Adonthell

Engine Architecture

Kai Sterker

27.10.2004

ADONTHELL
ENGINE ARCHITECTURE

This document is part of the Adonthell Developer’s documentation
http://adonthell.linuxgames.com

0 2004 Kai Sterker & The Adonthell Team
adonthell-project@linuxgames.com

Created with BTEX2¢

http://adonthell.linuxgames.com

Contents

1

Introduction

1.1 Abstract
1.2 Obtaining and Distributing L.
Overview

2.1 Design Principles e
2.2 Architecture
2.3 Pythononboard
Main Module

3.1 Using the Engine from C+4.
3.2 Using the Engine from Python
3.3 Engine Startup Lo

Base Module

4.1 Machine-Independenceo Lo
4.2 Data Persistance
4.3 Configuration Files oo
4.4 Game Directories

Python Module

51 Pythonto CH+. o
52 CH+toPython.o
Event Module

6.1 Event Handling
6.2 Time Events e
Map module

7.1 Mapsand Views
Rpg Module

81 Questsand Logs
8.2 Items and Inventories e

8.3 Characters and Equipment

NN

(OIS EEN B | DWW

© © ©

10

12
12
12

12
12
12

12
12

13
13
13
14

1 Introduction

1.1 Abstract

This document is a supplement to the Adonthell API documentation. It is intented for new
programmers and everyone else interested into the general concepts and design of the Adon-
thell game engine.

It is not meant to be a complete reference, but it should give the reader a good overview
of the codebase and ideas behind various implementation details. It won’t explain the code
itself; that’s what the API docs are meant for, but it might help to understand why certain
things are the way they are.

In brief, this document attempts to provide a guided tour through select parts of Adon-
thell’s source code, grouped by the different modules the engine is composed of. No more, no
less.

1.2 Obtaining and Distributing

The Adonthell Architecture Documentation can be redistributed freely. The most recent
version can be obtained from the Adonthell website!. The ITEX sources are available via
anonymous CVS. To retrieve them, issue the following commands:

export CVS_RSH=ssh
cvs -z3 -d:ext:anoncvs@savannah.gnu.org:/cvsroot/adonthell co -P doc

The first time you do this, you will be prompted by SSH to authenticate the server’s key
fingerprint. Answer with ’yes’. To update your copy of the code, run

cvs -z3 -update -dP

within the documentation directory from time to time.

Yhttp: //adonthell.linuxgames.com /download /documentation.shtml

http://adonthell.linuxgames.com/download/documentation.shtml

2 Overview

Before describing the different parts and layers of the engine in detail, lets have a look at the
big picture.

2.1 Design Principles

As Adonthell’s development progressed, a few fundamental design decisions have been made.
These principles have to be taken into account, whenever a part of the engine is updated or
new parts are added. So please read on carefully before you start coding; it may save you
much trouble.

1. Code and data have to be strictly separated

This is probably the most important rule of all. The engine is not intended for a single
RPG, but should instead be able to drive multiple games. For that reason, the code
must not contain any game data. Only functionality needed for a RPG may be provided
by the engine, not the games themselves.

2. The engine should be as flexible as possible

Creators of games should have the most possible freedom in designing their game. That
is, the engine shall help people making their own RPGs without limiting their creativity.
The game should control the engine, not the other way round. That means that the
engine is no interpreter of game data, but rather a library the game may use for common
and repetitive tasks.

3. The engine should be easily extendable

To allow people to make quite different types of games, with different rules, different
items, different Al or just a different user interface, the engine needs to be customisable.
Therefore, not only game data, but also most of the game mechanics have to be separated
from the core engine.

4. The engine should be portable

Adonthell shall run on as many different operating systems and hardware architectures
as possible. Right now the engine supports BeOS, BSD, Linux, Mac OS X, Solaris and
Windows on hardware such as arm, alpha, ia64, ppc, sparc, x86 and possibly others.
This has to be taken into account when writing code or utilising third-party libraries.

Game data
Game extensions

Engine core

Hardware / Operating System

Figure 1: Adonthell engine and surrounding layers

2 Overview

When considering all these four points, we can draw a rough picture of the engine and
its surrounding layers: the engine core is the only component that has direct access to the
operating system and underlying hardware. It is written in C++ and provides common
functionalities. Game specific extensions — written in Python — make use of the interface
provided by the engine core to implement functionality specific to a game. Avoiding direct
access to the OS ensures that games will run on all platforms supported by the Adonthell
engine.

Both game engine and game extensions may access game data: maps, graphics, dialogues
and so on.

2.2 Architecture

The engine core isn’t a monolithic bloc, but split into a number of modules, each with its own
namespace and each compiled into its own library. For each engine module, a corresponding
extension module exists to allow access from Python.

e
< —_
3 g =3 - 8 S 3
2|8 |3|8|8|5|g|8|¢2
<backend>
base

Figure 2: Adonthell engine architecture

e Base

The base module contains low level functionality used by most, if not all, the other
modules. This includes I/O routines, i18n support, configuration file handling, a timer
and more.

e Backend

A number of modules are accompanied by a backend library, providing the glue between
the engine core and third-party code responsible for capturing input and handling audio
and video output. Currently, SDL is the only backend supported, but support for other
libraries may be added at need.

This backend mechanism serves two purposes: first, it should allow to use different,
more suitable backends — like QT or GTK+ — for our editors while still having full
access to the functionality provided by the engine. Second, it limits the dependency
upon a single media library. Should SDL 1.2 become obsolete, a port to a different
backend would be fairly simple.

e Main

The main module provides the entry point for applications using the Adonthell engine,
both Python scripts or C+4 programs. It takes care of initializing other modules
as requested, parses commandline arguments and a generic configuration file. It then
passes control to a user supplied callback (Python) respectively main method (C++).

Architecture

e Python

The python module provides the C++ < —— > Python bindings. For one, it is a
thin wrapper around the Python C API, allowing access to python scripts, classes and
methods from within the engine. At the same time, it provides the functionality for
accessing C++ objects from within Python scripts.

o Gfx

The gfx module provides graphic primitives, like surfaces to draw on and image load-
ing/saving abilities. Any video output is routed through this module, meaning all other
parts of the library that render something on the screen have no dependencies to the
underlying graphic library.

e Input

The input module keeps track of keyboard, mouse and gamepad input. It also provides
a configurable, virtual control device. As with gfx, all user interaction with the engine
is routed through this module.

e Audio

The audio module allows playback of sound effects and background music and provides
other sound related functionality to parts of the engine that need them. Primary audio
format is Ogg Vorbis.

¢ Event

A great deal of gameplay is accomplished through Python methods triggered by various
events the engine generates. The event module provides the core event system based on
a publish/subscribe mechanism. It also implements a date class to keep track of time
in the game world and time events based upon that class.

e Rpg

The rpg module provides core functionality required by every RPG: characters, quests,
items, inventories and so forth. However, it does not contain complete implementations

where this would limit flexibility, only interfaces. Those have to be extended by Python

scripts in order to implement the rules of a specific game?.

o Gui

The gui module provides a themeable widget library, suitable for modelling an unob-
trusive game interface. It supports true type fonts through Freetype 2.

e Map

Low and high level classes for displaying the state of the gameworld to users.

2More on this topic can be found in the Adonthell Scripting Guide

2 Overview

2.3 Python on board

Python is an easy to learn, interpreted, object oriented programming language — and as such
the perfect means to accomplish some of the design principles mentioned earlier.

Adonthell’s integration with Python works in two ways. In one direction, Adonthell acts
as a Python interpreter. Therefore, it can delegate parts of the work to user-supplied scripts,
allowing for more flexibility. This can be compared to a plug-in mechanism. In the other
direction, all of Adonthell’s modules can be accessed from within Python scripts. If a C++
class bar exists in namespace foo, a Python script can import it and manipulate it as if it was
accessed from C++ code. That way, objects created in Python scripts can be passed to C++
methods or vice versa, with practically now limitations.

This is accomplished by SWIG, which provides the neccessary glue between C++ and
Python. Given a C++4 class, SWIG will generate a Python module with the same inter-
face. Internally, all calls to methods of the Python object are routed to the underlying C++
implementation. The gory details of wrapping and unwrapping C++ objects in order to
pass them from C++ to Python and back are covered by SWIG. The pass_instance and
retrieve_instance template functions supplied by our python module further simplify this
task. They are described in the API.

As a result, the engine can be seen as a library providing bits and pieces of RPG related
functionality that can be used to write the actual game in Python. The benefit of that
concept is that quite different games can be created without having to touch the underlying
engine. One day, a community might form around the engine, providing players with mods
and completely new games.

3 Main Module

Although the various Adonthell modules can be used from custom programs without utilizing
the main module, this is highly discouraged. Not only provides the main module convenient
initialization methods, it also contains code to prepare the environment for modules like gfx
and input on different operating systems.

3.1 Using the Engine from C++

The main module provides a main function (hence the name), so your program will not need
one when linking to the main module. Instead, it must provide a special class serving as entry
point to your code once the startup process is complete. It should look as follows:

#include "main/adonthell.h"

class AdonthellApp : public adonthell::app

{
// your application entry point
int main ()
{
init_modules (GFX | ...);
}
} theApp;

It must extend adonthell::app and implement the pure virtual method int main().
This is the method called after basic engine initialization. Exactly one instance of that class,
called theApp must be provided, so that the main module can find it. adonthell: :app gives
you access to commandline arguments and further initialization methods, described in more
detail in the API.

3.2 Using the Engine from Python

The main module provides roughly the same functionality when being used from within a
python script, althuogh a few more lines of code are required:

from adonthell import main

class App (main.AdonthellApp):

def __init__ (self):
main.AdonthellApp.__init__ (self)
—-- your application entry point
def main (self):
self.init_modules (self.GFX | ...)
if name__ == ’__main__"’:

theApp = App O
theApp.init (theApp.main)

3 Main Module

The first difference to the C++ code is that we extend the class AdonthellApp, which
is only available in the main module on Python side. It is in turn derived from the afore-
mentioned class adonthell: :app, so the methods it provides are available to Python too.
The second difference is the call to theApp.init, which makes the applications entry point
known to AdonthellApp. It also triggers the startup procedure described below, which will
finally call the user supplied method. Note that code placed after theApp.init, will not be
executed until the engine quits — if it is executed at all! You have been warned ...

3.3

Engine Startup

After having seen how the main module can be used, lets see what happens when using it.

1.

Parse command line parameters

As some parameters override defaults or supply otherwise important information, they
are read first. The backend used or the configuration file loaded can be influenced that
way.

Initialize base module

Amongst other things, the path to the configuration directory — required for the next
step — will be set up. Other game related paths will be initialized too.

Read configuration file

Unless given on the command line, the backend to use is read from the configuration
file adonthell.zml. A different config file can be chosen via the command line.
Perform platform specifc initialization

The main module’s backend is loaded. If none was given via command line or config-
uration file, sdl is used as the fallback. Once loaded, it performs the operating system
dependent initialization.

. Call user-supplied main method

If all went well so far, the user supplied main method is executed. It should call the
init_modules method to further initialize those parts of the engine it requires. Once
the main method returns, the engine does some cleanup and finally exits.

4 Base Module

The most basic code is contained in this module, which means that you will definitely need
to use it when writing code for Adonthell. As seen before, all the other modules depend on
base.

4.1 Machine-Independence

One goal of the Adonthell engine is portability, and a number of services to aid this goal are
implemented in the base module:

¢ Primitive data types

All primitive integer types are redefined by the base module. Using them instead of the
data types provided by the underlying C library ensures that a short will always be 16
bit and integers 32 bit, regardless of the hardware architecture and operating system.

Note that this is not implemented yet, but by sticking to the types defined in base, it
can be added easily. For example, the configure script could define types apporpriately
at compile time.

¢ Endianness

The same data files should be usable on both little and big endian hardware. Also,
save games should be endian independent and both system types should be able to
exchange data over a network. That means that there must be a way to convert data
from little to big endianness and back. This is done through macros defined in the base
module. Make sure to use them whenever data is read or written. The I/O methods
described later are already endian independent — sticking to them where possible will
avoid problems too. Btw., data is always stored in little endian format and converted
at need.

¢ Game speed

Since computers tend to get faster and faster, it is important to make the engine inde-
pendent from CPU speed. The base module allows to specify the duration of a single
game cycle. When calling base: :Timer.update after each cycle, the engine ensures
that each cycle consumes exactly that timespan. That way, games will run at constant
speed, given a fast enough CPU.

There’s also limited support for slower CPUs. If computation of a cycle takes longer
than allowed, the engine could react by skipping frames or by disabling costly, but
otherwise unneccessary graphic or sound effects.

4.2 Data Persistance

The engine needs to be able to save the state of the gameworld and restore it at a later date.
For that purpose, most objects must be serialized and written to disk. Since objects will
change as development progresses, a mechanism is required to keep serialized data at least
partially compatible with newer versions of the engine.

This can be achieved by storing each variable with an id and type information. That way,
an old engine can skip over new fields in the serialized data or provide defaults for missing

10

4 Base Module

fields if possible. Even if an object can’t restore its state from such a data file, it will at least
notice that fields are missing and can abort loading in a safe way.

Internally, an id, size, type and of course the value of a variable are written to a byte
stream that can be later saved or transfered over the network. Multiple variables can be
grouped together in a block to avoid confusing variables with the same id. It is therefore
recommended to put the contents of each object into a seperate block.

Blocks are also useful for storing array data with empty ids, thus saving space and time.
These array elements can be easily restored by iterating over the contensts of their block.

0 n 1 1 4 0 size bytes

id \O size vaue

. type | variable

Figure 3: Variable Bytestream Format

The figure above shows the bytestream format of a single variable. Multiple variables are
concatenated without delimiter. Blocks are treated like variables, with their own type code
and contents stored in the value area.

A checksum can be calculated for the whole stream, so data corruption can be detected,
although no error correction is possible.

As mentioned above, the bytestream is kept in memory. To save it to disk, a wrapper
around zlib is provided by the base class that can be used to write it into a compressed file.
That reduces the overhead somewhat and keeps file size small. This zlib wrapper can also
be used independently from the serialization, to write primitive types or blocks of memory
to compressed files. This should be avoided, however, as no compatibility is guaranteed that
way.

4.3 Configuration Files

The base module provides a way to store configuration parameters in an XML file. The for-
mat of the file is very simple. The first level consists of sections, each of which can contain
options with a value each. To retrieve a certain parameter, the name of the section and option
it is kept in needs to be known by interested modules. A default value can be passed — if an
option does not exist it is created with that default value. That way, the engine can start
without configuration as long as it can provide a sensible default value for each parameter.

As discussed before, a default configuration is read during engine startup. It is automat-
ically written back to disk when the engine quits.

With respect to a graphical configuration system, different option types are defined. One
of them allows any type of value, others are limited to boolean values or a integer range. A
last type allows only selection from a predefined list of values. The parameter type isn’t stored

Game Directories

11

in the configuration file, but must be explicitly set by the module requesting the parameter.
That way, the configuration is kept free of metadata and easily editable by hand.

4.4 Game Directories

Usually, there will be one directory for static gamedata shared by all users and a data direc-
tory in the users SHOME, where saved games and configurations reside. That way, the engine
can be installed by a priviledged user and later be used by everyone else. When developing
a new game, one might not want to install newly created game data, so a user defined data
directory exists as well.

To ease the handling of data files, the base module provides a search strategy that operates
on those three directories (which will differ for different games, of course). The method
path: :open tries to locate a file in one of the directories in the following order:

1. Saved Game directory (if specified)
2. User supplied data directory (if specified)

3. Game specific data directory

The first matching file is opened. Data files should always be opened this way instead of
requiring them to sit in a fixed location. Later on, this mechanism might be expanded by
addon or patch directories that will be added to the search path above.

5 Python Module

5.1 Python to C++
5.2 C++ to Python

6 Event Module

6.1 Event Handling
6.2 Time Events

7 Map module

7.1 Maps and Views

One prominent component of the engine is the renderer. It produces the graphical represen-
tation of a scene, and that about 40 times per second. (A new scene — or internal engine state
— is computed about 75 times per second, btw.)

More important than those numbers or the fact that drawing and update operations are
disjunct is the implementation. As the heading suggests, a model-view-architecture is used.

Map

View Py

Figure 4: Architecture of the renderer

The part of the map being displayed is determined by so-called mapviews. A mapview
can be of any size and can direct output to any surface. Multiple mapviews can be active at
the same time, although at present they can’t show different maps, just different areas of the
same map.

The question that remains is how a mapview knows what part of a map to display. For
that purpose, each mapview may have a schedule script assigned, which is executed before
rendering takes place. The script in turn can use the methods provided by the mapview class
for all kinds of effects. Usually, it will want to center the view on a certain character, but it
is not limited to this.

8 Rpg Module

8.1 Quests and Logs
8.2 Items and Inventories

In this section, we will explore how items are modelled and kept. The main goal was to allow
for all kinds of items, with many different abilities. Creation of new items should be fast and
simple, without having to modify the engine. And last but not least, the item system as a
whole should be efficient and convenient for both designers and players.

Therefore, items have been splitted into three layers.

1. Engine layer. Functionality required to manage items is implemented by the engine.
This includes item instantiation, inventory handling and access to advanced item func-
tionality.

2. Game extension layer. The item system itself — that is properties and abilities as
well as game rules concerning items — is implemented as a game extension on top of
these basic functions. That way, different games can have totally different item systems.

3. Data layer. On top of the item system sits the item data, i.e. all the individual items
actually available in a game.

Template Items Instances

Figure 5: Item hierarchy

The figure shows the relation between game extension, data and engine layer. For each
“class” of items®, a template needs to be written in Python. By initialising attributes of the
same template with different values, different items can be defined. At runtime, multiple
instances of every such item can be created and used by the engine.

For efficiency reasons, the engine distinguishes between two different kinds of items: mu-
table items require an actual physical instance for every occurrence in the game. As a result,
they can be easily changed throughout the game. Immutable items on the other hand are
instantiated only once. They are kept in a central repository, and reference counts are used
to allow multiple occurrences in the game.

Despite the fact that large parts of the item system are not implemented by the game
engine, items are always stored on engine level, in so called slots. A slot may contain several

3Like weapons, armour, potions, lightsources and so on. Subclassing is also possible, of course. Imagine
ranged weapons, healing potions, etc.

14

8 Rpg Module

items of the same kind, if the item allows that. Immutable items are considered to be of a
kind when their instance pointers are equal. For mutable items, item names have to match.

Slot

Stack

Inventory

Figure 6: Inventory, slots and stacks

With the above in mind, an inventory is easily implemented. It is little more than a list
of slots. To remain flexible, only the most basic inventory operations have been implemented
on engine level, like adding new items. For convenience, the inventory tries to group items of
same kind together in a stack. Furthermore, removal of items happens automatically as they
are moved from one slot or inventory to the other.

Inventories are not limited to a certain number of slots. If desired, they can even grow
or shrink at runtime. Therefore, inventories can be used whenever large quantities of items
need to be stored, not only to represent a character’s backpack.

8.3 Characters and Equipment

	Introduction
	Abstract
	Obtaining and Distributing

	Overview
	Design Principles
	Architecture
	Python on board

	Main Module
	Using the Engine from C++
	Using the Engine from Python
	Engine Startup

	Base Module
	Machine-Independence
	Data Persistance
	Configuration Files
	Game Directories

	Python Module
	Python to C++
	C++ to Python

	Event Module
	Event Handling
	Time Events

	Map module
	Maps and Views

	Rpg Module
	Quests and Logs
	Items and Inventories
	Characters and Equipment

