100000001l);
+       default:
+         return DONT_KNOW;
+       }
+ #   endif
+ }
+ #endif /* !SMALL_CONFIG  && !USE_MARK_BYTES */
+ 
+ /* We keep track of reclaimed memory if we are either asked to, or    */
+ /* we are using the parallel marker.  In the latter case, we assume   */
+ /* that most allocation goes through GC_malloc_many for scalability.  */
+ /* GC_malloc_many needs the count anyway.                             */
+ # if defined(GATHERSTATS) || defined(PARALLEL_MARK)
+ #   define INCR_WORDS(sz) n_words_found += (sz)
+ #   define COUNT_PARAM , count
+ #   define COUNT_ARG , count
+ #   define COUNT_DECL signed_word * count;
+ #   define NWORDS_DECL signed_word n_words_found = 0;
+ #   define COUNT_UPDATE *count += n_words_found;
+ #   define MEM_FOUND_ADDR , &GC_mem_found
+ # else
+ #   define INCR_WORDS(sz)
+ #   define COUNT_PARAM
+ #   define COUNT_ARG
+ #   define COUNT_DECL
+ #   define NWORDS_DECL
+ #   define COUNT_UPDATE
+ #   define MEM_FOUND_ADDR
+ # endif
+ /*
+  * Restore unmarked small objects in h of size sz to the object
+  * free list.  Returns the new list.
+  * Clears unmarked objects.
+  */
+ /*ARGSUSED*/
+ ptr_t GC_reclaim_clear(hbp, hhdr, sz, list COUNT_PARAM)
+ register struct hblk *hbp;    /* ptr to current heap block            */
+ register hdr * hhdr;
+ register ptr_t list;
+ register word sz;
+ COUNT_DECL
+ {
+     register int word_no;
+     register word *p, *q, *plim;
+     NWORDS_DECL
+     
+     GC_ASSERT(hhdr == GC_find_header((ptr_t)hbp));
+     p = (word *)(hbp->hb_body);
+     word_no = 0;
+     plim = (word *)((((word)hbp) + HBLKSIZE)
+                  - WORDS_TO_BYTES(sz));
+ 
+     /* go through all words in block */
+       while( p <= plim )  {
+           if( mark_bit_from_hdr(hhdr, word_no) ) {
+               p += sz;
+           } else {
+               INCR_WORDS(sz);
+               /* object is available - put on list */
+                   obj_link(p) = list;
+                   list = ((ptr_t)p);
+               /* Clear object, advance p to next object in the process */
+                   q = p + sz;
+ #                 ifdef USE_MARK_BYTES
+                     GC_ASSERT(!(sz & 1)
+                               && !((word)p & (2 * sizeof(word) - 1)));
+                     p[1] = 0;
+                       p += 2;
+                       while (p < q) {
+                       CLEAR_DOUBLE(p);
+                       p += 2;
+                     }
+ #                 else
+                       p++; /* Skip link field */
+                       while (p < q) {
+                       *p++ = 0;
+                     }
+ #                 endif
+           }
+           word_no += sz;
+       }
+     COUNT_UPDATE
+     return(list);
+ }
+ 
+ #if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
+ 
+ /*
+  * A special case for 2 word composite objects (e.g. cons cells):
+  */
+ /*ARGSUSED*/
+ ptr_t GC_reclaim_clear2(hbp, hhdr, list COUNT_PARAM)
+ register struct hblk *hbp;    /* ptr to current heap block            */
+ hdr * hhdr;
+ register ptr_t list;
+ COUNT_DECL
+ {
+     register word * mark_word_addr = &(hhdr->hb_marks[0]);
+     register word *p, *plim;
+     register word mark_word;
+     register int i;
+     NWORDS_DECL
+ #   define DO_OBJ(start_displ) \
+       if (!(mark_word & ((word)1 << start_displ))) { \
+           p[start_displ] = (word)list; \
+           list = (ptr_t)(p+start_displ); \
+           p[start_displ+1] = 0; \
+           INCR_WORDS(2); \
+       }
+     
+     p = (word *)(hbp->hb_body);
+     plim = (word *)(((word)hbp) + HBLKSIZE);
+ 
+     /* go through all words in block */
+       while( p < plim )  {
+           mark_word = *mark_word_addr++;
+           for (i = 0; i < WORDSZ; i += 8) {
+               DO_OBJ(0);
+               DO_OBJ(2);
+               DO_OBJ(4);
+               DO_OBJ(6);
+               p += 8;
+               mark_word >>= 8;
+           }
+       }               
+     COUNT_UPDATE
+     return(list);
+ #   undef DO_OBJ
+ }
+ 
+ /*
+  * Another special case for 4 word composite objects:
+  */
+ /*ARGSUSED*/
+ ptr_t GC_reclaim_clear4(hbp, hhdr, list COUNT_PARAM)
+ register struct hblk *hbp;    /* ptr to current heap block            */
+ hdr * hhdr;
+ register ptr_t list;
+ COUNT_DECL
+ {
+     register word * mark_word_addr = &(hhdr->hb_marks[0]);
+     register word *p, *plim;
+     register word mark_word;
+     NWORDS_DECL
+ #   define DO_OBJ(start_displ) \
+       if (!(mark_word & ((word)1 << start_displ))) { \
+           p[start_displ] = (word)list; \
+           list = (ptr_t)(p+start_displ); \
+           p[start_displ+1] = 0; \
+           CLEAR_DOUBLE(p + start_displ + 2); \
+           INCR_WORDS(4); \
+       }
+     
+     p = (word *)(hbp->hb_body);
+     plim = (word *)(((word)hbp) + HBLKSIZE);
+ 
+     /* go through all words in block */
+       while( p < plim )  {
+           mark_word = *mark_word_addr++;
+           DO_OBJ(0);
+           DO_OBJ(4);
+           DO_OBJ(8);
+           DO_OBJ(12);
+           DO_OBJ(16);
+           DO_OBJ(20);
+           DO_OBJ(24);
+           DO_OBJ(28);
+ #         if CPP_WORDSZ == 64
+             DO_OBJ(32);
+             DO_OBJ(36);
+             DO_OBJ(40);
+             DO_OBJ(44);
+             DO_OBJ(48);
+             DO_OBJ(52);
+             DO_OBJ(56);
+             DO_OBJ(60);
+ #         endif
+           p += WORDSZ;
+       }               
+     COUNT_UPDATE
+     return(list);
+ #   undef DO_OBJ
+ }
+ 
+ #endif /* !SMALL_CONFIG && !USE_MARK_BYTES */
+ 
+ /* The same thing, but don't clear objects: */
+ /*ARGSUSED*/
+ ptr_t GC_reclaim_uninit(hbp, hhdr, sz, list COUNT_PARAM)
+ register struct hblk *hbp;    /* ptr to current heap block            */
+ register hdr * hhdr;
+ register ptr_t list;
+ register word sz;
+ COUNT_DECL
+ {
+     register int word_no = 0;
+     register word *p, *plim;
+     NWORDS_DECL
+     
+     p = (word *)(hbp->hb_body);
+     plim = (word *)((((word)hbp) + HBLKSIZE)
+                  - WORDS_TO_BYTES(sz));
+ 
+     /* go through all words in block */
+       while( p <= plim )  {
+           if( !mark_bit_from_hdr(hhdr, word_no) ) {
+               INCR_WORDS(sz);
+               /* object is available - put on list */
+                   obj_link(p) = list;
+                   list = ((ptr_t)p);
+           }
+           p += sz;
+           word_no += sz;
+       }
+     COUNT_UPDATE
+     return(list);
+ }
+ 
+ /* Don't really reclaim objects, just check for unmarked ones: */
+ /*ARGSUSED*/
+ void GC_reclaim_check(hbp, hhdr, sz)
+ register struct hblk *hbp;    /* ptr to current heap block            */
+ register hdr * hhdr;
+ register word sz;
+ {
+     register int word_no = 0;
+     register word *p, *plim;
+ #   ifdef GATHERSTATS
+         register int n_words_found = 0;
+ #   endif
+     
+     p = (word *)(hbp->hb_body);
+     plim = (word *)((((word)hbp) + HBLKSIZE)
+                  - WORDS_TO_BYTES(sz));
+ 
+     /* go through all words in block */
+       while( p <= plim )  {
+           if( !mark_bit_from_hdr(hhdr, word_no) ) {
+               FOUND_FREE(hbp, word_no);
+           }
+           p += sz;
+           word_no += sz;
+       }
+ }
+ 
+ #if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
+ /*
+  * Another special case for 2 word atomic objects:
+  */
+ /*ARGSUSED*/
+ ptr_t GC_reclaim_uninit2(hbp, hhdr, list COUNT_PARAM)
+ register struct hblk *hbp;    /* ptr to current heap block            */
+ hdr * hhdr;
+ register ptr_t list;
+ COUNT_DECL
+ {
+     register word * mark_word_addr = &(hhdr->hb_marks[0]);
+     register word *p, *plim;
+     register word mark_word;
+     register int i;
+     NWORDS_DECL
+ #   define DO_OBJ(start_displ) \
+       if (!(mark_word & ((word)1 << start_displ))) { \
+           p[start_displ] = (word)list; \
+           list = (ptr_t)(p+start_displ); \
+           INCR_WORDS(2); \
+       }
+     
+     p = (word *)(hbp->hb_body);
+     plim = (word *)(((word)hbp) + HBLKSIZE);
+ 
+     /* go through all words in block */
+       while( p < plim )  {
+           mark_word = *mark_word_addr++;
+           for (i = 0; i < WORDSZ; i += 8) {
+               DO_OBJ(0);
+               DO_OBJ(2);
+               DO_OBJ(4);
+               DO_OBJ(6);
+               p += 8;
+               mark_word >>= 8;
+           }
+       }               
+     COUNT_UPDATE
+     return(list);
+ #   undef DO_OBJ
+ }
+ 
+ /*
+  * Another special case for 4 word atomic objects:
+  */
+ /*ARGSUSED*/
+ ptr_t GC_reclaim_uninit4(hbp, hhdr, list COUNT_PARAM)
+ register struct hblk *hbp;    /* ptr to current heap block            */
+ hdr * hhdr;
+ register ptr_t list;
+ COUNT_DECL
+ {
+     register word * mark_word_addr = &(hhdr->hb_marks[0]);
+     register word *p, *plim;
+     register word mark_word;
+     NWORDS_DECL
+ #   define DO_OBJ(start_displ) \
+       if (!(mark_word & ((word)1 << start_displ))) { \
+           p[start_displ] = (word)list; \
+           list = (ptr_t)(p+start_displ); \
+           INCR_WORDS(4); \
+       }
+     
+     p = (word *)(hbp->hb_body);
+     plim = (word *)(((word)hbp) + HBLKSIZE);
+ 
+     /* go through all words in block */
+       while( p < plim )  {
+           mark_word = *mark_word_addr++;
+           DO_OBJ(0);
+           DO_OBJ(4);
+           DO_OBJ(8);
+           DO_OBJ(12);
+           DO_OBJ(16);
+           DO_OBJ(20);
+           DO_OBJ(24);
+           DO_OBJ(28);
+ #         if CPP_WORDSZ == 64
+             DO_OBJ(32);
+             DO_OBJ(36);
+             DO_OBJ(40);
+             DO_OBJ(44);
+             DO_OBJ(48);
+             DO_OBJ(52);
+             DO_OBJ(56);
+             DO_OBJ(60);
+ #         endif
+           p += WORDSZ;
+       }               
+     COUNT_UPDATE
+     return(list);
+ #   undef DO_OBJ
+ }
+ 
+ /* Finally the one word case, which never requires any clearing: */
+ /*ARGSUSED*/
+ ptr_t GC_reclaim1(hbp, hhdr, list COUNT_PARAM)
+ register struct hblk *hbp;    /* ptr to current heap block            */
+ hdr * hhdr;
+ register ptr_t list;
+ COUNT_DECL
+ {
+     register word * mark_word_addr = &(hhdr->hb_marks[0]);
+     register word *p, *plim;
+     register word mark_word;
+     register int i;
+     NWORDS_DECL
+ #   define DO_OBJ(start_displ) \
+       if (!(mark_word & ((word)1 << start_displ))) { \
+           p[start_displ] = (word)list; \
+           list = (ptr_t)(p+start_displ); \
+           INCR_WORDS(1); \
+       }
+     
+     p = (word *)(hbp->hb_body);
+     plim = (word *)(((word)hbp) + HBLKSIZE);
+ 
+     /* go through all words in block */
+       while( p < plim )  {
+           mark_word = *mark_word_addr++;
+           for (i = 0; i < WORDSZ; i += 4) {
+               DO_OBJ(0);
+               DO_OBJ(1);
+               DO_OBJ(2);
+               DO_OBJ(3);
+               p += 4;
+               mark_word >>= 4;
+           }
+       }               
+     COUNT_UPDATE
+     return(list);
+ #   undef DO_OBJ
+ }
+ 
+ #endif /* !SMALL_CONFIG && !USE_MARK_BYTES */
+ 
+ /*
+  * Generic procedure to rebuild a free list in hbp.
+  * Also called directly from GC_malloc_many.
+  */
+ ptr_t GC_reclaim_generic(hbp, hhdr, sz, init, list COUNT_PARAM)
+ struct hblk *hbp;     /* ptr to current heap block            */
+ hdr * hhdr;
+ GC_bool init;
+ ptr_t list;
+ word sz;
+ COUNT_DECL
+ {
+     ptr_t result = list;
+ 
+     GC_ASSERT(GC_find_header((ptr_t)hbp) == hhdr);
+     GC_remove_protection(hbp, 1, (hhdr)->hb_descr == 0 /* Pointer-free? */);
+     if (init) {
+       switch(sz) {
+ #      if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
+         case 1:
+           /* We now issue the hint even if GC_nearly_full returned    */
+           /* DONT_KNOW.                                               */
+             result = GC_reclaim1(hbp, hhdr, list COUNT_ARG);
+             break;
+         case 2:
+             result = GC_reclaim_clear2(hbp, hhdr, list COUNT_ARG);
+             break;
+         case 4:
+             result = GC_reclaim_clear4(hbp, hhdr, list COUNT_ARG);
+             break;
+ #      endif /* !SMALL_CONFIG && !USE_MARK_BYTES */
+         default:
+             result = GC_reclaim_clear(hbp, hhdr, sz, list COUNT_ARG);
+             break;
+       }
+     } else {
+       GC_ASSERT((hhdr)->hb_descr == 0 /* Pointer-free block */);
+       switch(sz) {
+ #      if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
+         case 1:
+             result = GC_reclaim1(hbp, hhdr, list COUNT_ARG);
+             break;
+         case 2:
+             result = GC_reclaim_uninit2(hbp, hhdr, list COUNT_ARG);
+             break;
+         case 4:
+             result = GC_reclaim_uninit4(hbp, hhdr, list COUNT_ARG);
+             break;
+ #      endif /* !SMALL_CONFIG && !USE_MARK_BYTES */
+         default:
+             result = GC_reclaim_uninit(hbp, hhdr, sz, list COUNT_ARG);
+             break;
+       }
+     } 
+     if (IS_UNCOLLECTABLE(hhdr -> hb_obj_kind)) GC_set_hdr_marks(hhdr);
+     return result;
+ }
+ 
+ /*
+  * Restore unmarked small objects in the block pointed to by hbp
+  * to the appropriate object free list.
+  * If entirely empty blocks are to be completely deallocated, then
+  * caller should perform that check.
+  */
+ void GC_reclaim_small_nonempty_block(hbp, report_if_found COUNT_PARAM)
+ register struct hblk *hbp;    /* ptr to current heap block            */
+ int report_if_found;          /* Abort if a reclaimable object is found */
+ COUNT_DECL
+ {
+     hdr *hhdr = HDR(hbp);
+     word sz = hhdr -> hb_sz;
+     int kind = hhdr -> hb_obj_kind;
+     struct obj_kind * ok = &GC_obj_kinds[kind];
+     ptr_t * flh = &(ok -> ok_freelist[sz]);
+     
+     hhdr -> hb_last_reclaimed = (unsigned short) GC_gc_no;
+ 
+     if (report_if_found) {
+       GC_reclaim_check(hbp, hhdr, sz);
+     } else {
+         *flh = GC_reclaim_generic(hbp, hhdr, sz,
+                                 (ok -> ok_init || GC_debugging_started),
+                                 *flh MEM_FOUND_ADDR);
+     }
+ }
+ 
+ /*
+  * Restore an unmarked large object or an entirely empty blocks of small 
objects
+  * to the heap block free list.
+  * Otherwise enqueue the block for later processing
+  * by GC_reclaim_small_nonempty_block.
+  * If report_if_found is TRUE, then process any block immediately, and
+  * simply report free objects; do not actually reclaim them.
+  */
+ # if defined(__STDC__) || defined(__cplusplus)
+     void GC_reclaim_block(register struct hblk *hbp, word report_if_found)
+ # else
+     void GC_reclaim_block(hbp, report_if_found)
+     register struct hblk *hbp;        /* ptr to current heap block            
*/
+     word report_if_found;     /* Abort if a reclaimable object is found */
+ # endif
+ {
+     register hdr * hhdr;
+     register word sz;         /* size of objects in current block     */
+     register struct obj_kind * ok;
+     struct hblk ** rlh;
+ 
+     hhdr = HDR(hbp);
+     sz = hhdr -> hb_sz;
+     ok = &GC_obj_kinds[hhdr -> hb_obj_kind];
+ 
+     if( sz > MAXOBJSZ ) {  /* 1 big object */
+         if( !mark_bit_from_hdr(hhdr, 0) ) {
+           if (report_if_found) {
+             FOUND_FREE(hbp, 0);
+           } else {
+             word blocks = OBJ_SZ_TO_BLOCKS(sz);
+             if (blocks > 1) {
+               GC_large_allocd_bytes -= blocks * HBLKSIZE;
+             }
+ #           ifdef GATHERSTATS
+               GC_mem_found += sz;
+ #           endif
+             GC_freehblk(hbp);
+           }
+       }
+     } else {
+         GC_bool empty = GC_block_empty(hhdr);
+         if (report_if_found) {
+         GC_reclaim_small_nonempty_block(hbp, (int)report_if_found
+                                         MEM_FOUND_ADDR);
+         } else if (empty) {
+ #       ifdef GATHERSTATS
+             GC_mem_found += BYTES_TO_WORDS(HBLKSIZE);
+ #       endif
+           GC_freehblk(hbp);
+         } else if (TRUE != GC_block_nearly_full(hhdr)){
+           /* group of smaller objects, enqueue the real work */
+           rlh = &(ok -> ok_reclaim_list[sz]);
+           hhdr -> hb_next = *rlh;
+           *rlh = hbp;
+         } /* else not worth salvaging. */
+       /* We used to do the nearly_full check later, but we    */
+       /* already have the right cache context here.  Also     */
+       /* doing it here avoids some silly lock contention in   */
+       /* GC_malloc_many.                                      */
+     }
+ }
+ 
+ #if !defined(NO_DEBUGGING)
+ /* Routines to gather and print heap block info       */
+ /* intended for debugging.  Otherwise should be called        */
+ /* with lock.                                         */
+ 
+ struct Print_stats
+ {
+       size_t number_of_blocks;
+       size_t total_bytes;
+ };
+ 
+ #ifdef USE_MARK_BYTES
+ 
+ /* Return the number of set mark bits in the given header     */
+ int GC_n_set_marks(hhdr)
+ hdr * hhdr;
+ {
+     register int result = 0;
+     register int i;
+     
+     for (i = 0; i < MARK_BITS_SZ; i++) {
+         result += hhdr -> hb_marks[i];
+     }
+     return(result);
+ }
+ 
+ #else
+ 
+ /* Number of set bits in a word.  Not performance critical.   */
+ static int set_bits(n)
+ word n;
+ {
+     register word m = n;
+     register int result = 0;
+     
+     while (m > 0) {
+       if (m & 1) result++;
+       m >>= 1;
+     }
+     return(result);
+ }
+ 
+ /* Return the number of set mark bits in the given header     */
+ int GC_n_set_marks(hhdr)
+ hdr * hhdr;
+ {
+     register int result = 0;
+     register int i;
+     
+     for (i = 0; i < MARK_BITS_SZ; i++) {
+         result += set_bits(hhdr -> hb_marks[i]);
+     }
+     return(result);
+ }
+ 
+ #endif /* !USE_MARK_BYTES  */
+ 
+ /*ARGSUSED*/
+ # if defined(__STDC__) || defined(__cplusplus)
+     void GC_print_block_descr(struct hblk *h, word dummy)
+ # else
+     void GC_print_block_descr(h, dummy)
+     struct hblk *h;
+     word dummy;
+ # endif
+ {
+     register hdr * hhdr = HDR(h);
+     register size_t bytes = WORDS_TO_BYTES(hhdr -> hb_sz);
+     struct Print_stats *ps;
+     
+     GC_printf3("(%lu:%lu,%lu)", (unsigned long)(hhdr -> hb_obj_kind),
+                               (unsigned long)bytes,
+                               (unsigned long)(GC_n_set_marks(hhdr)));
+     bytes += HBLKSIZE-1;
+     bytes &= ~(HBLKSIZE-1);
+ 
+     ps = (struct Print_stats *)dummy;
+     ps->total_bytes += bytes;
+     ps->number_of_blocks++;
+ }
+ 
+ void GC_print_block_list()
+ {
+     struct Print_stats pstats;
+ 
+     GC_printf0("(kind(0=ptrfree,1=normal,2=unc.,3=stubborn):size_in_bytes, 
#_marks_set)\n");
+     pstats.number_of_blocks = 0;
+     pstats.total_bytes = 0;
+     GC_apply_to_all_blocks(GC_print_block_descr, (word)&pstats);
+     GC_printf2("\nblocks = %lu, bytes = %lu\n",
+              (unsigned long)pstats.number_of_blocks,
+              (unsigned long)pstats.total_bytes);
+ }
+ 
+ #endif /* NO_DEBUGGING */
+ 
+ /*
+  * Clear all obj_link pointers in the list of free objects *flp.
+  * Clear *flp.
+  * This must be done before dropping a list of free gcj-style objects,
+  * since may otherwise end up with dangling "descriptor" pointers.
+  * It may help for other pointer-containing objects.
+  */
+ void GC_clear_fl_links(flp)
+ ptr_t *flp;
+ {
+     ptr_t next = *flp;
+ 
+     while (0 != next) {
+        *flp = 0;
+        flp = &(obj_link(next));
+        next = *flp;
+     }
+ }
+ 
+ /*
+  * Perform GC_reclaim_block on the entire heap, after first clearing
+  * small object free lists (if we are not just looking for leaks).
+  */
+ void GC_start_reclaim(report_if_found)
+ int report_if_found;          /* Abort if a GC_reclaimable object is found */
+ {
+     int kind;
+     
+ #   if defined(PARALLEL_MARK) || defined(THREAD_LOCAL_ALLOC)
+       GC_ASSERT(0 == GC_fl_builder_count);
+ #   endif
+     /* Clear reclaim- and free-lists */
+       for (kind = 0; kind < GC_n_kinds; kind++) {
+         ptr_t *fop;
+         ptr_t *lim;
+         struct hblk ** rlp;
+         struct hblk ** rlim;
+         struct hblk ** rlist = GC_obj_kinds[kind].ok_reclaim_list;
+       GC_bool should_clobber = (GC_obj_kinds[kind].ok_descriptor != 0);
+         
+         if (rlist == 0) continue;     /* This kind not used.  */
+         if (!report_if_found) {
+             lim = &(GC_obj_kinds[kind].ok_freelist[MAXOBJSZ+1]);
+           for( fop = GC_obj_kinds[kind].ok_freelist; fop < lim; fop++ ) {
+             if (*fop != 0) {
+               if (should_clobber) {
+                 GC_clear_fl_links(fop);
+               } else {
+                 *fop = 0;
+               }
+             }
+           }
+       } /* otherwise free list objects are marked,    */
+         /* and its safe to leave them                 */
+       rlim = rlist + MAXOBJSZ+1;
+       for( rlp = rlist; rlp < rlim; rlp++ ) {
+           *rlp = 0;
+       }
+       }
+     
+ #   ifdef PRINTBLOCKS
+         GC_printf0("GC_reclaim: current block sizes:\n");
+         GC_print_block_list();
+ #   endif
+ 
+   /* Go through all heap blocks (in hblklist) and reclaim unmarked objects */
+   /* or enqueue the block for later processing.                               
   */
+     GC_apply_to_all_blocks(GC_reclaim_block, (word)report_if_found);
+ 
+ # ifdef EAGER_SWEEP
+     /* This is a very stupid thing to do.  We make it possible anyway,        
*/
+     /* so that you can convince yourself that it really is very stupid.       
*/
+     GC_reclaim_all((GC_stop_func)0, FALSE);
+ # endif
+ # if defined(PARALLEL_MARK) || defined(THREAD_LOCAL_ALLOC)
+     GC_ASSERT(0 == GC_fl_builder_count);
+ # endif
+     
+ }
+ 
+ /*
+  * Sweep blocks of the indicated object size and kind until either the
+  * appropriate free list is nonempty, or there are no more blocks to
+  * sweep.
+  */
+ void GC_continue_reclaim(sz, kind)
+ word sz;      /* words */
+ int kind;
+ {
+     register hdr * hhdr;
+     register struct hblk * hbp;
+     register struct obj_kind * ok = &(GC_obj_kinds[kind]);
+     struct hblk ** rlh = ok -> ok_reclaim_list;
+     ptr_t *flh = &(ok -> ok_freelist[sz]);
+     
+     if (rlh == 0) return;     /* No blocks of this kind.      */
+     rlh += sz;
+     while ((hbp = *rlh) != 0) {
+         hhdr = HDR(hbp);
+         *rlh = hhdr -> hb_next;
+         GC_reclaim_small_nonempty_block(hbp, FALSE MEM_FOUND_ADDR);
+         if (*flh != 0) break;
+     }
+ }
+ 
+ /*
+  * Reclaim all small blocks waiting to be reclaimed.
+  * Abort and return FALSE when/if (*stop_func)() returns TRUE.
+  * If this returns TRUE, then it's safe to restart the world
+  * with incorrectly cleared mark bits.
+  * If ignore_old is TRUE, then reclaim only blocks that have been 
+  * recently reclaimed, and discard the rest.
+  * Stop_func may be 0.
+  */
+ GC_bool GC_reclaim_all(stop_func, ignore_old)
+ GC_stop_func stop_func;
+ GC_bool ignore_old;
+ {
+     register word sz;
+     register int kind;
+     register hdr * hhdr;
+     register struct hblk * hbp;
+     register struct obj_kind * ok;
+     struct hblk ** rlp;
+     struct hblk ** rlh;
+ #   ifdef PRINTTIMES
+       CLOCK_TYPE start_time;
+       CLOCK_TYPE done_time;
+       
+       GET_TIME(start_time);
+ #   endif
+     
+     for (kind = 0; kind < GC_n_kinds; kind++) {
+       ok = &(GC_obj_kinds[kind]);
+       rlp = ok -> ok_reclaim_list;
+       if (rlp == 0) continue;
+       for (sz = 1; sz <= MAXOBJSZ; sz++) {
+           rlh = rlp + sz;
+           while ((hbp = *rlh) != 0) {
+               if (stop_func != (GC_stop_func)0 && (*stop_func)()) {
+                   return(FALSE);
+               }
+               hhdr = HDR(hbp);
+               *rlh = hhdr -> hb_next;
+               if (!ignore_old || hhdr -> hb_last_reclaimed == GC_gc_no - 1) {
+                   /* It's likely we'll need it this time, too */
+                   /* It's been touched recently, so this      */
+                   /* shouldn't trigger paging.                */
+                   GC_reclaim_small_nonempty_block(hbp, FALSE MEM_FOUND_ADDR);
+               }
+             }
+         }
+     }
+ #   ifdef PRINTTIMES
+       GET_TIME(done_time);
+       GC_printf1("Disposing of reclaim lists took %lu msecs\n",
+                  MS_TIME_DIFF(done_time,start_time));
+ #   endif
+     return(TRUE);
+ }




reply via email to

[Prev in Thread] Current Thread [Next in Thread]