#include #include #include #include #include #include #include struct data { size_t n; double * y; double * sigma; }; void print_state (size_t iter, gsl_multifit_fdfsolver * s) { printf ("iter: %3u x = % 15.8f % 15.8f % 15.8f " "|f(x)| = %g\n", iter, gsl_vector_get (s->x, 0), gsl_vector_get (s->x, 1), gsl_vector_get (s->x, 2), gsl_blas_dnrm2 (s->f)); } int expb_f (const gsl_vector * x, void *params, gsl_vector * f) { size_t n = ((struct data *)params)->n; double *y = ((struct data *)params)->y; double *sigma = ((struct data *) params)->sigma; double A = gsl_vector_get (x, 0); double lambda = gsl_vector_get (x, 1); double b = gsl_vector_get (x, 2); size_t i; for (i = 0; i < n; i++) { /* Model Yi = A * exp(-lambda * i) + b */ double t = i; double Yi = A * exp (-lambda * t) + b; gsl_vector_set (f, i, (Yi - y[i])/sigma[i]); } return GSL_SUCCESS; } int expb_df (const gsl_vector * x, void *params, gsl_matrix * J) { size_t n = ((struct data *)params)->n; double *sigma = ((struct data *) params)->sigma; double A = gsl_vector_get (x, 0); double lambda = gsl_vector_get (x, 1); size_t i; for (i = 0; i < n; i++) { /* Jacobian matrix J(i,j) = dfi / dxj, */ /* where fi = (Yi - yi)/sigma[i], */ /* Yi = A * exp(-lambda * i) + b */ /* and the xj are the parameters (A,lambda,b) */ double t = i; double s = sigma[i]; double e = exp(-lambda * t); gsl_matrix_set (J, i, 0, e/s); gsl_matrix_set (J, i, 1, -t * A * e/s); gsl_matrix_set (J, i, 2, 1/s); } return GSL_SUCCESS; } int expb_fdf (const gsl_vector * x, void *params, gsl_vector * f, gsl_matrix * J) { expb_f (x, params, f); expb_df (x, params, J); return GSL_SUCCESS; } #define N 2 int main (void) { const gsl_multifit_fdfsolver_type *T; gsl_multifit_fdfsolver *s; int status; size_t i, iter = 0; const size_t n = N; const size_t p = 3; gsl_matrix *covar = gsl_matrix_alloc (p, p); double y[N], sigma[N]; struct data d = { n, y, sigma}; gsl_multifit_function_fdf f; double x_init[3] = { 1.0, 0.0, 0.0 }; gsl_vector_view x = gsl_vector_view_array (x_init, p); const gsl_rng_type * type; gsl_rng * r; gsl_rng_env_setup(); type = gsl_rng_default; r = gsl_rng_alloc (type); f.f = &expb_f; f.df = &expb_df; f.fdf = &expb_fdf; f.n = n; f.p = p; f.params = &d; /* This is the data to be fitted */ for (i = 0; i < n; i++) { double t = i; y[i] = 1.0 + 5 * exp (-0.1 * t) + gsl_ran_gaussian (r, 0.1); sigma[i] = 0.1; printf ("data: %d %g %g\n", i, y[i], sigma[i]); }; T = gsl_multifit_fdfsolver_lmsder; s = gsl_multifit_fdfsolver_alloc (T, n, p); gsl_multifit_fdfsolver_set (s, &f, &x.vector); print_state (iter, s); do { iter++; status = gsl_multifit_fdfsolver_iterate (s); printf ("status = %s\n", gsl_strerror (status)); print_state (iter, s); if (status) break; status = gsl_multifit_test_delta (s->dx, s->x, 1e-4, 1e-4); } while (status == GSL_CONTINUE && iter < 500); gsl_multifit_covar (s->J, 0.0, covar); #define FIT(i) gsl_vector_get(s->x, i) #define ERR(i) sqrt(gsl_matrix_get(covar,i,i)) printf ("A = %.5f +/- %.5f\n", FIT(0), ERR(0)); printf ("lambda = %.5f +/- %.5f\n", FIT(1), ERR(1)); printf ("b = %.5f +/- %.5f\n", FIT(2), ERR(2)); { double chi = gsl_blas_dnrm2(s->f); printf("chisq/dof = %g\n", pow(chi, 2.0)/ (n - p)); } printf ("status = %s\n", gsl_strerror (status)); gsl_multifit_fdfsolver_free (s); return 0; }