Proof. which implies that the sequence $S[\phi_k]^{1/k}$ converges. (It is close to a decreasing sequence.) For surfaces, S does not behave as well under covers, but we still have that if $\tilde{\phi}$ is a cover of ϕ , then $S[\phi] \leq S[\tilde{\phi}] \leq \max(1, S[\phi])$

Proof. which implies that the sequence $S[\phi_k]^{1/k}$ converges. (It is close to a decreasing sequence.) For surfaces, S does not behave as well under covers, but we still have that if $\tilde{\phi}$ is a cover of ϕ , then $S[\phi] \leq S[\tilde{\phi}] \leq \max(1, S[\phi])$

Proof. which implies that the sequence $S[\phi_k]^{1/k}$ converges. (It is close to a decreasing sequence.) For surfaces, S does not behave as well under covers, but we still have that if $\tilde{\phi}$ is a cover of ϕ , then $S[\phi] \leq S[\tilde{\phi}] \leq \max(1, S[\phi])$

Proof. which implies that the sequence $S[\phi_k]^{1/k}$ converges. (It is close to a decreasing sequence.) For surfaces, S does not behave as well under covers, but we still have that if $\tilde{\phi}$ is a cover of ϕ , then $S[\phi] \leq S[\tilde{\phi}] \leq \max(1, S[\phi])$

Proof. which implies that the sequence $S[\phi_k]^{1/k}$ converges. (It is close to a decreasing sequence.) For surfaces, S does not behave as well under covers, but we still have that if ϕ is a cover of ϕ , then $S[\phi] \leq S[\phi] \leq \max(1, S[\phi])$

Proof. which implies that the sequence $S[\phi_k]^{1/k}$ converges. (It is close to a decreasing sequence.) For surfaces, S does not behave as well under covers, but we still have that if $\tilde{\phi}$ is a cover of ϕ , then $S[\phi] \leq S[\tilde{\phi}] \leq \max(1, S[\phi])$

Proof. which implies that the sequence $S[\phi_k]^{1/k}$ converges. (It is close to a decreasing sequence.) For surfaces, S does not behave as well under covers, but we still have that if $\tilde{\phi}$ is a cover of ϕ , then $S[\phi] \leq S[\tilde{\phi}] \leq \max(1, S[\phi])$

Proof. which implies that the sequence $S[\phi_k]^{1/k}$ converges. (It is close to a decreasing sequence.) For surfaces, S does not behave as well under covers, but we still have that if ϕ is a cover of ϕ , then $S[\phi] \leq S[\phi] \leq \max(1, S[\phi])$

Proof. which implies that the sequence $S[\phi_k]^{1/k}$ converges. (It is close to a decreasing sequence.) For surfaces, S does not behave as well

under covers, but we still have that if ϕ is a cover of ϕ , then $S[\phi] \leq S[\phi] \leq \max(1, S[\phi])$

Proof. which implies that the sequence $S[\phi_k]^{1/k}$ converges. (It is close to a decreasing sequence.) For surfaces, S does not behave as well under covers, but we still have that if ϕ is a cover of ϕ , then $S[\phi] \leq S[\phi] \leq \max(1, S[\phi])$

Proof. which implies that the sequence $S[\phi_k]^{1/k}$ converges. (It is close to a decreasing sequence.) For surfaces, S does not behave as well under covers, but we still have that if $\tilde{\phi}$ is a cover of ϕ , then $S[\phi] \leq S[\tilde{\phi}] \leq \max(1, S[\phi])$

Proof. which implies that the sequence $S[\phi_k]^{1/k}$ converges. (It is close to a decreasing sequence.) For surfaces, S does not behave as well under covers, but we still have that if $\tilde{\phi}$ is a cover of ϕ , then $S[\phi] \leq S[\tilde{\phi}] \leq \max(1, S[\phi])$

Proof. which implies that the sequence $S[\phi_k]^{1/k}$ converges. (It is close to a decreasing sequence.) For surfaces, S does not behave as well under covers, but we still have that if $\tilde{\phi}$ is a cover of ϕ , then $S[\phi] \leq S[\tilde{\phi}] \leq \max(1, S[\phi])$

Proof. which implies that the sequence $S[\phi_k]^{1/k}$ converges. (It is close to a decreasing sequence.) For surfaces, S does not behave as well under covers, but we still have that if $\tilde{\phi}$ is a cover of ϕ , then $S[\phi] \leq S[\tilde{\phi}] \leq \max(1, S[\phi])$

Proof. which implies that the sequence $S[\phi_k]^{1/k}$ converges. (It is close to a decreasing sequence.) For surfaces, S does not behave as well under covers, but we still have that if $\tilde{\phi}$ is a cover of ϕ , then $S[\phi] \leq S[\tilde{\phi}] \leq \max(1, S[\phi])$

Proof. which implies that the sequence $S[\phi_k]^{1/k}$ converges. (It is close to a decreasing sequence.) For surfaces, S does not behave as well under covers, but we still have that if ϕ is a cover of ϕ , then $S[\phi] \leq S[\phi] \leq \max(1, S[\phi])$

Proof. which implies that the sequence $S[\phi_k]^{1/k}$ converges. (It is close to a decreasing sequence.) For surfaces, S does not behave as well under covers, but we still have that if $\tilde{\phi}$ is a cover of ϕ , then $S[\phi] \leq S[\tilde{\phi}] \leq \max(1, S[\phi])$

Proof. which implies that the sequence $S[\phi_k]^{1/k}$ converges. (It is close to a decreasing sequence.) For surfaces, S does not behave as well under covers, but we still have that if $\tilde{\phi}$ is a cover of ϕ , then $S[\phi] \leq S[\tilde{\phi}] \leq \max(1, S[\phi])$