

A Practical Introduction to

APL 1
&

APL 2

by

Graeme Donald Robertson

 . . TRAINING THAT WORKS . . .

Date:

Place:

Instructor: ...

Student(s): ...

...

...

...

...

...

 A Practical Introduction to APL 1 & APL 2

 2

ROBERTSON (Publishing)

15 Little Basing, Old Basing,

Basingstoke, RG24 8AX, UK.

Copyright © Graeme Donald Robertson 2004-2008

This publication may be used, reproduced, stored in a

retrieval system, or transmitted in any form or by any

means, electronic, mechanical, photocopying, recording

or otherwise, without the permission of the publisher.

This document is distributed subject to the condition that

 it shall not, by way of trade or otherwise, be sold or hired

out without the publisher’s prior consent. It may however

be used in APL classes and circulated in any form of

binding or cover with a similar condition, including this

condition, being imposed on the subsequent owner.

First edition published March 2004 as APL1&2.PDF

Second edition published September 2004 as APL1_2.PDF
Third edition published January 2008 as APL1&2.PDF

ISBN 0 9524167 1 9

Conduct of this 2 day course:

After short introductions, the student group is invited to divide up into pairs.

Each pair works on one computer/terminal for the duration of the course.

Each pair is given the first lesson and asked to work through it on their computer at their own pace.

Pairs are encouraged to help each other with new concepts and difficulties as they arise and to experiment on the

computer with any ideas which they think they can express in APL statements.

Tuition is given when problems cannot be resolved by the pair. Questions may be answered directly on matters of

fact, or indirectly by way of a suggestion as to how the problem might be tackled.

Each day covers about 7 lessons, depending upon the pace of each pair.

There is no pressure to complete all lessons (remaining notes are given out at the end of the course).

At the discretion of the tutor, lessons may be skipped or assigned for private study after the course has ended.

Short synopses are given (with an overhead projector or white board) at suitable intervals throughout the course to the

group as a whole.

 A Practical Introduction to APL 1 & APL 2

 3

A Practical Introduction to

APL 1&2

APL is the only language to have been 200 years in the debugging.

Ken Iverson

Day 1: First Generation – APL 1

 APL 1 - Core APL
Session 1

 APL Character Set

 APL Keyboard

 Primitive Functions

 Simple Arrays

 Assignment of Variables

 Indexing & Special Syntax

 Error Messages
Session 2

User-Defined Functions

 Editing Functions

 Local & Global Variables

Order of Execution of Functions

 System Commands

 APL Idioms

...learning by practice, by induction, and by heuristic methods...

...pragmatic teaching by encouraging experiment and by individual tutorial.

Ken Iverson

 A Practical Introduction to APL 1 & APL 2

 4

L E S S O N 0

Why Learn APL?

APL is a high-level, general-purpose, intuitive programming language which is designed to be

easy on the programmer even if consequently hard on the computer - through power, not

inefficiency.

APL has its own special character set of around 200 alphabetic characters and symbols. Although

the APL symbols might appear illegible and unintelligible, each individual symbol performs a

specific task making programs very concise. APL is A Programming Language which is

essentially simple and easy to learn, and APL is interactive making it possible to experiment with

different ideas while developing solutions.

Getting to Know Your APL Keyboard

Your computer should be set up already so that an APL session is visible and has the focus.

Typing on your keyboard should cause characters to be displayed on your screen. Try typing

something. When you come across a new symbol, or key combination, write it on the supplied

blank keyboard. This will help you quickly to become familiar with the new APL key layout.

Symbols which require the Shift key to be pressed should be written in the upper left hand corner

of the corresponding key cap on the supplied blank keyboard chart. Symbols which require the

Ctrl and Shift keys to be pressed should be written in the upper right hand corner of the

corresponding key on the chart. Symbols which require the Alt key to be pressed should be

written on the front of the corresponding key, as shown below. (Beware of Ctrl keys on a

mainframe.)

• Type the numbers 0 to 9 on your keyboard and write them in the lower left hand corner of the

corresponding key on your keyboard chart. Type in the upper case letters A to Z on your

keyboard and write them in the appropriate positions on the keyboard chart.

• Find the symbols + and - on the keyboard and write them on your chart. Find the symbols ×

and ÷ on the keyboard and write them on your chart. Use the backspace key to rub out the

typing. Put that key on your chart too.

• In APL each expression which is typed into the APL session is executed when the Enter key is

pressed. In mainframe APL2 the key which is used to enter expressions is the right Ctrl key,

and possibly also the numeric pad Enter key. Mark the appropriate key on your chart.

• Ask your tutor for LESSON 1.

 A Practical Introduction to APL 1 & APL 2

 5

 A Practical Introduction to APL 1 & APL 2

 6

L E S S O N 1

Simple Arithmetic Expressions

Go at your own pace. Experiment. Try to work it out. Think. Talk about it.

• Use APL to add any two numbers together. Check the result. For example, type

 65.35 + 35.65
101

Hint: Hit the Enter key when you are ready to execute the line containing the cursor.

Notice how, in immediate execution mode, APL indents the cursor 6 spaces to indicate that it is

ready to accept the next line of user input. Everything which has been input by the user is

indented by 6 spaces, and is coloured green in mainframe APL2. Output from the computer

starts at the left hand margin and is coloured red, as are error lines.

• Type the following two lines into your session and explain the results.

 14 - 9
5
 - 7
¯7

Notice the distinction between the negate function (-) and the negative sign, or high minus

symbol, (¯), which is an intrinsic part of a number, like the decimal point.

Symbols such as - and + can be used either with a right argument (which is called the monadic

or prefix case) or with a left and right argument (which is called the dyadic or infix case). Thus

the hyphen symbol can be used monadically to mean negate or dyadically to mean minus, or

subtract. Write the new high minus symbol on your keyboard chart.

The plus and minus signs were introduced by the German mathematician Johann Widmann in

1489 to signify addition and subtraction. Dyadic deployment of the symbols is now familiar to

everyone.

APL has many such powerful primitive functions which allow complex computations to be done

very easily. Primitive functions follow the principle of one symbol per mathematical operation.

• Experiment to see if you can deduce the monadic and dyadic meanings of the symbols

 × ÷ | — ˜ * µ ! both by applying simple numeric arguments, and by inference from

the form of the symbol itself.

The times sign was introduced by the English mathematician who invented the slide rule;

William Oughtred (1575 - 1660). Its use to signify multiplication is now familiar to everyone

who has been exposed to the language of elementary algebra. Most computer languages use * to

indicate multiplication. Algebraists use a variety of alternative ways to indicate multiplication:

a×b or a.b or ab. APL consistently uses ×. "APL is the only [computer] language to have been

two hundred years in the debugging," says Iverson.

 A Practical Introduction to APL 1 & APL 2

 7

APL is derived from mathematical notation. It did not appear from the standard evolutionary

origins of most other computer languages. APL crystallized from an unconstrained theoretical

notation (Iverson notation) when it was realized that it could be executed on a computer. "I

wasn't trying to design or implement a language for a machine," confessed Iverson.

The monadic meanings of × ÷ | — ˜ * µ and ! are direction, reciprocal, magnitude,

ceiling, floor, exponential, natural logarithm and factorial respectively, and dyadic meanings

multiply, divide, residue, maximum, minimum, power, logarithm and binomial respectively.

• Investigate the monadic meaning of + Experiment with any suggestive arguments! ;-)

The result of one expression can be used as the argument to another function.

• Try some compound expressions such as

 3 × 4 + 6
30

and

 (3 × 4) + 6
18

Hence explain the result of the expression

 14 - 6 - 5 - 3 - 7
17

Beyond BIDMAS. Remember BIDMAS (or BODMAS)? It tells you the order of precedence in

simple arithmetic expressions – brackets first, then indices (or of), division, multiplication,

addition and finally subtraction. APL, on the other hand, does not assume any special order of

precedence between functions. Execution simply proceeds from right to left unless you use

parentheses (round brackets) to control the order of execution. All APL functions have equal

priority. This basic “right-to-left” grammatical rule applies to dyadic functions and monadic

functions alike in APL. (It’s a bit like the rule in English that the object of a sentence comes after

the verb.)

Rule 1: The right argument of any function, monadic or dyadic, is the result of the entire

expression immediately to its right.

Some functions take boolean arguments and return boolean results.

• Reading 1 as true and 0 as false, verify the truth values of these expressions.

 1 Ÿ 1
1
 1 ^ (0 ^ 1) Ÿ 1 Ÿ 0
1
 ~ 0 Ÿ ~ 0

0

 A Practical Introduction to APL 1 & APL 2

 8

These invoke the simple logical functions: and (^), or (Ÿ) and not (~).

• Some functions take numeric arguments and return boolean results. Verify the results of

 20.5 = 41 ÷ 2
1
 101 < 200 - 100
0
 27.3 > 39.31
0

These introduce binary relational functions: equals (=), less-than (<) and greater-than (>).

• Trigonometric functions are implemented via the dyadic circle function. A left argument of 1

returns the sine of the right argument. Assess the result of

 1 ± 3.14159
0.000002654

knowing that Sin(π) is zero. A left argument of 2 returns the cosine, 3 returns the tangent.

The left argument of the circle function may be an integer between 12 and -12 representing

various standard pythagorean, trigonometric, hyperbolic and complex number functions.

• Explore a few examples. Find the meaning of the monadic circle function.

• Type the following line into your session and execute it a few times.

 ? 6
5

What do you think the results indicate about the meaning of roll (?)? ☺

• Try some more adventurous examples of the application of Rule 1.

 ˜0.5+3.23
3
 —¯0.5+3.23
3
 ˜¯3.5—¯8.2
4
 3.2|¯4.3
2.1
 ((?5)ˆ?8)Ÿ(?5)‰?8
1
 (~1Š0‹1)=1ˆ0.2ˆ3ˆ4
0
 (2!6)=(!6)÷(!2)×!4

1
 ((3×4)=*(µ3)+µ4)^(3÷4)=*(µ3)-µ4
1
• Ask your tutor for LESSON 2.

 A Practical Introduction to APL 1 & APL 2

 9

 A Practical Introduction to APL 1 & APL 2

 10

L E S S O N 2

Names, Lists & Literals

Numbers and results of expressions can be assigned to names. The left assignment arrow („) may

be read as gets or is-assigned or simply is.

• Enter the following statements (or sentences), noting that * means power and × means times,

 INTEREST „ 0.09
 YEARS „ 6
 VALUE„500×(1+INTEREST)*YEARS

• Type in the name of a variable and hit the Enter key to display the contents of the variable in

the session.

 VALUE
838.6

Generalized Scalar Functions. Some functions that take single numbers (scalar) arguments

have well defined behaviour when the arguments are extended to lists of numbers (vector).

• Execute the line

 1 2 3 + 4 6 8
5 8 11

and explain the result.

Addition of vectors is not a new concept. Newtonian mechanics (c. 1687) employs 3 element

vectors to describe positions, velocities and forces in 3D space. Addition of forces may be

represented

by lines and parallelograms, as below. The sum is calculated by vector addition, using the plus

sign, as above.

N-dimensional vector spaces (containing N-element vectors) are now employed routinely in many

branches of pure and applied mathematics. Indeed the concept of a vector space is one of the

principal unifying concepts in the whole of mathematics (see Hilbert Space in Wikipedia).

"The use of a programming language in which elementary operations are extended systematically

to arrays provides a wealth of useful identities," says Dr Kenneth Iverson in his book A

Programming Language, Wiley 1962.

 A Practical Introduction to APL 1 & APL 2

 11

APL adopts this element-by-element approach to vector addition and generalises it to many

standard mathematical functions, taking dyadic plus and monadic negate as role models, or

templates.

• Check the results of

 - 3 4 5
¯3 ¯4 ¯5
 - 3 4 ¯5 4 6 5.0 ¯8.567
¯3 ¯4 5 ¯4 ¯6 ¯5 8.567
 1 2 3 × 2 ¯2 2
2 ¯4 6
 45 ¯3 2 2.33 + 99 7 4 0.4
144 4 6 2.73

• Explore other expressions, using lists of numbers as arguments to the primitive scalar

functions represented by symbols + - × ÷ | — ˜ * µ ± !

Scalar Extension. If one of the arguments of a scalar dyadic function is a scalar and the other is

a vector (or list) then the scalar is automatically extended to have the same length as the vector.

• Enter

 1 ± .1 .2 .3
0.09983 0.1987 0.2955

• Compare with

 1 1 1 ± .1 .2 .3
0.09983 0.1987 0.2955

and

 1 2 3 ± .1 .2 .3
0.09983 0.9801 0.3093

Otherwise, if the arguments have incompatible lengths then a LENGTH ERROR is reported.

• Try to execute the following line.

 1 2 ± .1 .2 .3

Literals. Variables can be assigned to lists of literal characters as well as to lists of numbers.

Character strings have to be enclosed inside APL quotes in order to distinguish literal characters

from defined names or simple numerics.

• Enter your name and web address, e.g.

 NAME„'DEBBIE ROBERTSON'
 ADDRESS„'APL4.NET'

 A Practical Introduction to APL 1 & APL 2

 12

The dyadic structural functions catenate (,) take (†) and drop (‡), and the monadic structural

function reverse (²), can be used on any list of numbers or characters to produce a new related

list.

• Try

 ²NAME

NOSTREBOR EIBBED
 7†NAME
DEBBIE
 E„(6†NAME),'@',ADDRESS
 E
DEBBIE@APL4.NET

• Monadic use of Greek letter rho (function shape) returns the number of elements in the vector

NAME. Check the result of

 ½NAME
16

• Dyadic rho (reshape) returns the right argument reshaped to have exactly the number of

elements specified by the left argument. Try

 4½ADDRESS
APL4
 40½ADDRESS
APL4.NETAPL4.NETAPL4.NETAPL4.NETAPL4.NET
 ²50½NAME,' '
NOSTREBOR EIBBED NOSTREBOR EIBBED NOSTREBOR EIBBED

The shape of a vector is the number of elements in the list.

• Type

 ½NUMS„56 87 75 80 79 86 84 90
8
 ½CHARS„'56 87 75 80 79 86 84 90'
23

Literal digits can be converted into numbers using the very powerful execute (–) function (which

is said to make APL ‘self-conscious’) and numbers can be converted into characters using the

very useful format (•) function.

• Explain the results of

 ½•NUMS
23
 CHARS=•NUMS
1

 A Practical Introduction to APL 1 & APL 2

 13

 ½–CHARS
8
 NUMS=–CHARS
1 1 1 1 1 1 1 1
 CHARS,•NUMS
56 87 75 80 79 86 84 9056 87 75 80 79 86 84 90

 –(3×5)½'NUMSª'
56 87 75 80 79 86 84 90
56 87 75 80 79 86 84 90
56 87 75 80 79 86 84 90

The diamond symbol (ª) is not a function. It is a statement separator. You might not be able to

find it on your APL2 mainframe keyboard. However, diamond is an example of an overstruck

character – from the days when space for characters was scarce. A diamond can be input using

the three consecutive symbols <_> where _ is the printable backspace. This requires that you

first type the command

)PBS ON

in APL2, or switch to replace mode via the Insert key in Dyalog APL.

Interval (¼) can be used to generate any uniformly spaced range of numbers.

The monadic meaning of the iota character (¼) is a function called interval or index generator. It

takes a scalar argument and returns a vector result.

• Try

 ¼9
1 2 3 4 5 6 7 8 9
 ¼19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 ¯1+(¼19)÷10
¯0.9 ¯0.8 ¯0.7 ¯0.6 ¯0.5 ¯0.4 ¯0.3 ¯0.2 ¯0.1 0 0.1 0.2 0.3 0.4 0.
5
 0.6 0.7 0.8 0.9

• Experiment with examples like

 ¯0.3×8-¼15
¯2.1 ¯1.8 ¯1.5 ¯1.2 ¯0.9 ¯0.6 ¯0.3 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1

• Now try

 ¯1+(¼99)÷50
or

 ¯1+(¼9999)÷5000

 A Practical Introduction to APL 1 & APL 2

 14

• Use the appropriate keystroke (usually Ctrl+C on a mainframe keyboard or Ctrl+Break on a

PC) to interrupt execution of lengthy or verbose operations. Write this important key

combination on your keyboard chart. Learn to interrupt without compunction. Waiting for a

rogue function to finish may be very expensive on a mainframe. You control the computer

now.

APL primitive functions appear atomic in the sense that they never stop half way through. They

either finish completely or appear not to have started at all. Therefore breaking an APL process

always leaves the processing stack at a definite given point in an APL program.

APL idioms are commonly used combinations of tokens. They are phrases that are immediately

recognised by APL programmers when reading APL code. A simple example of an idiom is

 ¼½NUMS
1 2 3 4 5 6 7 8

which returns a count of the elements in the vector NUMS.

• Propose a use for this idiom:

 (1‡NUMS)-(¯1‡NUMS)
31 ¯12 5 ¯1 7 ¯2 6

Note the occasional judicious use of redundant parentheses to enhance readability.

• Experiment with dyadic functions ½ † and ‡ using scalar (single) integer left arguments

and vector (list) numeric (or character) right arguments. Note, in particular, the shape of the

arguments and the shape of the results.

• Write an expression which rounds a number of pennies to the nearest 12p. Andrew, James,

Charles and Marcus each have a building society account: these contain £5,081.09,

£11,954.55, £812.97 and £6,241.00 respectively. Each account has a different annual interest

rate: 4.1%, 3.5%, 2.6% and 3.25%. Write an expression which returns the interest on each

account. Write another expression which returns how much each person could have at the

end of ten years of saving, to the nearest 12p?

 A Practical Introduction to APL 1 & APL 2

 15

L E S S O N 3

Indexing Non-Scalar Arrays

In a simple and intuitive manner, square brackets [] are used to select items from a list.

• Enter

 NUMS[3 2]
75 87
 (²¼99)[NUMS]
44 13 25 20 21 14 16 10
 (33 44 55 66)[3 2 3 3 1]
55 44 55 55 33
 'scarlet'[1 6 2 4 6 7]
secret

The shape of the result is the shape of the index. If no index is included within the brackets

(elided index) then the whole vector is returned. e.g.

 NUMS[]
87 75 80 79 86 84 90

• Use bracket indexing to select the smallest and largest elements from the vector

 A „ ? 100 ½ 1000

Hint: Monadic grade-up (“), applied to argument A returns the permutation vector which would

sort A in ascending order.

Matrices. We have generalised the arguments of functions from scalars to vectors, or lists. Now

we generalise further to matrices, or tables.

When the concept of a matrix of numbers is first encountered in mathematics it can appear quite

forbidding, but they have many uses. For example, they form the bases of representations of

continuous groups which have many deep applications in science. We here consider a matrix

simply as a rectangular table of numbers or characters.

In order to create a vector we may use the dyadic reshape function (½), with a single numeric left

argument, to produce a list of that length containing elements taken consecutively from the right

argument. In order to create a matrix we may use the reshape function with a two element

numeric vector left argument to produce a table which has that number of rows and columns.

• Examine the displayed output from

 3 4 ½ 999
999 999 999 999
999 999 999 999
999 999 999 999

 A Practical Introduction to APL 1 & APL 2

 16

 5 5 ½ ¼ 25
 1 2 3 4 5
 6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
 2 13 ½ 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
ABCDEFGHIJKLM
NOPQRSTUVWXYZ

• Create a character matrix called MONTHS that has 12 rows and 9 columns formed from the

carefully spaced character string

 'JANUARY FEBRUARY MARCH APRIL .. DECEMBER '

• Use bracket indexing to select rows 3 and 4 and columns 1 and 2.

 MONTHS[3 4 ; 1 2]
MA
AP

Note the semicolon to separate dimensions.

In APL, there are often (always?) many ways to accomplish the same task (although some

solutions are manifestly more elegant than others).

• Use take and/or drop with 2 element left arguments to produce from MONTHS the selection:

 MONTHS[3 4 9 ; 5 1 2]
HMA
LAP
ESE

• From the result of

 (12†0 0 1)šMONTHS
MARCH

deduce the meaning of compress-first (š) with boolean left argument. How could you use this

function and compress (/) to make the above selections? Why was compress renamed replicate

when the left argument was generalized to include integers rather than just booleans?

Suggestion: Look up replicate (/) in your reference manual or help file.

• Create a variable called SALES which has 12 rows and 3 columns and is filled with random

numbers between 1 and 1000.

• Select the first row of SALES (and all the columns - by eliding the columns entry).

 SALES[1;]
935 384 520

 A Practical Introduction to APL 1 & APL 2

 17

• Select the third and first column (and all the rows - by eliding the rows entry).

 SALES[;3 1]
520 935
 54 831
 8 530
 ·
 ·
 ·

Structure functions. The primitive selection functions, which were used for manipulating lists,

all generalise to matrices. We have already seen take (†) and drop (‡) applied to matrices.

There are other primitive functions that change the structure of their arguments.

• Experiment with monadic transpose (³) on SALES and other matrices.

 ³SALES
935 831 530 384 687 847 654 911 48 633 366 723
384 35 672 67 589 527 416 763 737 757 248 754
520 54 8 418 931 92 702 263 329 992 983 652

• Experiment with reverse (²) on SALES and other vectors and matrices.

 ²SALES
 ³²³SALES

• Look up take, drop and reverse-first (´) in your reference manual or help file. Become

familiar with your sources of reference.

• Make a report.

 REPORT„MONTHS,•SALES

• Explain the expand function (\) and use it to double the width of the report.

 ((2×¯1†½ REPORT)½1 0)\REPORT
J A N U A R Y 9 3 5 3 8 4 5 2 0
F E B R U A R Y 8 3 1 3 5 5 4
M A R C H 5 3 0 6 7 2 8
A P R I L 3 8 4 6 7 4 1 8
M A Y 6 8 7 5 8 9 9 3 1
J U N E 8 4 7 5 2 7 9 2
J U L Y 6 5 4 4 1 6 7 0 2
A U G U S T 9 1 1 7 6 3 2 6 3
S E P T E M B E R 4 8 7 3 7 3 2 9
O C T O B E R 6 3 3 7 5 7 9 9 2
N O V E M B E R 3 6 6 2 4 8 9 8 3
D E C E M B E R 7 2 3 7 5 4 6 5 2

 A Practical Introduction to APL 1 & APL 2

 18

Why did the name of this function not change when it was generalized to allow integer left

arguments?

• Try

 3 1 0 0 5 1\¼4
1 1 1 2 0 0 3 3 3 3 3 4

Addition of Matrices. The primitive scalar functions generalise to work with n-dimensional

arrays (vectors, matrices, 3D arrays, …).

• Try

 SALES+SALES

• Scalar extension still applies. Try

 SALES × 2

Higher Rank Arrays. The rank of an array is the shape of the shape of the array. This is a new

idiom which gives the dimensionality (or rank) of the array in question; 1 for a vector, 2 for a

matrix, 3 for a 3D array, etc...

• Type in

 ½½SPACE „ 2 3 4½¼2×3×4
3
 SPACE
 1 2 3 4
 5 6 7 8
 9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

Notice how the first plane,

 SPACE[1;;]
1 2 3 4
5 6 7 8
9 10 11 12

is printed first, followed by a gap and then the second plane

 SPACE[2;;]
13 14 15 16
17 18 19 20
21 22 23 24

 A Practical Introduction to APL 1 & APL 2

 19

• Display a rank 4 array such as the one below. Notice the 2 blocks, each containing 3 planes,

each containing 4 rows and 5 columns, with spacing to reflect this structure.

 2 3 4 5½0

• Ravel (,) it.

 ,2 3 4 5½0
0 0

 0

 0

 0

• Find the highest possible rank allowed for any array in your current APL interpreter. ☺

Sales of Widgets. Consider the sales of 4 products A, B, C and D over 12 months, recording

sales revenues, cost of goods sold and expenses incurred, for each product. These figures can all

be held in a single rank 3 array of shape 4 planes by 12 rows by 3 columns.

• Begin with some random data.

 WIDGETS„(?4 12 3½1000)÷10

The 4 planes are the products A, B, C and D. The 12 rows are the months, and the 3 columns are

revenues, costs and expenses. Write a product B report.

 PRODUCT„2
 MONTHS,' ', •WIDGETS[PRODUCT;;]

The gross profit is the difference between the revenue and the costs:

 WIDGETS[;;1] - WIDGETS[;;2]

The earnings from operations is the gross profit minus the expenses:

 (WIDGETS[;;1]-WIDGETS[;;2])-WIDGETS[;;3]

• Catenate these two new columns to the product B report above.

• Use grade-up (“) to sort the rows (months) of the B report by sales revenue figures of

product 2 in ascending order.

• Include meaningful column titles in the product B report and save your work in a workspace

called MYWORK so that you can retrieve it later.

)SAVE MYWORK

 A Practical Introduction to APL 1 & APL 2

 20

L E S S O N 4

APL Programming

A name may be assigned to the result of an expression, and is then called a variable. A name

may be associated with an expression itself, and is then called a user-defined function, or

program, which can be applied to a variety of different arguments. A function executes some

action on its argument(s) to produce a result which may be an argument to a further function.

Here is a very simple example of a user defined function which does nothing more than add its

left argument, which has been named L, to its right argument, which has been named R, and

return the result, which has been named T for total.

 ’ T„L MYPLUS R
[1] T„L+R
[2] ’

• To start the editor, type the del symbol (’) followed by the header line followed by Enter.

 ’ T„L MYPLUS R

This opens the editor and prompts you to type a statement on line 1 by printing the first line

number in brackets followed by some spaces.

[1]

• Type T„L+R and hit Enter. A prompt for the next line is issued.

[2]

Any number of lines can be added to a single function. Execution flows from one line to the

next, consecutively by default. Sometimes functions can have hundreds of lines, sometimes only

one. When all the statements needed to build the result of a function have been entered, the

function definition may be terminated by entering a closing del (’). The user then exits the editor

and returns to immediate execution mode.

[2] ’

Depending upon the particular version of APL being used, the editor may be either the basic line

editor (available in most versions of APL) or a full-screen editor with many built-in WYSIWYG

features. In order to use the APL2 full-screen editor you should execute the system command

)EDITOR 2

 A Practical Introduction to APL 1 & APL 2

 21

Investigate the facilities of best APL function editor on your APL system and use it to define a

new copy, MYPLUS2. Test the function with a variety of arguments. Explain the error messages.

 3 MYPLUS2 4 5 6 7
7 8 9 10
 3 4 MYPLUS2 5 6 7
 MYPLUS2 5 6 7
 3 MYPLUS2 '5 6 7'

• Incorporate lines such as

 M„(½L)—(½R)
 T„(M†L)+(M†R)

in order to dispense with the first error. Alternatively, consider T„(M½L)+(M½R)

• Write a function SQT which takes a numeric right argument and returns its square root.

• Write another function HYP which takes, respectively, a left argument and a right argument

of the vertical and horizontal sides of a right-angled triangle, and returns the length of the

hypotenuse, by Pythagoras' theorem. Does it generalize easily to two or more triangles?

Note: z =√ (x²+y²) and you can call SQT inside HYP.

• Define a function that will return the number of seconds between two times in numeric

HOUR, MINUTE, SECOND format. Experiment with encode (‚) and decode (ƒ). This is

useful!

Hint: (2 hrs 14 mins 38 secs) take away (17 mins 9 secs) is (1 hr 57 mins 29 secs) because

 0 60 60‚(0 60 60ƒ2 14 38)-0 60 60ƒ0 17 9
1 57 29

• Use your expression from Lesson 3 to generate a product B report and make it the basis for a

function which takes an argument of product name and returns the report for that product.

• Write a function UNIQUE that returns a vector of unique numbers in ascending order. e.g.

 UNIQUE 1 7 4 7 2
1 2 4 7

How would you accommodate character vector arguments?

Hint: Consider ((¼½X)¹X¼X)/X first and sorting last.

 A Practical Introduction to APL 1 & APL 2

 22

Branching & Flow Control. Within a user-defined function it is possible to jump to some

arbitrary line number by means of the branch function (…). This function takes a line number as

its right argument and does not return a result, but jumps to the line given by the argument. Thus

…3 will cause the interpreter to process the statement in line 3 next. This is the basis of flow

control in core APL.

• Write a function ODD which takes an integer argument and returns a 1 if the argument is odd

and a 0 if the argument is even. Do this with and without branching. What about negative

numbers?

 ’ BOOL„ODD INT
[1] P„—INT÷2
[2] Q„˜INT÷2
[3] …(6 4)[1+P=Q]
[4] BOOL„1
[5] …0
[6] BOOL„0
 ’

 ’ BOOL„ODD INT
[1] P„—INT÷2
[2] Q„˜INT÷2
[3] BOOL„P¬Q
 ’

• Use your reference materials to investigate the definitions of line labels and localised

variables in function definition.

 ’ BOOL„ODD INT;P;Q
[1] P„—INT÷2
[2] Q„˜INT÷2
[3] …(FALSE TRUE)[1+P=Q]
[4] FALSE:BOOL„1
[5] …0
[6] TRUE:BOOL„0
 ’

• Using a loop, write a function which returns the sum total of all the elements in its numeric

vector argument.

 ’ TOT„SUM VEC;COUNT;N
[1] TOT„COUNT„0
[2] N„½VEC
[3] LOOP:…(COUNT=N)½0
[4] COUNT„COUNT+1
[4] TOT„TOT+VEC[COUNT]
[5] …LOOP
 ’

 A Practical Introduction to APL 1 & APL 2

 23

L E S S O N 5

Revising Functions

To change a function which already exists, enter del (’), followed by the name of a function. It is

then presented for editing. (Note that a closing del is required to exit line edit mode.)

 ’ MYPLUS

• Explore the facilities of your recommended APL function editor. Change the function

MYPLUS, as you feel appropriate, to make a new function MYTIMES.

• Modify the function HYP to take a left argument and a right argument of the (x, y) coordinates

of the start and end of a line, and return the length of the line by Pythagoras' theorem.

z = √ ((x1-x2)² + (y1-y2)²)

• Check that HYP gives the correct result for a 3-4-5 triangle and suggest an alternative syntax.

 0 3 HYP ¯4 0

Line 0 Syntax. The header line, or line [0], of a user-defined function specifies the calling

syntax for the function. The structure of this line determines whether the function is dyadic,

monadic or niladic (no arguments). It also determines whether the function returns a result.

Quad Input. Quad (Œ) is a variable which communicates between the user’s terminal and APL.

When Œ is referenced, a prompt (Œ:) is displayed indicating that input is being requested.

• For example, type

 X „ Œ Enter this
Œ: System prompts with this
 3 User types in this
 X Enter this
3 X has value 3

• Write a niladic function called ASK which does not return a result. This function should ask

the user to type in his gas and electricity meter readings and then ask the user to type in the

cost, in pence, of one unit of gas and electricity. The function should then print out the total

bill rounded to the nearest penny. The session might appear like this:

 ASK
What are your Gas and Electricity meter readings?
Œ:
 346 1537
What are your Gas and Electricity unit costs in pence?
Œ:
 0.132 0.0977
Your total energy bill is £195.84p

 A Practical Introduction to APL 1 & APL 2

 24

L E S S O N 6

Some Useful System Commands

System commands are all introduced by an ‘unlikely’ first character; right parenthesis. This

would clearly cause an error in any APL expression and therefore causes no conflict or confusion

between calls to the operating system and well formed lines of APL code which may be

incorporated in functions.

• In order to store on file the variables and functions which you have written, type

)SAVE MYWORK

This will save a snapshot of your workspace in a file called MYWORK on disk.

• In order to reinstate this workspace at any time, use the command

)LOAD MYWORK

• Other useful system commands include

)VARS

which lists the global variables that you have assigned, and

)FNS

which lists the functions that you have defined in the current workspace.

Other important system commands include

)SI

)RESET

)ERASE ...

)COPY ...

)WSID

)CLEAR

and, last but not least, (because you may need it at the end of the day)

)OFF

which terminates the APL session.

 A Practical Introduction to APL 1 & APL 2

 25

A Practical Introduction to

APL 1&2

...programming, that is, the construction of a desired

function from a set of available primitive functions.

Ken Iverson

Day 2 : Second Generation – APL 2

 APL 2 - Nested Arrays
 Session 3

 System Functions & Variables

 Primitive Operators

Expressions & Statements

 Order of Execution of Operators

 Loops v APL (S-Matrix) Thinking

Enclose & Vector Notation
 Session 4

 Each Operator

 Binding Strengths

 Empty Arrays

 Building Tools

 Supplied Workspaces

 Evolution of APL (1956-2004)

...the ability to translate into APL procedures of interest in your own profession...

Ken Iverson

 A Practical Introduction to APL 1 & APL 2

 26

L E S S O N 7

Some Useful System Functions

System functions are functions which perform a task outside the domain of the APL workspace.

They can be called within lines of APL code, unlike system commands which can not be called in

an APL program. Some of these system functions perform tasks that were originally only

available through system commands. For example, ŒEX expunges names.

 ŒEX 'NUMS'

does the same as

)ERASE NUMS

And

 ŒNL 2

returns a character matrix (name list) that includes all global class 2 names which are listed by

)VARS

• Try

 ŒNL 2 3

The class of a name (name class) is returned by monadic ŒNC .

A very powerful system function, called ŒFX, fixes a new function defined by its character right

argument.

• Try, for example,

 ŒFX 2 9½'R„L IF C R„C/L '

List all the functions in the workspace. Why has this function been called IF?

This system function (ŒFX) is one of the reasons why APL is said to be “self-conscious”, and

cannot, in general, be compiled. The execute function (–) is another metamathematical concept

in the language. You can write programs that write programs whose properties may not be

deducible at the compilation stage.

• Useful niladic system functions include

 ŒAI which returns current account information,

 ŒTS whose result contains the current system time stamp,

 A Practical Introduction to APL 1 & APL 2

 27

and

 ŒWA which evaluates the remaining workspace available.

A function that has been interrupted is said to be suspended on a certain line. The system

function ŒLC returns the line count, and therefore

 …ŒLC

is often used to resume execution from the line at which execution has been halted.

• A favourite system function is (niladic) ŒAV which returns the 256 element atomic vector.

 Try it. :-)

• Why is ŒAV a niladic function and not a variable? Why does it have 256 elements?

System Variables. There are also a number of noteworthy system variables. They can be set

(assigned) by the programmer and may have a profound effect on the results of APL expressions.

For example, the primitive function interval (¼) returns an initial ordered subset of the natural

numbers or a subset of the whole numbers depending upon the value of the index origin (ŒIO).

• Type in the following. Observe and explain the differences.

 ŒIO„0
 ¼9
0 1 2 3 4 5 6 7 8
 ?9
5
 ŒIO„1
 ¼9
1 2 3 4 5 6 7 8 9
 ?9
3

• Why does the following give the same answer whatever the index origin.

 'abcdefghij'[“”10½1 0]
afbgchdiej

• Write a simple APL model of some fuzzy rule-based system, };-)>

basing your model on the conclusions you reach from the results of

 1<1.00000000001
1
 ŒCT„1E¯10
 1<1.00000000001
0

 A Practical Introduction to APL 1 & APL 2

 28

L E S S O N 8

Primitive APL Operators

"By relieving the brain of all unnecessary work, a good notation sets it free to concentrate on

more advanced problems…," explains A.N.Whitehead. "The quantity of meaning compressed

into a small space by algebraic signs .. facilitates the reasonings we are accustomed to carry on

by their aid," observes Charles Babbage.

The ease of expressing constructs which arise in problems is one objective test that can be applied

to a notation. We saw the difficulty we had in simply adding together all the elements in a vector.

We now introduce the concept of an APL operator that solves this problem in a very powerful

way. "An operator may be applied to a function to derive a different function," says the IBM APL

Language manual of 1978.

General mathematical notation includes Σ to signify the sum of a series and Π to signify the

product of a series. The linear APL notation introduces an operator reduce (/) which applies to a

function, such as plus or times, to produce a derived function, such as sum or product.

 + / 1 2 3 4 5
15

This adds up all the numbers 1 to 5 by conceptually putting a + between all the elements. Thus

+/ can be read as plus reduce and, in this case, is equivalent to

 1+2+3+4+5
15

Equally, by this definition of the derived function,

 × / 1 2 3 4 5
120

multiplies together all the numbers 1 to 5 by conceptually putting a × between all the elements.

×/ can be read as times reduce and is equivalent to

 1×2×3×4×5
120

In other words the mathematical statement ∑
=

n

i

iX
1

is equivalent to +/X in APL and i

n

i

XΠ
=1

 is ×/X .

• Sum the squares of the first 10 positive integers.

• Write a function which returns the largest number in a list.

Experiment with reduce operands — ˜ - ÷ ^ Ÿ , giving arguments to the derived functions

that are rank 2, 3 or above. Which dimension is “reduced”? Try to express some algebraic

identities, such as (+/X½Y) − (Y×X) or (×/X½Y) − (Y*X)

 A Practical Introduction to APL 1 & APL 2

 29

A second operator introduced in core APL is scan (\). Like reduce, this operator applies to all

dyadic scalar functions to produce a derived function that is conceptually similar to placing the

dyadic scalar function between each of the elements along the last axis of the argument.

However, scan generates all the intermediate values as well.

• Notice how

 +\1 2 3 4 5
1 3 6 10 15

gives all the (cumulative sum) results

1
1+2
1+2+3
1+2+3+4
1+2+3+4+5

• Explain the result of

 -\1 2 3 4 5
1 ¯1 2 ¯2 3

• Check the truth values of

 ^/(+\X½Y)=(Y×¼X)
 ^/(×\X½Y)=(Y*¼X)

• Experiment with scan applied to — ˜ - ÷ and especially to ^ Ÿ Š < ˆ ¬

Notice how an operator that takes only one (function or array) operand has it to the left of the

operator symbol, while a function which has only one (array) argument has it placed on the right

of the function symbol. This simple distinction increases the number of parsing rules in the core

APL language from 1 to 2! (The second grammatical rule in APL is a bit like the rule in English

that the subject of a sentence comes before the verb.)

Rule 2: The left function operand of an operator is the function derived from the longest

possible operator sequence to its left.

It is not really possible until lesson 11 to understand the full force of this rule - until operators are

used with derived function arguments. However, it is important to appreciate that these two rules

are ‘essentially’ all that is necessary to specify completely the parsing of any APL 1 statement.

With the above two rules you should be able to read and understand (i.e. interpret) any rational

first generation APL statement. This sentence is circular because by rational we mean any

construct which adheres to rules 1 and 2 only. However, it is still worth saying because one very

respectable goal of APL has been to discard all irrational constructs and replace them with

rational ones. Unfortunately history has tended the other way – to add new arbitrary syntactic

rules to second and third generation APL interpreters.

 A Practical Introduction to APL 1 & APL 2

 30

• Define a function that returns the average of a vector of numbers when the function argument

is a vector, or the row averages when the argument is a matrix. Discuss how a primitive

operator might be defined that specifies subarrays to which this AVERAGE function applies?

Operators may apply to two operands (c.f. arguments) but, unlike functions, they can NOT be

ambipotent (c.f. ambivalent). An operator, exclusively, either takes one operand on its left or

two operands, one on the left and one on the right (i.e. it is monistic xor dualistic). [Usually the

words monadic, dyadic and valency are applied equally to functions and operators but here I

introduce new words monistic, dualistic and potency to help the (newbie) APLer to clarify the

important distinction between function and operator syntax.]

The inner-product, or the dot operator (.), requires two function arguments that combine in a

given way to produce a dyadic derived function. In the case where the left operand is plus and

the right operand is times, the derived function is that of matrix multiplication (which implicitly

involves multiplication and plus reduction).

• Given some small test matrix,

 MAT„3 3½¼4

verify the results of

 MAT+.×MAT
 MAT+.×³MAT
 MAT^.=³MAT
 MAT^.=MAT
 MAT—.+MAT

• In what context might each of the above derived functions be used? Consider, for example a

statement such as

 TOTAL_COST „ COSTS +.× QUANTITIES

In the early days of APL 1, operators were not well understood and a couple of syntactically

irrational operator constructs were introduced. (See e.g. Rationalised APL by K.E.Iverson,

1981.) For example, the two symbols jot (°) and dot are used in combination to represent the

outer- product operator. This operator derives a dyadic function which conceptually takes each

element of its left argument and combines it with each and every element in the right argument

according to the dyadic (right) operand.

• Enter these two examples and find an example of another useful operand.

 (¼7) °.+ (¼7) © addition table
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12
7 8 9 10 11 12 13
8 9 10 11 12 13 14

 A Practical Introduction to APL 1 & APL 2

 31

 (¼7) °.× (¼7) © multiplication table
1 2 3 4 5 6 7
2 4 6 8 10 12 14
3 6 9 12 15 18 21
4 8 12 16 20 24 28
5 10 15 20 25 30 35
6 12 18 24 30 36 42
7 14 21 28 35 42 49

Notice the appearance of the comment symbol (©) which can be used to add comments at the end

of any executable line of APL.

Aside: The jot-dot-times derived function, although irrational in its syntax, has been so admired

by APLers that an American APL journal was named after it. There is also an American journal

called APL Quote-Quad. Quote-quad is an I/O variable like quad (Œ) but for characters. It is

written x. Likewise there was an APL company called Inner Product and another called Dyadic

Systems. Dyadic Systems had an Outer Products catalogue of end user solutions. Puns or

what?! It is of interest to note that the name Dyalog originates from a joint project between

Dyadic and Zilog whose outcome was the first version of the Dyalog APL interpreter in 1982:-)

The axis operator has irregular syntax. It surrounds its numeric “right” operand with brackets.

This, like indexing, does not follow the usual single token nomenclature which is assumed in

rules 1 and 2. (But IBM APL2 and Dyalog now have a rational dyadic index function (¦).)

• Experiment with

 ²[ŒIO]MAT
3 4 1
4 1 2
1 2 3
 ²[1+ŒIO]MAT
3 2 1
2 1 4
1 4 3

and

 MAT,[ŒIO]MAT
1 2 3
4 1 2
3 4 1
1 2 3
4 1 2
3 4 1
 MAT,[1+ŒIO]MAT
1 2 3 1 2 3
4 1 2 4 1 2
3 4 1 3 4 1

to see how the axis operator modifies the axis to which its left operand applies.

 A Practical Introduction to APL 1 & APL 2

 32

In the penultimate example above, the catenate function (,) becomes the derived function

catenate-along-first-axis (,[1]) which can also be programmed as catenate-first (®) .

• Hence check the meaning of

 +/[1]MAT
8 7 6
and

 +/[2]MAT
6 7 8

• What might the following line of code be doing?

 ((+/[2]EXPENSES_BY_MONTH)>2500)/[1]SALESMEN

• Can you identify any other irrational syntax (i.e. irregular use of tokens vis-à-vis rules 1 and

2) in any of the preceding lessons? Is / a function or an operator?

Remember, you're not really supposed to encounter anything irrational in APL notation!

Grammar: Core APL, here called APL 1, has an extremely simple and elegant grammar. This

grammar still forms the unchanged core of modern APLs, which adhere quite strictly to ISO

Standard 8485:1989. Later generations, APL 2 and APL 3, each introduce a number of new rules

of grammar making the underlying parsers considerably more complicated, and consequently,

lines of code harder to read with confidence. Nevertheless, the original two grammatical rules of

APL 1 still hold good and form a solid, clear foundation for the whole language. Fluency in APL

follows from a secure understanding of the two fundamental rules of grammar stated in Lessons 1

and 8.

 A Practical Introduction to APL 1 & APL 2

 33

L E S S O N 9

APL Thinking

Most 20
th

 century computer languages have evolved from representations of sequential

instructions in digital memory. APL syntax, on the other hand, evolved from traditional

mathematical notation. This explains the relative ease with which complex ideas can be

translated into APL programs. As a result APL has been, and still remains, irreplaceable for

many diverse mission-critical systems found in large organisations all over the world.

• Insert lots of redundant parentheses to show the steps involved in this statement:

 SCALE „ 4 5 6 + 3 × ¼ 9 - 6

• Construct the following matrix in the clearest possible way, and then again using as few

syntactic elements (tokens) as possible:

0 3 2 1

1 0 3 2

2 1 0 3

• Define a function which will remove any of a list of unwanted characters (the left argument)

from a matrix (the right argument) and replace them with spaces. This is not a common

utility but you’ve got to feel confident that you can quickly produce it if you need it. If it is

destined to become a common utility then you should make sure that it is suitably general; it

applies to all appropriate ranks of array arguments including zero rank and other empty

arrays, it applies to numbers too, perhaps it even signals its own specific errors and it can

never halt in the middle. In other words, it should be modelled on the design of primitive APL

functions such as member (¹).

If you think that is too easy then show, instead, how to construct some interesting looking matrix

with just a few tokens. If you think that is too simple as well, then generate all the whole

numbers from 1 to 100 using any APL primitives but only using the digits 1,9,8 and 6 once each

and in that order. Thus, for example, the number 1 is given by

 1˜986
1

and the number 42 is given by

 19——8*µ6
42

An amazing complete answer to this wonderful challenge is to be found in the fascinating and

useful Journal of the British APL Association, in Vector Vol.3 No.2 p105 (1986).

 A Practical Introduction to APL 1 & APL 2

 34

Scalars & Loops versus Vector Operations. We have seen how it is possible to write a looping

function that will add up all the elements in a vector. This should be replaced by the derived

function plus reduce (or sum) for reasons of both elegance and efficiency. Plus reduce also

extends naturally to sum over the rows, or sum over the planes by way of the axis operator (or by

dyadic transpose (³), or by reduce-first (š) ...).

In APL one attempts to apply some function to the given arguments to obtain immediately the

desired result. This is not always possible; often intermediate results are needed. If so, the

problem is broken down into sub-problems and a solution to each sub-problem is then sought

through the application of some function to an argument or arguments to give an intermediate

result. It is amazing how seldom (if ever) loops are strictly necessary, even in core APL 1. (In

APL 2, as we shall see, loops are employed even less often.)

Aside:

This black-box, operational way of thinking [input/operation/output] is reminiscent of the scattering-

matrix approach to quantum mechanics which was popular amongst particle physicists in the 1970’s (see

The Tao of Physics by Fritjov Capra). One can observe what (particle) goes in and what (particle) comes

out, but one can never see what “actually happens” inside a sufficiently small black circle.

Mathematically, the (possibly infinite) matrix operation S simply transforms the (Hilbert space) vector IN

to vector OUT. Bootstrap philosophy attempted to specify the S-matrix elements entirely through self-

consistency with related S-matrices but then quantum chromo-dynamics (QCD) was discovered (c. 1973)

which seems to describe accurately the behaviour of quarks and so theoretical physicists moved back to

field theory thinking.

A monadic APL primitive function looks like S in:

A dyadic primitive function looks like S in:

This is a mental model of, or a template for, all APL programs (functions and operators):

something precise goes in, and something precise comes out. No loops. No extraneous

considerations. Just some encapsulated algorithm for transforming what goes in to what comes

out – that algorithm is the APL program S.

 A Practical Introduction to APL 1 & APL 2

 35

Sometimes apparently unavoidable loops can be avoided by recursion. The Fibonacci series is

elegantly generated through a recursive function. Each term in the series is the sum of the

preceding two terms, starting with 1 1. The function below takes a whole number, N, and returns

the first N Fibonacci numbers.

 ’ Z„FIBONACCI N
[1] © Z is the first N terms of the Fibonacci series
[2] –(N=1)/'…~Z„1'
[3] Z„Z,+/¯2†Z„FIBONACCI N-1 ’

• Study this function. Predict what will happen if N is zero. Verify that the quotient of the last

2 numbers of a finite Fibonacci series tends to the Golden Mean ((5*0.5)-1)÷2

Hint: Remember Ctrl+C on a mainframe or Ctrl+Break on a PC!

Aside:

The Golden Mean is believed by some to control psychology in the city? It appears that when a market

price is ready for a big change, the next stable point downwards is the product with the Golden Mean, and

the next stable point upwards is the quotient!

• Define a recursive FACTORIAL function which takes a whole number argument, N, and

returns the factorial (!) of N, i.e. N×(N-1)×(N-2)×..×2×1 .

Hint: If N is not zero, then the result is N×FACTORIAL(N-1).

• The following function converts a date to an International Day Number. Is the function

IDN_FROM_TS millennium-proof? :-S

 ’ IDN„IDN_FROM_TS TS;YY;MM;DD;LP;DDM
[1] © Convert date from 3-element vector (3†ŒTS) to IDN
[2] –(0=+/TS)/'…IDN„0'
[3] YY MM DD„TS © Split args.
[4] LP„-/0=400 100 4|YY © Leap year *****
[5] DDM„0 31,LP+59 90 120 151 181 212 243 273 304 334
[6] IDN„˜365.25×YY-1900 © Convert years.
[7] IDN„IDN+1†MM‡0,DDM © .. months.
[8] IDN„IDN+DD-LP © .. days.
[9] IDN„IDN+IDN<0 © Days before 1900-01-01 are ˆ 0.
 ’

• Discuss the steps involved in programming the inverse function TS_FROM_IDN. �

 A Practical Introduction to APL 1 & APL 2

 36

Study the following remarkable function and suggest some better local variable names.

 ’ R„EASTER YEAR;A;B;C;D;E;F;G;H;I;K;L;M;N;O;P
[1] ©Returns the date of Easter in the specified YEAR(s)
[2] ©Method from Butcher's Ecclesiastical Calendar (1876)
[3] ©valid for all years in Gregorian calendar (1583 onwards)
[4] A„19|YEAR ª B„˜YEAR÷100 ª C„100|YEAR
[5] D„˜B÷4 ª E„4|B ª F„˜(B+8)÷25 ª G„˜(B+(-F)+1)÷3
[6] H„30|(19×A)+B+(-D)+(-G)+15
[7] I„˜C÷4 ª K„4|C
[8] L„7|32+(2×E)+(2×I)+(-H)+(-K)
[9] M„˜(A+(11×H)+22×L)÷451
[10] N„H+L+(-7×M)+114
[11] O„˜N÷31 ª P„31|N
[12] R„(10000×YEAR)+1+P+100×O
[13] ©’ 23/07/1993 10:06:36 Z1STS3 ’EASTER
[14] ©’©Converted from 44 UTIL by Ray Cannon
[15] ©’:EASTER 3 Jan 1996 16:38 C:\WDYALOG\WS\UTILS\UTIL44
 ’

Knowing what a function's name is ought to help considerably in confirming one’s understanding

of the purpose of the function. A well chosen function name may even imply its valency and

whether it returns a result or not. Careful choice of words and appropriate naming conventions

should also apply to the names chosen for local and (particularly) global variables. For example,

in traditional text books on Vector Analysis, vectors are written in bold or underlined letters to

make them stand out, while in Einstein’s more general tensor notation, the rank of an array is

implied by the total number of subscripts and superscripts.

• Find the matrix-inverse of a random (non-singular) matrix and verify that it is indeed the

inverse using plus inner-product times.

 �?7 7½100
¯0.0013 ¯0.0024 0.0036 ¯0.013 0.015 0.014 ¯0.011
 0.011 0.0074 ¯0.0083 0.017 ¯0.019 ¯0.0059 ¯0.0014
 0.013 0.00039 0.0034 ¯0.011 ¯0.012 ¯0.0033 0.0081
 0.0047 0.0027 ¯0.015 0.0036 ¯0.0015 ¯0.0054 0.014
¯0.016 0.022 0.0041 0.024 0.0088 ¯0.0045 ¯0.028
 0.00094 ¯0.018 0.014 ¯0.018 0.011 0.0084 0.0013
¯0.011 ¯0.009 ¯0.00098 ¯0.0037 0.00043 0.0049 0.019

 A Practical Introduction to APL 1 & APL 2

 37

L E S S O N 10

Enclose & Vector Notation

Up until this lesson we have been learning APL 1. In the early 1980's, a number of APL vendors

almost simultaneously introduced a new concept into APL - the nested array. Each element of a

nested array can itself be any other (nested) array. A new monadic primitive function, called

enclose, was introduced that took any array as its argument and returned a scalar enclosed array.

This scalar (rank zero) array could then be inserted in any element of any APL array.

There were two inequivalent approaches; grounded arrays as proposed by Ken Iverson and

implemented by I.P.Sharp Associates (SHARP APL), and floating arrays proposed by Jim Brown

and implemented by Dyadic Systems (Dyalog APL), IBM (APL2) and STSC (APL*PLUS).

The essential difference between these two schemes is that in the grounded system, enclosing (<)

a simple scalar produces an enclosed scalar, whereas in the floating system, enclosing (›) a

simple scalar leaves it unchanged. We here follow the current mainstream floating array model of

IBM’s APL2 .

• Given the simple array

 A„3 3½¼9

enclose it.

 ›A
 1 2 3
 4 5 6
 7 8 9

Note that the display form is indented one character. Check the rank is that of a scalar.

• Now assign this scalar to the second row and second column position of A.

 A[2;2]„›A

• What is the shape of A now?

Data Structures. This opens up a whole new heterogeneous world!

• Execute the line below a few times and examine the structure of A each time.

 A[2;2]„›A

• Reshape (½) and rotate (²) a vector of vectors (a list of lists):

 VECVEC„'NOT' 'A' 'DRUM' 'WAS' 'HEARD'

Is VECVEC a vector of vectors?

 A Practical Introduction to APL 1 & APL 2

 38

Vector Notation.

Rule 3: A series of two or more adjacent expressions results in a vector whose elements are

the enclosed arrays resulting from each expression.

(This is fortified with an eight level hierarchy of binding strengths. Grounded arrays introduced

no new rules.)

Vector notation may be introduced as a generalisation of a simple numeric list because

 1 2 3

is the same as

 (1)(2)(3)

which is the same as

 (›1),(›2),(›3)

because enclosing a simple scalar leaves it as a simple scalar - unchanged.

• Use the supplied function DISPLAY (in workspace UTIL) to examine VECVEC, and A, and

also:

 (¼3)'ABCD'
 1 2 3 ABCD
 2 4½(¼3)'ABCD'(2 2½0)
 1 2 3 ABCD 0 0 1 2 3
 0 0
 ABCD 0 0 1 2 3 ABCD
 0 0

• Primitive scalar functions pervade nested arrays. Interpret the results of expressions:

 ˜.5 (2 3.7)
0 2 3
 (1(2 3))+(›4 5),›6,›7 8
5 6 8 10 11

• Many structural and selection primitive functions generalize naturally to nested arrays.

Explain the results of

 'DEB' 'NORMA' 'PAT'¼'DEB'
4 4 4
 'DEB' 'NORMA' 'PAT'¼›'DEB'
1
 'DEB'¹'DEB' 'NORMA' 'PAT' ª (›'DEB')¹'DEB' 'NORMA' 'PAT'
0 0 0
1

 A Practical Introduction to APL 1 & APL 2

 39

and give the dyadic epsilon function (¹) a suitable name, after having determined its part of

speech given the grammatical context. ☺

Some new APL 2 primitive functions, for example monadic disclose (œ), monadic first (†) and

dyadic match (−), apply to nested arrays to give well defined results. IBM APL2 (and second

generation SHARP APL) introduced complex numbers as an integral part of the language.

• Experiment with 0J1, which means √-1, and 4J3 which means (4+3i).

 ¯1*0.5
0J1
 4+3×0J1
4J3
 +4J3
4J¯3

• Check the result of the complex addition and multiplication.

 2.1J3.4 1.4J6.2 + 4J3
6.1J6.4 5.4J9.2
 2.1J3.4 1.4J6.2 × 4J3
¯1.8J19.9 ¯13J29

• Explain the result of µ¯1 by way of the most beautiful and astonishing identity in

mathematics:

1−=πi
e

 A Practical Introduction to APL 1 & APL 2

 40

L E S S O N 11

The Each Operator

Having introduced nested arrays, one immediately wishes to know how to apply primitive APL

functions to them. Some primitive functions, such as take and reverse, have an obvious

generalisation. The scalar functions are generalised to be pervasive which means that their action

applies at all levels of nesting.

In order to apply an arbitrary function to each element of a nested argument, a new monistic

operator is introduced in APL 2. The operator is called each (¨). It can take a monadic or dyadic

function operand and return, respectively, a monadic or dyadic derived function. This derived

function applies the operand separately to each element of a nested argument to return an element

of the final result.

This definition has deep consequences, not least to obviate looping solutions on nested structures.

• Define a nested vector

 DATA„(5 (2 4))(14 (5 7))(9 19)100

• Copy and use the DISPLAY function or varChar to see the structure.

 DISPLAY DATA
.…------------------------------------.
| .…--------. .…---------. .…---. |
	.…--.		.…--.		9 19	100		
	5	2 4			14	5 7		'~---'
	'~--'		'~--'					
'¹--------' '¹---------'								
'¹------------------------------------'

• Use monadic shape to show that DATA is a vector of vectors (and scalars).

 ½DATA
4
 ½¨DATA
 2 2 2

• Try using the dyadic reshape function on each element of DATA.

 3 ½ ¨ DATA
 5 2 4 5 14 5 7 14 9 19 9 100 100 100

• Why is the result the same as

 (4½3) ½¨ DATA
 5 2 4 5 14 5 7 14 9 19 9 100 100 100

 A Practical Introduction to APL 1 & APL 2

 41

• How many lines of code are there in all the functions in your workspace?

Hint: Consider the shape of each of ŒCR¨›[2]ŒNL 3

• Notice and understand the differences between

 ²DATA
100 9 19 14 5 7 5 2 4

and

 ²¨DATA
 2 4 5 5 7 14 19 9 100

and

 ²¨¨DATA
 5 4 2 14 7 5 9 19 100

• What will be the results of

 4 5 3 4†¨DATA

and

 1 2 1 1‡¨DATA

Hint: What is the shape of 1‡0 or 1‡'A' ? Ouch! Oooo! :-O

In APL, scalars are rank zero arrays and as such they fit very neatly into the whole APL data

scheme. Thus the shape of a numeric scalar is a vector of length zero, such as 0½0. The shape of

a vector (rank one) is a vector of length one, such as ,5 . The shape of a matrix (rank two) is a

vector of length two, such as 10 10 . The shape of a rank three array is a vector of length

three, such as 3 4 5. etc…

• Predict the result of, and simplify, expression

 2½(0½0)½0

• Investigate the results of

 3½¨(¼8)2(²¼6)
 1 2 3 2 2 2 6 5 4
 3œ¨(¼8)(¼7)(²¼6)
3 3 4
 2†¨,¨(2 2½5)(3 3½6)
 5 5 6 6
 ½¨¨¨›(2 3)(2 2½¼4)(›3½4)
 3

 A Practical Introduction to APL 1 & APL 2

 42

• Build nested data structures

 3 5½'a' 1 'abc' 1 2 3(1 2 3)
a 1 abc 1 2
3 1 2 3 a 1 abc
1 2 3 1 2 3 a
 2 3½'Briony' 25 'Kings Furlong' 'Karen' 27 'Winklebury'
 Briony 25 Kings Furlong
 Karen 27 Winklebury

• Experiment with the following monadic and dyadic derived functions. Feel the extra power.
☺

 ›¨

 ½¨

 ²¨

 –¨

• Show that the solutions to the sets of simultaneous equations

x + y = 3 and 2x + 3y + z = 3

x – y = 2 2x + y – z = 2

 x – y – z = 1

are given by

 (3 2)(3 2 1)�¨(2 2½1 1,1 ¯1)(3 3½2 3 1,2 1 ¯1,1 ¯1 ¯1)
 2.5 0.5 1.5 ¯0.25 0.75

 A Practical Introduction to APL 1 & APL 2

 43

L E S S O N 12

APL Idioms

There are very many idiomatic expressions in APL. There are, for example, hundreds of possible

derived functions produced from the inner product operator alone, some of which are idiomatic.

Many expressions are particularly useful and appear again and again in everyday code. Here is a

small opening selection from the very comprehensive list of Finnish APL Idioms which contains

over 700 entries of gradually more complicated expressions. (Alpha (¸) represents the left

argument and omega (¾) represents the right argument of the implied function.)

Rank of array ¾ .. ½½¾
First one (turn off all ones after first one) <\¾
Not first zero (turn on all zeroes after first zero) ˆ\¾
Alternating product .. ÷/¾
Any, anyone .. Ÿ/¾
Parity ... ¬/¾
All, both .. ^/¾
Ascending cardinal numbers (ranking, all different) ““¾
Grade up according to key ¸ “¸¼¾
Test if integer .. ¾=˜¾
All axes of array ¾ .. ¼½½¾
Sorting ¸ according to ¾ ... ¸[“¾]
Sorting ¾ into descending order ¾[”¾]
Index of (first) maximum element of ¾ ¾¼—/¾
Conversion from characters to numeric codes ŒAV¼¾
Maximum of ¾ with weights ¸ ¸—.×¾
Sum of squares of ¾ .. ¾+.*2
Test if ¾ is within range ¸[1] to ¸[2] ¾<.ˆ¸
Test if rows of ¾ contain elements differing from ¸ ¾Ÿ.¬¸
Joining pairs of ones .. ¾Ÿ¬\¾
Vector having as many ones as ¾ has rows Ÿ/0/¾
Test if ¾ and ¸ have elements in common Ÿ/¾¹¸
Resistance of parallel resistors ÷+/÷¾
Scan from end with function ¸ ²¸\²¾
Replace elements of ¾ not satisfying ¸ with blanks/zeroes ¸\¸/¾
Indices of ones in logical vector ¾ ¾/¼½¾
Number of columns in matrix ¾ ¯1†½¾

• Why might '� '[1+2|Z°.+Z„¼¾] be called “chessboard” when ¾ is 8?

• And why might '.*'[1+¾°.‰((¼Α)÷Α)×—/¾] be called “histogram”? Try it when Α is 50

and ¾ is ?¼99 .

• Why was ¾[“”(½¾)½0 1] called “the perfect shuffle” by the gurus at I.P.Sharp?

• Can you invent two other contenders for the FinnAPL list? Think specific and applicable.

Remember to consider the possibility of arguments of different ranks. Think general and

beautiful. Pay particular attention to the form of results from empty arguments - arguments

whose shape contains zeros. Use the APL primitive functions as exemplary atomic models

for user-defined utility functions. You are now well on your way to being a valuable APL

programmer.

 A Practical Introduction to APL 1 & APL 2

 44

L E S S O N 13

Building Tools

Good advice to the APLer is Build Tools.

Gather together, or build from scratch, a set of utility functions which are modelled on the APL

primitive functions. Let them do one specific job with argument arrays of any suitable rank and

type. Make sure they have no external impact apart from the results they return (e.g. no change

to global or system variables). These utilities, if well chosen, can form the basic capsules for each

and every new application which you write.

The utility below right justifies a numeric or character vector.

 ’ VEC„RJUST VEC
[1] VEC„(-+/^\²VEC=1†0½VEC)²VEC
 ’

• Write a function LJUST which left justifies all the rows in a matrix.

Hint: Do this in two distinct steps.

• Write a function which trims the leading (and trailing) spaces from a character vector. This

function is very useful. What might you consider when choosing an appropriate function

name?

• Write a function UCASE which efficiently converts nested character arrays to upper case

letters.

• Write a function, AFTER, which returns a boolean scalar signifying whether or not the left

argument (date) is temporaneously after the right argument (date). :)

• Write scalar dyadic functions, LCM and HCF, which return the lowest common multiple - the

smallest number which is exactly divisible by each of two numbers - and the highest common

factor (or greatest common divisor) - the largest number which divides each exactly.

• When writing an APL function, which of the following suggestions should you adopt?

1) Choose meaningful names in the application context, not single letters.

2) Make functions as short as possible – less than 15 lines long and less than 60 characters per

line.

3) Make programs as fast as possible to run rather than as easy as possible to read.

4) If you can’t avoid global variables, use distinct names; for example, ÇÁÝÁ rather than DATA.

5) Use line labels like Step2: rather than L2: and never branch to absolute line numbers.

6) Don’t put more than one assignment arrow in a statement and avoid loops.

7) Explain the arguments, purpose and result of all functions in a comment at the beginning.

8) APL standards are a matter of individual taste and style and should not be imposed.

• Discuss the APL programming standards which you intend to follow.

 A Practical Introduction to APL 1 & APL 2

 45

L E S S O N 14

Investigating Supplied Workspaces

Every APL interpreter comes with a treasure trove of supplied workspaces. Some are collections

of utilities, some are small example applications and some are full-blown applications.

• Enter the system command (possibly followed a library name or number)

)LIB

to see the list of workspaces available in your own library, or in a public library.

Warning: Before loading any new workspace,)SAVE your work.

• Find a workspace which sounds interesting and type)LOAD followed by the name of the

workspace (possibly preceded by a library number or directory path).

When you load a workspace the contents of the system variable ŒLX is executed. Thus loading a

workspace may start a whole application.

• If you have started an application, hit the interrupt key (perhaps a second or third time -

sometimes also hit the enter key a couple of times!) to break the execution. (PCs are

somewhat more predictable than mainframes in this regard.) When the program has stopped,

type

)VARS

)FNS

)SI

The State Indicator resulting from the)SI command when a function is suspended shows the

calling structure and the line on which execution halted.

• Use your editor to open the function at the top of the stack, and identify the line on which

execution is suspended.

• A line is restartable if it can be run again and again without changing the outcome. Look

carefully at the suspended line to determine if the line is restartable. If so, type

 …ŒLC

otherwise try to restart from an earlier (…ŒLC-1) or later (…ŒLC+1) line or load another

workspace.

Finally, to exit APL, type

)OFF

 A Practical Introduction to APL 1 & APL 2

 46

L E S S O N 15

The Evolution of APL

This is an exciting time for APL. APL might seem old - it started to emerge in Iverson's

postgraduate thesis on machine solutions to linear differential equations at Harvard in 1956 – but

it is only in the last two decades that APL has made close contact with the world of traditional

computing. In the 1980's, APL.68000 and APL*PLUS were early, somewhat solitary, inhabitants

of microprocessors. Prior to that, APL was mainframe-specific and very idiosyncratic.

APL 1. APL was first implemented using FORTRAN on an IBM 7090 in 1964. Before this

crucial advance the notation was used for teaching and for formal descriptions only. The first

timeshare version was implemented in 1965 and made generally available from 1968 on IBM

System/360. From 1969 I.P.Sharp offered a commercial APL timesharing service which

extended to Europe in 1973. In 1973 IBM announced APLSV which had shared variable support.

APL 2. Second generation IBM APL2 appeared in 1982 based on the 1971 doctoral thesis of

J.A.Brown at Syracuse University. In 1981, when Ken Iverson left IBM and joined I.P.Sharp

Associates, I.P.Sharp released a more rigorous, but incompatible, implementation of SHARP

APL for handling arrays of arrays. In 1981 the I.P.Sharp network expanded to the Far East. In

mid 80’s STSC and Dyadic Systems released second generation APLs compatible with IBM

APL2. Another significant development for APL throughout the 80’s was the mass move from

mainframe to micro. STSC APL*PLUS/PC under DOS on the IBM (compatible) PC proved a

particularly popular combination.

APL 3. In the 90's APL and the Microsoft Windows operating system became friends. Windows

3.0 released in 1990 opened up the world of the Graphical User Interface (GUI) to Dyalog

APL/W, APL*PLUS II, APL.68000 Level II, J and other dialects of APL. Another related

technology of the 1990’s which has been exploited extensively by Dyalog APL/W is Object

Linking and Embedding (OLE). These two interfaces offered by Microsoft (GUI and OLE) have

given APL a clear route by which to communicate with the Windows operating system and hence

with other PC applications.

APL 4. The new century has placed computing on a distributed Internet platform where APL can

compete directly with other popular computer languages. This new superhighway has a well-

defined and accessible set of communication protocols and information formats (TCP/IP, HTTP,

XML…). When writing and running APL programs on the Internet is as easy as writing and

running them in an ordinary APL session then the full power of APL will at last become visible,

not just to experienced APL programmers and those large corporations who have the bespoke

APL applications, but to everyone with a need to powerfully manipulate information. The special

APL character set has been an obstacle to APL accessibility and acceptability. This particular

obstacle will be completely removed by the full introduction of UNICODE fonts. Further,

Microsoft Vista purports to replace entirely the Windows Application Programming Interface

(API) with the new .NET Framework which Dyalog APL/W Version 10 can already utilize in XP.

APL thinking could turn the Internet from a closed driven system like Microsoft Word, Excel or

IE6 into an open programming environment like immediate execution mode - from the current

incredible Internet HTML slide show to a vast knowledge engineering base in which world-wide

information is distilled and understood.

 A Practical Introduction to APL 1 & APL 2

 47

One of many examples of the powerful inroads that APL is making onto the new information

superhighway is found in an article by Jonathan Barman in the journal of the British APL

Association. This article describes a utility function which translates an arbitrary APL array into

an XML character string. XML (as well as UNICODE no doubt) has been called "the ASCII of

the future".

 XML „ Encode Array

See: J.Barman in Vector Vol 17.4, April 2001, page 48.

• Begin work on a simple application of APL in a topic in your own discipline.

• Go and solve real problems…

• Consider attending further courses on different aspects of APL, such as:

A Practical Introduction to

APL 3&4

with Dyalog APL

 Day 1: Third Generation – APL 3 – GUI & OLE

 Using GUI Objects (ŒWC)

 Object Properties & Methods

 Object Events & Callback Functions (ŒDQ)

 Looking inside the APL Session (ŒSE)

 Understanding Dot Syntax

 Arrays of Namespaces

 Getting into Word & Excel from APL (OLE)

 Writing In-Process OLE Servers (.DLL)

 Writing ActiveX Controls (.OCX)

 How to Access Functions in .DLLs (ŒNA)

 Control Structures

 Making Runtime .EXEs

 Day 2: Fourth Generation – APL 4 – TCP/IP & .NET

 Dynamic Functions & Operators

 Introduction to MultiThreading

 Aspects of Pocket APL

 Understanding TCP/IP Sockets

 Browsing the Internet from APL

 Hosting an APL Web Server

 Introduction to Dyalog .NET

 Writing .NET Classes

 Writing Web Services

 Writing ASP.NET Web Pages

 Writing Dyalog APL Classes

 A Practical Introduction to APL 1 & APL 2

 48

F U R T H E R R E S E A R C H

This 2-day course is just an introduction to the big, wide world of APL programming. For current

information on APL you should subscribe to Vector magazine (the Journal of the British APL

Association), and visit the Vector web site at

http://www.vector.org.uk/

Or subscribe to APL Quote Quad and visit the American special interest group web site at

http://www.acm.org/sigapl/

Many other APL organizations and links may be found in, for example,

http://www.acm.org/sigs/sigapl/orgs.htm

or

http://www.rexswain.com/aplinfo.html

or

http://www.chilton.com/~jimw/others.html

or

http://www.lescasse.com/TSPX5.asp

For an example of a modern successful APL application, see

http://www.grapl.com/

There is also a steady stream of miscellaneous opinions, questions and answers about APL in the

open Google comp.lang.apl group to be found at

http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&group=comp.lang.apl

* * * * *

 A Practical Introduction to APL 1 & APL 2

 49

F E E D B A C K F O R M

 Date _____________________ Instructor _____________________

 Name _____________________ Course Name _____________________

 eMail _____________________ Location _____________________

 Please indicate your view of the following:

poor 1 2 3 4 5 excellent

 Location & Facilities

 Course Content

 Course Material

 Instructor’s Knowledge

 How useful was the course to your role?

 Could any improvements be made to the course?

 Comments

Give this form to your tutor, or send to ROBERTSON (Publishing).

 A Practical Introduction to APL 1 & APL 2

 50

 A Practical Introduction to APL 1 & APL 2

 51

E X E R C I S E 1

1. Write an expression that will surround a character matrix, MAT, with quad characters (Œ).

2. Convert the result of ŒTS into a date of the form dd/mm/yyyy.

3. Write an expression that returns the volume, V, of a sphere of radius R, given that V = (4/3) π R3
. Does your expression

hold for a set of spheres of radii Ri?

4. Reversibly, encode a character matrix into numeric form.

5. Write a function that converts a character string to upper case.

6. Write a function that takes a numeric matrix and returns a vector of column averages.

7. Write a function that removes the leading and trailing spaces from a character string.

8. Write a function that replaces multiple spaces in a character string with a single space.

9. Write a function that creates a matrix from a character string in which an embedded carriage return character (ŒAV[4]) is

used to identify the end of a line.

10. Write a function that creates a matrix from a character string in which embedded carriage return and linefeed characters

(ŒAV[4 3]) are used together to identify the end of a line.

11. Write expressions to reproduce the results of signum (monadic ×), and residue (monadic |).

12. Write an expression to find the value of a polynomial of degree (½C) with C+1 arbitrary coefficients.

13. Find the coordinates of the centre of gravity (RCofG) of a system of 10 particles given a 10 element vector of masses (Mi),

a 10 by 3 matrix of positions (Ri) and the formula

 ∑ Mi×Ri

RCofG = ─────── . ∑ Mi

14. Solve the system of linear equations for x, y and z

3x – 2y + 4z = 1

5x + 2y - z = 2

x - 4y - z = 3

using matrix division (L).

15. Find an expression for the sum of the diagonal elements (the trace) of a numeric matrix.

16. In what sense is APL a computer language that has been 200 years in the debugging?

 A Practical Introduction to APL 1 & APL 2

 52

E X E R C I S E 2

1. What is the full path name and size in bytes of your Dyalog APL interpreter executable? What is the version number and

build ID of this interpreter?

2. What is meant by scalar extension? What is the rank of a scalar? Are these concepts to be found in traditional

mathematics?

3. Find by experiment the size of an empty workspace (.DWS file).

Hint: Use)SAVE.

4. Give one good reason why system commands begin with a right parenthesis. Is there any good reason why system

variables and system functions all begin with a quad symbol?

5. Find by experiment the size of an empty APL component file (.DCF file).

Hint: Use ŒFCREATE.

6. Write a function that takes the full path name of a file and returns just the file name alone.

7. Write a function to surround a full path file name with double quotes (") in the event that this name contains spaces. (This

is sometimes necessary, eg in ŒCMD'dir "C:\program files"'.)

8. How would you identify the current user from inside an APL program? Investigate the purpose of

[Options][Configure][Network][Network ID] by finding a reference to APLNID in the User Guide C:\Program

Files\Dyalog\Dyalog APL 11.0\manuals\Dyalog APL Windows User Guide.v11.0.pdf and in the Registry under section

HKEY_CURRENT_USER\Software\Dyalog\Dyalog APL/W 11.0.

Hint: [Start][Run] REGEDIT.

9. Explore the meaning of the MAXWS parameter. Examine in Notepad the contents of the file to which the APLK

parameter refers – keep this file open for the next question (10.).
Hint: Find the keyboard file name in the registry or in [Options][Configure][Keyboard].

10. Load the UTIL workspace and run the niladic function KEYPRESS. Press any key on the keyboard and relate the

description of your KeyPress Event to the corresponding entry in your keyboard file.

11. Use the Workspace Explorer (via [Tools][Explorer] or the corresponding toolbar button) to investigate some of the

elementary functions such as CENTRE and MAKEMAT in the UTIL workspace.

12. Write a monadic function that returns 1 if the character string in its argument is a valid name of a function in the current

workspace, and 0 otherwise.

13. Interpret the operator sequence on line 6 of the function SETMON in the UTIL workspace, viz (0°,)°¼°œ°½°ŒCR¨.

14. Put zilde («) in the first component of an APL component file and put a depth 6 nested array in component 2. Untie the

file and look at the structure of its contents using varChar (char.exe).

15. Write a recursive function to calculate the determinant of a matrix.

16. Write an operator which takes a scalar Boolean left operand and a monadic function right operand and applies the

function to the argument of the derived function iff the left operand is ‘true’ (ie 1).

 A Practical Introduction to APL 1 & APL 2

 53

E X E R C I S E 3

1. What are the major APL applications currently in everyday use within your company?

2. Briefly describe the purpose and function of each. Ask someone if you are not sure.

3. For each of these applications, in which directory in your company’s file system is each of the current production, test

and development APL programs to be found? Consult the experts if in doubt.

4. In which directory is the corresponding system (read/write) data to be found?

 Ask: remember half of an APL programmer’s job is to eke out of somebody exactly what’s to be coded.

5. Create a 3D array of character vectors containing the above directory names. The items of the first dimension are APL

application names, the 3 items of the second dimension are promotion levels production, test and development, and the 2

items of the third dimension are application elements program and data. What use might be made of this nested array? Can

you think of possible 4
th

 and 5
th

 dimensions?

6. List all the files associated with the test version of one of your company’s principle Dyalog APL systems and briefly

explain the rôle or significance of each file. Use varChar to explore the contents of component (or native) files. Use your

Dyalog APL development environment to discover where in the workspace each of these files is referenced.

7. Describe the process by which an APL workspace is promoted from development to test, and from test to production,

within your company. How would you number and classify the various versions of a large critical APL application as it

grows and evolves over days, months and years?

8. How might you ensure that an APL application is thoroughly tested? What information should you save in the event of a

program failure? How is it possible to retrieve unsaved information and clues as to the cause after a Dyalog APL

interpreter crash?

9. Describe how you might organise and administer programming tasks in the circumstance that an APL system is being

developed contemporaneously by a number of APL programmers. Consider, for example, workspace organisation,

function edit locking, programming style, task specification packaging, test and sign off procedures and data sharing

“dimensions”. Itemise any other “dimensions” that you deem worthy of consideration when managing a large APL team

project.

10. Select one particular APL application of special interest and trace through the code at a more or less superficial level.

Draw a simple diagram containing various significant program strands discovered in the code structure. Identify in the

diagram points at which input and output screens are created, and places where alternative routes through the code may be

freely chosen or predetermined.

 A Practical Introduction to APL 1 & APL 2

 54

E X E R C I S E 4

1. Write a looping function that encapsulates the Babylonian method of finding the square root of a real number, given that

the Babylonian method is:

1. Make a guess

2. Divide the original number by the guess

3. Find the average of these two numbers

4. Use the average as the next best guess.

2. Convert your looping function into a recursive function.

3. Use APL to find all the prime numbers less than 10 thousand by way of the sieve of Eratosthanes:

1. Take all the integers from 2 to 10,000

2. Pick out the first integer in the list

3. Remove all multiples of this number from the list

4. Repeat 2 and 3 until the list is empty.

Compare your solution with that in the supplied dfns.dws workspace.

4. Find from the Taylor series

...)(
!

)(
..)(

!3

)(
)(

!2

)(
)(

!1

)(
)()(

3

33

2

22

+
−

++
−

+
−

+
−

+= a
dx

fd

n

ax
a

dx

fdax
a

dx

fdax
a

dx

dfax
afxf

n

nn

an approximate expression for the derivative of a function at a in the event that second and higher derivatives may be

ignored at point a. Write an APL operator whose derived function is the approximate derivative of the operand.

5. If f(x)=0, and a is a good first guess at the value of x when f(x)=0, then find, from the approximation above, a better

second guess, b, for the value of x. Write a function that repeats this procedure a number of times (Newton-Raphson

iteration) in order to get a more and more precise estimate of x when f(x)=0.

6. Find by experiment the approximate length of the longest possible variable name in Dyalog APL.

Hint: Use execute (–) and ŒWA.

7. Interpret Conway’s game of life as

 †1 BMatŸ.^3 4=+/,¯1 0 1°.´¯1 0 1°.²›BMat

and hence use ÿ to play

 life life life 5 8½40†0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1

 A Practical Introduction to APL 1 & APL 2

 55

E X E R C I S E 5

1. Write a function that takes an integer argument w, and returns a vector x of w equally spaced (dx) numbers between 5 and

5.

Big hint: x„((-w+1)+¼1+2×w)÷w÷5 ª dx„x[2]-x[1]

2. The Gaussian function

2

2

2

1
)(

x

ex
−

=
π

ρ

maps values x ∈ ℝ into the interval 0 < ρ(x) ≤ (2π)
-½

. ρ(x) may be interpreted in terms of the probability of obtaining x∈

X, given that X is a random variable that is normally distributed with mean value 0, standard deviation 1 and total

probability 1. Translate this function into APL and verify that

1
2

1
2

5

5

2

≈
−

−
∫ dxe

x

π
.

Hint: +/dx×(÷(±2)*0.5)×*-(x*2)÷2

3. Write an operator E which takes an operand of a probability distribution ρ(x) and a vector argument x, and returns the

expectation of x under this distribution, given that mathematically

dxxxxE)()(∫
∞

∞−

= ρ .

Note that the vector x should be sorted before dx can be calculated.

Consider: +/dx×x×(÷(±2)*0.5)×*-(x*2)÷2

4. Write an operator Var which returns the variance of a vector of numbers, given that mathematically

)))((()(2xExExVar −= .

Consider: E(¾-¨E ¾)°.×(¾-¨E ¾)

5. The APL primitive monadic function roll (?) takes an argument of any positive integer array, X, and returns a result that

contains integers, pseudo-randomly selected from the sets of integers ¼¨X with each integer in each population having an

equal (uniform) chance of being selected.

Write a monadic function called U that takes a positive integer vector argument (corresponding to the shape of some

numeric array) and returns a vector containing half the number of elements in the original numeric array composed of a

uniform distribution of numbers between 0 and 1.

Big hint: U„{(?(—(×/¾)÷2)½¯1+2*31)÷¯1+2*31}

6. In 1958, Box and Müller published an algorithm for transforming a uniform distribution of random numbers into a normal

distribution of random numbers by inverting the Gaussian function continued into ℂ :
22

121)ln(2
iy

eyixx
π−=+ .

This takes 2 real numbers y1 and y2 from independent uniform distributions and yields 2 numbers x1 and x2 from independent

normal distributions.

Write a monadic function called N which takes a positive integer argument and returns that many numbers normally

distributed around 0.

Big hint: N„{¾½†(›(¯2×µU ¾)*0.5)×¨1 2±¨›±2×U ¾}

 A Practical Introduction to APL 1 & APL 2

 56

 Certificate of A chievem ent

This is to certify that

has successfully com pleted the introduction to
=

APL 1 & APL 2

=

on
 __

====Signed = __

Instructor

Produced by ROBERTSON (Publishing), 15 Little Basing, Old Basing, Basingstoke, RG24 8AX, UK.

